具有测量频率扫描功能的交流磁场传感器的制造方法

文档序号:6222781阅读:189来源:国知局
具有测量频率扫描功能的交流磁场传感器的制造方法
【专利摘要】本发明提供了一种具有测量频率扫描功能的交流磁场传感器,包括频率可调多通道信号发生器(1)、第一变频器(4)、晶体滤波器(5)、第二变频器(6)、低通滤波器(7)、低噪声放大器(8)、探头,所述频率可调多通道信号发生器(1)分别与所述探头、第一变频器(4)、以及第二变频器(6)相连,所述探头、所述第一变频器(4)、所述晶体滤波器(5)、所述第二变频器(6)、所述低通滤波器(7)、所述低噪声放大器(8)依次相连。本发明的有益效果是可以扫描测量交流频率磁场并且能够有效地滤除噪声和干扰。
【专利说明】具有测量频率扫描功能的交流磁场传感器
【技术领域】
[0001]本发明涉及弱磁场测量、交流磁场测量装置【技术领域】,尤其涉及具有测量频率扫描功能的交流磁场传感器。
【背景技术】
[0002]交流磁场传感器广泛应用于工业、测量和医学等领域,目前的应用中存在很多磁场测量手段和测量技术,常用的有霍尔效应、巨磁电阻效应、巨磁阻抗效应和超导量子干涉效应等多种类型的技术,产生了探测线圈传感器、巨磁电阻传感器、巨磁阻抗传感器、霍尔传感器、磁通门传感器和超导量子干涉仪等相关产品。
[0003]采用巨磁阻抗效应的传感器与磁通门传感器、巨磁电阻传感器等其它传感技术相t匕,在机械、力学、化学和电磁性能上都有明显优势,具有较高的灵敏度,尤其是具有微型尺寸和快速响应等优点,在此技术基础上已经研制成大量的新型基于磁场测量的传感器。
[0004]采用巨磁阻抗效应制作的磁场传感器,其主要工作原理是当非晶丝(带)上施加高频激励电流信号时,通过非晶丝(带)轴向的被测磁场信号使非晶丝(带)两端的阻抗随被测磁场信号的变化而变化,使用相应电路形式把这种阻抗变化转变为其它信号形式,可以实现对磁场的测量。
[0005]目前采用非晶丝(带)的复阻抗随被测磁场信号改变的原理制作传感器的方法主要有二种:(1)将非晶丝(带)的阻抗变化转变为频率的变化,即将非晶丝(带)作为可变电抗部件,应用于振荡电路,其阻抗变化转变为频率的变化,通过对频率信号处理,实现磁场信号的检测,电路中一般包括振荡电路、整流电路(检波电路)和放大电路。(2)直接测量非晶丝(带)两端的复阻抗,比如,使用电桥,将非晶丝(带)应用到电桥电路的一个桥臂上,电桥的输出是一个与激励信号同频率、具有固定相差的信号,其幅频特性反应了阻抗的变化,实现磁场信号的测量,以及使用矢量阻抗测试方法,通过对非晶丝(带)两端电压、电流幅度和相位的测量,实现复阻抗测量。
[0006]交流磁场测量环境中存在着各种类型的噪声和干扰,而且被测交流磁场信号非常微弱,目前采用的方法都不能有效地滤除噪声和干扰。

【发明内容】

[0007]为了解决现有技术中的问题,本发明提供了一种具有测量频率扫描功能的交流磁场传感器。
[0008]本发明提供了一种具有测量频率扫描功能的交流磁场传感器,包括频率可调多通道信号发生器、第一变频器、晶体滤波器、第二变频器、低通滤波器、低噪声放大器、探头,所述频率可调多通道信号发生器分别与所述探头、第一变频器、以及第二变频器相连,所述探头、所述第一变频器、所述晶体滤波器、所述第二变频器、所述低通滤波器、所述低噪声放大器依次相连。
[0009]作为本发明的进一步改进,所述探头包括非晶材料部件、前置放大器、直流偏置线圈,所述非晶材料部件与所述前置放大器输入端相连,所述频率可调多通道信号发生器与所述非晶材料部件相连,所述直流偏置线圈缠绕于所述非晶材料部件外表面,所述前置放大器输出端与所述第一变频器相连;
[0010]所述频率可调多通道信号发生器:用于分别提供所述非晶材料部件高频激励频率信号、第一变频器的调制频率信号,第二变频器的解调频率信号;
[0011]所述直流偏置线圈:用于产生偏置磁场;
[0012]所述非晶材料部件:用于在高频激励频率信号和直流偏置磁场的作用下,所述非晶材料部件两端的复阻抗随着通过其轴向分量的被检测交流磁场信号的变化而变化,在电路中所述非晶材料部件两端产生反映被检测交流磁场信号幅度变化的交流电压信号;
[0013]所述前置放大器:用于对非晶材料部件输出的交流电压信号进行初步放大;
[0014]所述第一变频器:用于将所述频率可调多通道信号发生器输出的调制频率信号与非晶材料部件输出的交流电压信号混频或变频,所述第一变频器输出的信号中含有等于所述晶体滤波器的中心频率的信号;
[0015]所述晶体滤波器,其中心频率为所述非晶材料部件激励频率、被测交流磁场信号频率、调制信号频率组合频率的一个,经过该晶体滤波器后,其余频率的输出信号被滤除;
[0016]所述第二变频器,用于将所述晶体滤波器输出频率信号和解调频率信号进行混频或变频,经混频或变频后所述第二变频器输出信号中含有被测交流磁场信号和其它组合频率信号;
[0017]所述低通滤波器,所述第二变频器输出的信号中其它组合频率信号远高于被测交流磁场信号频率,使用所述低通滤波器将组合频率滤掉;
[0018]低噪声放大器,对所述低通滤波器输出信号进行放大。
[0019]作为本发明的进一步改进,所述非晶材料部件为Co基或Fe基具有巨磁阻抗效应的非晶态合金材料。
[0020]作为本发明的进一步改进,所述非晶材料部件为非晶丝或非晶带。
[0021]作为本发明的进一步改进,所述晶体滤波器为窄带晶体滤波器。
[0022]作为本发明的进一步改进,所述窄带晶体滤波器为固定频率的窄带晶体滤波器。
[0023]作为本发明的进一步改进,所述第一变频器为具有变频功能的非线性器件。
[0024]所述非线性器件包括模拟乘法器、混频器。
[0025]本发明的有益效果是:本发明的具有测量频率扫描功能的交流磁场传感器能够有效地滤除噪声和干扰。
【专利附图】

【附图说明】
[0026]图1是本发明的原理框图。
【具体实施方式】
[0027]如图1所示,本发明公开了一种具有测量频率扫描功能的交流磁场传感器,包括频率可调多通道信号发生器1、第一变频器4、晶体滤波器5、第二变频器6、低通滤波器7、低噪声放大器8、探头,所述频率可调多通道信号发生器I分别与所述探头、第一变频器4、以及第二变频器6相连,所述探头、所述第一变频器4、所述晶体滤波器5、所述第二变频器6、所述低通滤波器7、所述低噪声放大器8依次相连。
[0028]所述探头包括非晶材料部件2、前置放大器3、直流偏置线圈9,所述非晶材料部件2与所述前置放大器3输入端相连,所述频率可调多通道信号发生器I与所述非晶材料部件2相连,所述直流偏置线圈9缠绕于所述非晶材料部件2外表面,所述前置放大器3输出端与所述第一变频器4相连;
[0029]所述频率可调多通道信号发生器1:用于分别提供所述非晶材料部件2高频激励频率信号、第一变频器4的调制频率信号,第二变频器6的解调频率信号;
[0030]所述直流偏置线圈9:用于产生偏置磁场;
[0031]所述非晶材料部件2:用于在高频激励频率信号和直流偏置磁场的作用下,所述非晶材料部件2两端的复阻抗随着通过其轴向分量的被检测交流磁场信号的变化而变化,在电路中所述非晶材料部件2两端产生反映被检测交流磁场信号幅度变化的交流电压信号;
[0032]所述前置放大器3:用于对非晶材料部件2输出的交流电压信号进行初步放大;
[0033]所述第一变频器4:用于将所述频率可调多通道信号发生器I输出的调制频率信号与非晶材料部件2输出的交流电压信号混频或变频,所述第一变频器4输出的信号中含有等于所述晶体滤波器5的中心频率的信号;
[0034]所述晶体滤波器5,其中心频率为所述非晶材料部件2激励频率、被测交流磁场信号频率、调制信号频率组合频率的一个,经过该晶体滤波器5后,其余频率的输出信号被滤除;
[0035]所述第二变频器6,用于将所述晶体滤波器5输出频率信号和解调频率信号进行混频或变频,经混频或变频后所述第二变频器6输出信号中含有被测交流磁场信号和其它组合频率信号;
[0036]所述低通滤波器7,所述第二变频器6输出的信号中其它组合频率信号远高于被测交流磁场信号频率,使用所述低通滤波器7将组合频率滤掉;
[0037]低噪声放大器8,对所述低通滤波器7输出信号进行放大。
[0038]所述非晶材料部件2为Co基或Fe基具有巨磁阻抗效应的非晶态合金材料。
[0039]所述非晶材料部件2为非晶丝或非晶带。
[0040]所述晶体滤波器5为窄带晶体滤波器,所述窄带晶体滤波器为固定频率的窄带晶体滤波器。
[0041]所述第一变频器4为具有变频功能的非线性器件,所述非线性器件包括模拟乘法器、混频器。
[0042]经第一变频器4混频或变频后,非晶材料部件2两端输出信号中的一个组合频率被调制到窄带晶体滤波器的中心频率上。
[0043]当被检测交流磁场信号频率改变时,可以通过相应改变第一变频器4的调制频率,使调制后的信号频率始终保持在窄带晶体滤波器的中心频率上,因此可使用固定频率的窄带晶体滤波器做为滤波器部件。
[0044]在测量频率的扫描过程中,系统使用通用的、低成本的及高性能的固定频率的窄带晶体滤波器对第一变频器4输出的信号滤波,具有良好的频率选择性能和简单的系统结构。[0045]第二变频器6将窄带晶体滤波器输出的信号和频率可调多通道信号发生器I提供的解调信号进行混频(变频),得到被检测交流磁场信号和其它较高频率的组合频率信号。
[0046]当被检测交流磁场信号频率改变时,可以通过相应改变第二变频器6的解调频率,使解调后的信号频率包含被检测交流磁场信号和其它较高频率的组合频率信号。
[0047]第二变频器6输出的较高频率的组合信号频率大于被测交流磁场信号频率的十倍以上。当被检测交流磁场信号频率改变时,窄带晶体滤波器、低通滤波器7等需要设定参数的部件在选定的扫描频率范围内参数保持不变。
[0048]非晶材料部件2具有GMI效应,对非晶材料部件2施加高频激励电流以及直流偏置磁场,当被测信号交流磁场信号轴向分量通过非晶材料部件2时会使其复阻抗发生变化,使电路中非晶材料部件2两端输出的交流电压幅度也随之变化,通过变频器、滤波器等频率选择部件,本发明可以实现对可变频率的被测交流磁场信号的测量。非晶材料部件2高频激励信号由频率可调多通道信号发生器I提供,线路中串接限流电阻,保证提供合适的驱动电流。
[0049]为保证后续信号处理电路不影响非晶材料部件2的工作状态,以及对非晶材料部件2两端输出电压信号进行初步放大,非晶材料部件2两端的输出电压首先送入到前置放大器3。前置放大器3具有很高的输入阻抗和很低的输出阻抗,同时对输入信号进行初步放大。前置放大器3的差分输入是非晶材料部件2两端电压信号,前置放大器3输出端连接到第一变频器4输入端。
[0050]前置放大器3输出电压信号中包含被测交流磁场信号频率和非晶材料部件2高频激励信号频率的组合频率信号,为了能够使用固定频率的窄带晶体滤波器对信号进行滤波需要对信号进行变频(混频),本发明将其称之为调制,调制后的信号频率等于窄带晶体滤波器的中心频率。
[0051]第一变频器4的一个输入信号是前置放大器3的输出信号,另一个输入信号是由频率可调多通道信号发生器I提供的调制信号。调制后的信号中包含被检测交流磁场信号频率、非晶材料部件2高频交流激励信号频率以及调制信号频率的多个组合频率信号。调制信号的频率可以根据被测交流磁场信号的频率调整,使得调制后的信号中包含被检测交流信号频率的一个组合频率始终等于具有固定频率的窄带晶体滤波器的中心频率。
[0052]窄带晶体滤波器具有良好的频率选择特性,具有极小的相对带宽,可作为窄带带通滤波器使用。对于涡流金属探伤、医学肿瘤检测等应用场合,被测交流磁场信号频率在几KHz到几百KHz之间,而通用频带的、体积较小、低成较低的单片晶体滤波器的频率范围在IMHz到几十MHz之间,为了使用通用的窄带晶体滤波器,需要对非晶材料部件2输出的含有被检测交流磁场成份的信号进行变频(混频)。窄带晶体滤波器的输入端连接到第一变频器4输出端,窄带晶体滤波器输出端连接到第二变频器6输入端。
[0053]窄带晶体滤波器的输出信号包含多个组合频率,第二变频器6对窄带晶体滤波器的输出信号进行变频(混频),本发明将其称之为解调,通过调整解调信号频率,使解调后的信号中含有被检测交流信号频率和其它较高组合信号频率。由于被测交流磁场信号频率的与其它组合频率信号频差较大,可利用低通滤波器7将不需要的频率信号滤除。第二变频器6的一个输入信号是晶体滤波器5的输出信号,另一个输入信号是由频率可调多通道信号发生器I提供的调制信号。[0054]第二变频器6输出信号的频率中包含频率较低的被测交流磁场信号频率和频率较高的非晶丝交流激励频率、调制信号频率和解调信号频率的组合频率,可使用低通滤波器7将较高频率的部分滤除。低通滤波器7的输入端连接到第二变频器6的输出端,低通滤波器7的输出端连接至低噪声放大器8输入端。
[0055]低通滤波器7的输出信号只包含被检测交流磁场信号,可对其放大达到检测转置要求的电压。
[0056]本发明的工作原理是:非晶材料部件2及偏置电路构成的探头置于被检测交流磁场空间中,频率可调多通道信号发生器I提供非晶材料部件2高频交流激励信号,向非晶材料部件2提供驱动。施加适当的直流偏置磁场,使非晶材料部件2处于较高灵敏度工作状态。当被测交流磁场信号的轴向分量作用于非晶材料部件2时,非晶材料部件2的阻抗发生变化,进而使非晶材料部件2两端的交流电压幅度随外部交流磁场信号的变化而变化,达到检测交流磁场信号的目的。
[0057]进入非晶材料部件2轴向的磁场不仅包含被检测信号磁场还存干扰磁场和噪声,通常被检测磁场信号非常微弱,淹没在干扰和噪声之中,因此需要对信号进行滤波以及放大。在系统中,被检测磁场信号频率由系统设定,频率为已知参数,因此可使用带宽极窄的晶体滤波器对接收信号进行滤波器,由于低工作频率的晶体滤波器实现比较困难,且体积较大,因此系统使用较高中心频率的晶体滤波器,同时出于成本考虑可以使用用于其它用途的、大量生产的窄带晶体滤波器,比如,用于调频接收机频段的晶体滤波器。
[0058]为了使被测交流磁场信号的频 率发生改变时非晶材料部件2仍然可以使用固定频率的窄带晶体滤波器进行滤波,需要使用第一变频器4对非晶材料部件2输出信号进行变频,即对信号进行调制,通过改变第一变频器4的调制频率,使调制后的信号频率始终保持在窄带晶体滤波器的中心频率上。
[0059]经过窄带晶体滤波器滤波后,被检测信号的信噪比有了很大的提高。晶体滤波器输出信号中包含了被测交流磁场信号频率、非晶材料部件2激励信号频率、调制信号频率的组合频率,可选择其中一个组合频率,通过变频(混频)提取被测交流磁场信号频率号频率,即对信号进行解调。解调后的信号中其它组合频率信号的频率远大于被检测交流磁场信号频率,可使用低通滤波器7滤除其余部分。
[0060]经窄带滤波器滤波后的信号仅包含被检测交流磁场信号频率,利用低噪声放大器8进行放大,可获得足够幅度的被检测交流磁场信号的输出信号。
[0061]频率可调多通道信号发生器I也可称为频率可调多通道输出交流信号发生器。
[0062]频率可调多通道信号发生器I输出频率计算:
[0063](I)非晶材料部件2高频激励信号频率为fam。,第一变频器4的调制信号频率为f?d,第二变频器6的解调信号频率为fdCT1,被检测交流磁场信号频率为fMt,频率根据非晶丝材料特性以及电路工作点确定。(2)非晶材料部件2两端输出电压信号中包含
土fext频率信号。(3)第一变频器4将频率为fm()d的调制信号和非晶材料部件2输出频率为fam。土fext的交流信号变频(混频),产生含有(fam。土fext) 土乙^频率成份的交流信号。
(4)窄带晶体滤波器的中心频率可设定为(fam。土fext) 土fm()d中的一个,假定选择中心频率为f-o+fext+fmod° (5)第二变频器6将窄带晶体滤波器输出频率为f_+f;xt+fm(xl的信号与解调频率信号fdCT1进行变频(混频),如果解调信号频率为fdail=f_+fm()d,第二变频器6输出信号中的频率成份为fext及fext+2f_+2fm()d,只要保证fdem=f^fnwd就可以获得频率为fext的被测交流磁场信号。
[0064]本发明的有益效果是: [0065]1.使用滤波性能良好的窄带晶体滤波器对被检测交流磁场信号进行滤波,可获得非常高的信噪比。
[0066]2.通过改变调制信号和解调信号频率,可以实现在整个频带内对被测交流磁场信号进行频率扫描,可获得精确的磁场信号的频率响应。
[0067]3.将连续可变的被检测信号频率调制到固定的频率,可利用市场上通用的、低成本的、性能良好的晶体滤波器5实现窄带滤波,提高了系统的性价比。
[0068]4.由于晶体滤波器5具有固定的频率,在解调、低通滤波和低噪声放大电路中可使用固定参数的相关电路,降低了系统的设计和调试的复杂程度。频率可调多通道信号发生器I提供精确的、可变的调制和解调频率,可以保证解调后的输出信号中只包含被检测交流磁场信号频率。
[0069]5.第二变频器6输出的信号中被检测交流磁场信号频率和其它组合频率信号的频差较大,经其后的低通滤波器7滤波,被测交流磁场信号之外的频率被大幅度衰减,系统获得良好的信噪比。
[0070]以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属【技术领域】的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。
【权利要求】
1.一种具有测量频率扫描功能的交流磁场传感器,其特征在于:包括频率可调多通道信号发生器(I)、第一变频器(4)、晶体滤波器(5)、第二变频器(6)、低通滤波器(7)、低噪声放大器(8)、探头,所述频率可调多通道信号发生器(I)分别与所述探头、第一变频器(4)、以及第二变频器(6)相连,所述探头、所述第一变频器(4)、所述晶体滤波器(5)、所述第二变频器(6)、所述低通滤波器(7)、所述低噪声放大器(8)依次相连。
2.根据权利要求1所述的交流磁场传感器,其特征在于:所述探头包括非晶材料部件(2)、前置放大器(3)、直流偏置线圈(9),所述非晶材料部件(2)与所述前置放大器(3)输入端相连,所述频率可调多通道信号发生器(I)与所述非晶材料部件(2)相连,所述直流偏置线圈(9)缠绕于所述非晶材料部件(2)外表面,所述前置放大器(3)输出端与所述第一变频器(4)相连; 所述频率可调多通道信号发生器(I):用于分别提供所述非晶材料部件(2)高频激励频率信号、第一变频器(4)的调制频率信号,第二变频器(6)的解调频率信号; 所述直流偏置线圈(9):用于产生偏置磁场; 所述非晶材料部件(2):用于在高频激励频率信号和直流偏置磁场的作用下,所述非晶材料部件(2)两端的复阻抗随着通过其轴向分量的被检测交流磁场信号的变化而变化,在电路中所述非晶材料部件(2)两端产生反映被检测交流磁场信号幅度变化的交流电压信号; 所述前置放大器(3):用于对非晶材料部件(2)输出的交流电压信号进行初步放大; 所述第一变频器(4):用于将所述频率可调多通道信号发生器(I)输出的调制频率信号与非晶材料部件(2)输出的 交流电压信号混频或变频,所述第一变频器(4)输出的信号中含有等于所述晶体滤波器(5)的中心频率的信号; 所述晶体滤波器(5),其中心频率为所述非晶材料部件(2)激励频率、被测交流磁场信号频率、调制信号频率组合频率的一个,经过该晶体滤波器(5)后,其余频率的输出信号被滤除;所述第二变频器(6),用于将所述晶体滤波器(5)输出频率信号和解调频率信号进行混频或变频,经混频或变频后所述第二变频器(6)输出信号中含有被测交流磁场信号和其它组合频率信号; 所述低通滤波器(7),所述第二变频器(6)输出的信号中其它组合频率信号远高于被测交流磁场信号频率,使用所述低通滤波器(7)将组合频率滤掉; 低噪声放大器(8 ),对所述低通滤波器(7 )输出信号进行放大。
3.根据权利要求2所述的交流磁场传感器,其特征在于:所述非晶材料部件(2)为Co基或Fe基具有巨磁阻抗效应的非晶态合金材料。
4.根据权利要求3所述的交流磁场传感器,其特征在于:所述非晶材料部件(2)为非晶丝或非晶带。
5.根据权利要求2所述的交流磁场传感器,其特征在于:所述晶体滤波器(5)为窄带晶体滤波器。
6.根据权利要求5所述的交流磁场传感器,其特征在于:所述窄带晶体滤波器为固定频率的窄带晶体滤波器。
7.根据权利要求2所述的交流磁场传感器,其特征在于:所述第一变频器(4)为具有变频功能的非线性器件。
8.根据权利要求7所述的交流磁场传感器,其特征在于:所述非线性器件包括模拟乘法器、混频器 。
【文档编号】G01R33/09GK103885006SQ201410127098
【公开日】2014年6月25日 申请日期:2014年3月31日 优先权日:2014年3月31日
【发明者】许洪光, 张霆廷, 张钦宇, 林茂六 申请人:哈尔滨工业大学深圳研究生院
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1