射频识别测试仪校准装置及方法

文档序号:6223097阅读:298来源:国知局
射频识别测试仪校准装置及方法
【专利摘要】本发明提供了一种射频识别测试仪校准装置及方法,所述装置包括:与射频识别测试仪的发射端连接的衰减器,与衰减器的输出端连接的频率计,与衰减器的输出端连接的微波功率计,与射频识别测试仪的发射端连接的感应线圈,感应线圈的输出端与数字示波器连接,与射频识别测试仪的发射端连接的矢量信号分析仪,与射频识别测试仪的接收端连接的信号发生器,信号发生器的输出端分别与接收端和微波功率计的输入端连接。本发明能够对射频识别卡测试中使用的射频识别测试仪进行精确校准。
【专利说明】射频识别测试仪校准装置及方法
【技术领域】
[0001]本发明涉及一种射频识别测试仪校准装置及方法。
【背景技术】
[0002]射频识别(RFID)测试仪在RFID卡的研发、生产、测试中广泛使用,RFID测试仪包含有RFID发射器和RFID接收器,发射器发射出所需要的RFID信号,RFID卡接收到此RFID信号后,解码后再将信号发射回去,射频测试仪再接收RFID卡发送回的信号并正确解调。因此,射频识别测试仪是否准确可靠对于RFID卡的测试中将非常重要。到目前为止,国家未颁布射频识别(RFID)测试仪校准规范或检定规程。

【发明内容】

[0003]本发明的目的在于提供一种射频识别测试仪校准装置及方法,能够对射频识别卡测试中使用的射频识别测试仪进行精确校准。
[0004]为解决上述问题,本发明提供一种射频识别测试仪校准装置,包括:
[0005]与射频识别测试仪的发射端连接的衰减器,所述衰减器的输入端与所述发射端连接,与所述衰减器的输出端连接的频率计,所述频率计用于通过所述衰减器读取射频识别测试仪的输出频率的计数值;
[0006]与所述衰减器的输出端连接的微波功率计,所述微波功率计用于通过所述衰减器获取射频识别测试仪的输出功率的计数值;
[0007]与射频识别测试仪的发射端连接的感应线圈,所述感应线圈的输入端与所述发射端连接,所述感应线圈的输出端与数字示波器连接,所述数字示波器用于测量所述感应线圈的输出电压幅度;
[0008]与射频识别测试仪的发射端连接的矢量信号分析仪,所述矢量信号分析仪用于获取射频识别测试仪的调制指数、频率误差和输出信号波形参数;
[0009]与射频识别测试仪的接收端连接的信号发生器,用于向射频识别测试仪输出功率值和阅读器信号,所述信号发生器的输出端分别与所述接收端和微波功率计的输入端连接。
[0010]进一步的,在上述装置中,所述感应线圈为P⑶天线组或V⑶天线组。
[0011]进一步的,在上述装置中,对于符合IS0/IEC14443标准的射频识别测试仪,所述感应线圈为P⑶天线组。
[0012]进一步的,在上述装置中,对于符合IS0/IEC15693标准的射频识别测试仪,所述感应线圈为V⑶天线组。
[0013]根据本发明的另一面,提供一种射频识别测试仪校准方法,采用上述射频识别测试仪校准装置,所述方法包括:
[0014]设置射频识别测试仪的输出频率和输出功率后,射频识别测试仪通过衰减器向频率计输出连续的、未加调制的信号,从频率计读取所述输出频率的计数值;[0015]设置射频识别测试仪的输出频率和输出功率后,射频识别测试仪通过衰减器向微波功率计输出连续的、未加调制的信号,从微波功率计读取所述输出功率的计数值,根据所述输出功率的计数值和衰减器的衰减值确定射频识别测试仪的输出功率;
[0016]将所述数字示波器的输入阻抗选择为高阻,设置射频识别测试仪的输出信号场强后,射频识别测试仪向感应线圈输出连续的、未加调制的信号,调整数字示波器的时间标度和电压标度到的位置,调节数字示波器的垂直幅度和扫描时间后,读取所述数字示波器测量的所述感应线圈的输出电压幅度,根据所述输出电压幅度确定射频识别测试仪的输出场强;
[0017]将射频识别测试仪的状态选择为阅读器模拟器状态,设定射频识别测试仪的中心频率为915MHz、输出功率为OdBm后,射频识别测试仪向矢量信号分析仪输出信号,将矢量信号分析仪的状态选择为射频识别分析,设定矢量信号分析仪的中心频率为915MHz、输出电平为OdBm和触发方式为中频幅度并选择前向及对应的速率,及选择矢量信号分析仪的分析结果为命令后,从矢量信号分析仪的结果种类汇总画面中读取射频识别测试仪的调制指数、频率误差和输出信号波形参数;
[0018]设定信号发生器的输出频率和输出电平后,信号发生器输出连续波信号,从所述微波功率计读取信号发生器的输出功率后,保持信号发生器的输出功率不变并向所述射频识别测试仪输出,将射频识别测试仪的工作状态选择功率测量,将射频识别测试仪的接收频率设置为与所述信号发生器的输出频率相同的频率、预期接收电平设置为大于或者等于所述微波功率计读取到的信号发生器的输出功率后,从射频识别测试仪中读取从所述信号发生器接收到的接收功率;
[0019]设置所述信号发生器的中心频率为915MHz、输出功率为OdBm,并选择输出类型为模拟阅读器的信号及触发类型为单次触发,选择射频识别测试仪中的阅读器一致性测试面板,并射频识别测试仪的中心频率为915MHz、分析电平为OdBm,设置触发模式为分析上升沿触发后,按射频识别测试仪的获取键获取信号,触发信号发生器以向射频识别测试仪发送一次阅读器信号,射频识别测试仪对取样得到的阅读器信号选择时间范围并进行分析得到阅读器分析信号,从所述阅读器分析信号中读取调制指数。
[0020]进一步的,在上述方法中,根据所述输出功率的计数值和衰减器的衰减值确定射频识别测试仪的输出功率的步骤中,所述射频识别测试仪的输出功率按下式确定:
[0021]Ps=P+A,
[0022]其中,Ps表示射频识别测试仪的输出功率,单位为dBm,P表示功率计读数,单位为dBm, A表示衰减器的衰减值,单位为dB。
[0023]进一步的,在上述方法中,根据所述输出电压幅度确定射频识别测试仪的输出场强的步骤中,根据如下公式确定射频识别测试仪的输出场强:
[0024]H=V/ k c,
[0025]其中,H为射频识别测试仪的输出场强,单位A/m,V为所述数字示波器测量的感应线圈的输出电压幅度,单位为mVp-p, k c为所述感应线圈的校正因子。
[0026]与现有技术相比,本发明通过设置射频识别测试仪的输出频率和输出功率后,射频识别测试仪通过衰减器向频率计输出连续的、未加调制的信号,从频率计读取所述输出频率的计数值;设置射频识别测试仪的输出频率和输出功率后,射频识别测试仪通过衰减器向微波功率计输出连续的、未加调制的信号,从微波功率计读取所述输出功率的计数值,根据所述输出功率的计数值和衰减器的衰减值确定射频识别测试仪的输出功率;将所述数字示波器的输入阻抗选择为高阻,设置射频识别测试仪的输出信号场强后,射频识别测试仪向感应线圈输出连续的、未加调制的信号,调整数字示波器的时间标度和电压标度到的位置,调节数字示波器的垂直幅度和扫描时间后,读取所述数字示波器测量的所述感应线圈的输出电压幅度,根据所述输出电压幅度确定射频识别测试仪的输出场强;将射频识别测试仪的状态选择为阅读器模拟器状态,设定射频识别测试仪的中心频率为915MHz、输出功率为OdBm后,射频识别测试仪向矢量信号分析仪输出信号,将矢量信号分析仪的状态选择为射频识别分析,设定矢量信号分析仪的中心频率为915MHz、输出电平为OdBm和触发方式为中频幅度并选择前向及对应的速率,及选择矢量信号分析仪的分析结果为命令后,从矢量信号分析仪的结果种类汇总画面中读取射频识别测试仪的调制指数、频率误差和输出信号波形参数;设定信号发生器的输出频率和输出电平后,信号发生器输出连续波信号,从所述微波功率计读取信号发生器的输出功率后,保持信号发生器的输出功率不变并向所述射频识别测试仪输出,将射频识别测试仪的工作状态选择功率测量,将射频识别测试仪的接收频率设置为与所述信号发生器的输出频率相同的频率、预期接收电平设置为大于或者等于所述微波功率计读取到的信号发生器的输出功率后,从射频识别测试仪中读取从所述信号发生器接收到的接收功率;设置所述信号发生器的中心频率为915MHz、输出功率为OdBm,并选择输出类型为模拟阅读器的信号及触发类型为单次触发,选择射频识别测试仪中的阅读器一致性测试面板,并射频识别测试仪的中心频率为915MHz、分析电平为OdBm,设置触发模式为分析上升沿触发后,按射频识别测试仪的获取键获取信号,触发信号发生器以向射频识别测试仪发送一次阅读器信号,射频识别测试仪对取样得到的阅读器信号选择时间范围并进行分析得到阅读器分析信号,从所述阅读器分析信号中读取调制指数,能够对射频识别卡测试中使用的射频识别测试仪进行精确校准。
【专利附图】

【附图说明】
[0027]图1是本发明一实施例的射频识别测试仪的输出频率校准的装置连接示意图;
[0028]图2是本发明一实施例的射频识别测试仪的输出功率校准的装置连接示意图;
[0029]图3是本发明一实施例的射频识别测试仪的输出场强校准的装置连接示意图;
[0030]图4是本发明一实施例的射频识别测试仪的发射端调制指数校准的装置连接示意图;
[0031]图5是本发明一实施例的射频识别测试仪的接收功率校准的装置连接示意图;
[0032]图6是本发明一实施例的射频识别测试仪的接收端调制指数校准的装置连接示意图。
【具体实施方式】
[0033]为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和【具体实施方式】对本发明作进一步详细的说明。
[0034]实施例一
[0035]本发明提供一种射频识别测试仪校准装置,包括:[0036]如图1所示,与射频识别测试仪I的发射端11连接的衰减器,所述衰减器2的输入端与所述发射端11连接,与所述衰减器2的输出端连接的频率计3,所述频率计3用于通过所述衰减器2读取射频识别测试仪I的输出频率的计数值;
[0037]如图2所示,与所述衰减器2的输出端连接的微波功率计4,所述微波功率4计用于通过所述衰减器2获取射频识别测试仪I的输出功率的计数值;
[0038]如图3所示,与射频识别测试仪I的发射端11连接的感应线圈,所述感应线圈5的输入端与所述发射端11连接,所述感应线圈5的输出端与数字示波器6连接,所述数字示波器6用于测量所述感应线圈5的输出电压幅度;优选的,所述感应线圈5为PCD天线组或VCD天线组,其中,对于符合IS0/IEC14443标准的射频识别测试仪,所述感应线圈为PCD天线组;对于符合IS0/IEC15693标准的射频识别测试仪,所述感应线圈为V⑶天线组;
[0039]如图4所示,与射频识别测试仪I的发射端11连接的能分析RFID信号的矢量信号分析仪7,所述矢量信号分析仪7用于获取射频识别测试仪I的调制指数、频率误差和输出信号波形参数;
[0040]如图5和6所示,与射频识别测试仪I的接收端12连接的信号发生器8,用于向射频识别测试仪I输出功率值和阅读器信号,所述信号发生器8的输出端分别与所述接收端12和微波功率计4的输入端连接。
[0041]本实施例能够对射频识别卡测试中使用的射频识别测试仪进行精确校准。
[0042]实施例二
[0043]如图1?6所示,本发明还提供另一种射频识别测试仪校准方法,采用实施例一的射频识别测试仪校准装置,所述方法包括:
[0044]步骤一,设置射频识别测试仪的输出频率和输出功率后,射频识别测试仪通过衰减器向频率计输出连续的、未加调制的信号,从频率计读取所述输出频率的计数值;具体的,本步骤中的仪器连接如图1所示;
[0045]步骤二,设置射频识别测试仪的输出频率和输出功率后,射频识别测试仪通过衰减器向微波功率计输出连续的、未加调制的信号,从微波功率计读取所述输出功率的计数值,根据所述输出功率的计数值和衰减器的衰减值确定射频识别测试仪的输出功率;具体的,本步骤中的仪器连接如图2所示;优选的,根据所述输出功率的计数值和衰减器的衰减值确定射频识别测试仪的输出功率的步骤中,所述射频识别测试仪的输出功率按下式确定:
[0046]Ps=P+A,
[0047]其中,Ps表示射频识别测试仪的输出功率,单位为dBm,P表示功率计读数,单位为dBm, A表示衰减器的衰减值,单位为dB ;
[0048]步骤三,将所述数字示波器的输入阻抗选择为高阻,设置射频识别测试仪的输出信号场强后,射频识别测试仪向感应线圈输出连续的、未加调制的信号,调整数字示波器的时间标度和电压标度到的位置,调节数字示波器的垂直幅度和扫描时间后,读取所述数字示波器测量的所述感应线圈的输出电压幅度,根据所述输出电压幅度确定射频识别测试仪的输出场强;具体的,对于13.56MHz的射频识别卡,校准输出信号为RF场强,对于符合IS0/IEC14443 标准的 RFID 测试仪,选用 PCD (PCD Proximity coupling device 接近式耦合设备)天线组;对于符合IS0/IEC15693标准的RFID测试仪,选用VCD (VCD vicinitycoupling device邻近式稱合设备)天线组,如图3所示,将RFID测试仪的发射端与P⑶发射天线的输入端相连接,校准线圈的输出与示波器连接,示波器的输入阻抗选择为高阻,设定RFID测试仪输出信号场强,输出未加调制信号(即CW信号),将不波器的时间标度和电压标度调整到适合位置,适当调节示波器的垂直幅度和扫描时间,读取示波器的测量的感应线圈输出电压幅度Vp-p,优选的,根据所述输出电压幅度确定射频识别测试仪的输出场强的步骤中,根据如下公式确定射频识别测试仪的输出场强:
[0049]H=V/ k c,
[0050]其中,H为射频识别测试仪的输出场强,单位A/m,V为所述数字示波器测量的感应线圈的输出电压幅度,单位为mVp-p, k c为所述感应线圈的校正因子,k c =900mVp-p (A/m)(rms);
[0051]步骤四,将射频识别测试仪的状态选择为阅读器模拟器状态(Reader Emulator),设定射频识别测试仪的中心频率为915MHz、输出功率为OdBm后,射频识别测试仪向矢量信号分析仪输出信号,将矢量信号分析仪的状态选择为射频识别(RFID)分析,设定矢量信号分析仪的中心频率为915MHz、输出电平为OdBm和触发方式为中频幅度(IF mag)并选择前向(Forward读写器到卡,即Interrogator — Tag)及对应的速率,及选择矢量信号分析仪的分析结果为命令(co_and)后,从矢量信号分析仪的结果种类汇总画面(ASK summary)中读取射频识别测试仪的调制指数、频率误差和输出信号波形参数;具体的,如图4所示,将RFID测试仪的输出通过电缆连接至矢量信号分析仪的信号输入端,RFID测试仪选择Reader Emulator,选择标准例如EPC global class-lG-2,设定中心频率为915MHz,设定输出功率为OdBm,发送合适的命令,例如Query,发送信号,矢量信号分析仪选择RFID分析,设定中心频率为915MHz,设定输出电平为OdBm,设定触发方式为IF mag,选择标准与RFID测试仪相一致例如EPC global cIass-1Generation2,并选择前向(Forward读写器到卡,即Interrogator — Tag)并选择所对应的速率,选择分析结果为command,从结果为ASKsummary读取出测试结果。调制指数,以及频率误差,并记录;
[0052]步骤五,设定信号发生器的输出频率和输出电平后,信号发生器输出连续波信号,从所述微波功率计读取信号发生器的输出功率后,保持信号发生器的输出功率不变并向所述射频识别测试仪输出,将射频识别测试仪的工作状态选择功率测量,将射频识别测试仪的接收频率设置为与所述信号发生器的输出频率相同的频率、预期接收电平设置为大于或者等于所述微波功率计读取到的信号发生器的输出功率后,从射频识别测试仪中读取从所述信号发生器接收到的接收功率;具体的,如图5所示,信号发生器输出连续波信号,输出频率设定为f,调节信号发生器输出电平,使得微波功率计的指示值为Ps,然后,信号发生器的输出保持不变,将射频电缆与RFID测试仪的接收端口连接,RFID测试仪选择功率测量,接收频率设置为f,预期接收电平大于(或者等于)Ps,从射频识别测试仪中读取测量功率;
[0053]步骤六,设置所述信号发生器的中心频率为915MHz、输出功率为OdBm,并选择输出类型为模拟阅读器的信号(Reader Emulator)及触发类型为单次触发(single),选择射频识别测试仪中的阅读器一致性测试面板(Reader comformance test panel),并射频识别测试仪的中心频率为915MHz、分析电平为OdBm,设置触发模式(Trigger mode)为分析上升沿触发(analyze rising edge)后,按射频识别测试仪的获取键(Acquire)获取信号,触发信号发生器以向射频识别测试仪发送一次阅读器信号,射频识别测试仪对取样得到的阅读器信号选择时间范围并进行分析得到阅读器分析信号,从所述阅读器分析信号(Readeranalysis)中读取调制指数(Mod depth)。具体的,如图6所示,将信号发生器的输出连接至RFID测试仪的接收端口,信号发生器选择标准为EPC global class_lGeneration2,设置中心频率为915MHz,输出功率为OdBm,选择所需要的输出类型,Reader Emulator即模拟阅读器的信号,触发类型Trigger Type选择single (No Retrigger),RFID测试仪选择Readercomformance test pane 1(EPC UHF Gen2),设置 RFID 测试仪中心频率为 915MHz,分析电平为OdBm,设置Trigger mode为analyze rising edge,然后按Acquire获取信号,按信号发生器触发(trigger)发送一次阅读器信号,RFID分析仪中对取样得到的信号选择合适的时间范围进行分析,观察测试结果,从Reader analysis中读取Mod depth。
[0054]详细的,本发明一实施例的RFID测试仪的测试结果如下:
[0055]1) RFID测试仪输出频率
[0056]
【权利要求】
1.一种射频识别测试仪校准装置,其特征在于,包括: 与射频识别测试仪的发射端连接的衰减器,所述衰减器的输入端与所述发射端连接,与所述衰减器的输出端连接的频率计,所述频率计用于通过所述衰减器读取射频识别测试仪的输出频率的计数值; 与所述衰减器的输出端连接的微波功率计,所述微波功率计用于通过所述衰减器获取射频识别测试仪的输出功率的计数值; 与射频识别测试仪的发射端连接的感应线圈,所述感应线圈的输入端与所述发射端连接,所述感应线圈的输出端与数字示波器连接,所述数字示波器用于测量所述感应线圈的输出电压幅度; 与射频识别测试仪的发射端连接的矢量信号分析仪,所述矢量信号分析仪用于获取射频识别测试仪的调制指数、频率误差和输出信号波形参数; 与射频识别测试仪的接收端连接的信号发生器,用于向射频识别测试仪输出功率值和阅读器信号,所述信号发 生器的输出端分别与所述接收端和微波功率计的输入端连接。
2.如权利要求1所述的射频识别测试仪校准装置,其特征在于,所述感应线圈为PCD天线组或V⑶天线组。
3.如权利要求2所述的射频识别测试仪校准装置,其特征在于,对于符合ISO/IEC14443标准的射频识别测试仪,所述感应线圈为P⑶天线组。
4.如权利要求2所述的射频识别测试仪校准装置,其特征在于,对于符合ISO/IEC15693标准的射频识别测试仪,所述感应线圈为V⑶天线组。
5.一种射频识别测试仪校准方法,其特征在于,采对如权利要求1~4任一项所述的射频识别测试仪校准装置,所述方法包括: 设置射频识别测试仪的输出频率和输出功率后,射频识别测试仪通过衰减器向频率计输出连续的、未加调制的信号,从频率计读取所述输出频率的计数值; 设置射频识别测试仪的输出频率和输出功率后,射频识别测试仪通过衰减器向微波功率计输出连续的、未加调制的信号,从微波功率计读取所述输出功率的计数值,根据所述输出功率的计数值和衰减器的衰减值确定射频识别测试仪的输出功率; 将所述数字示波器的输入阻抗选择为高阻,设置射频识别测试仪的输出信号场强后,射频识别测试仪向感应线圈输出连续的、未加调制的信号,调整数字示波器的时间标度和电压标度到的位置,调节数字示波器的垂直幅度和扫描时间后,读取所述数字示波器测量的所述感应线圈的输出电压幅度,根据所述输出电压幅度确定射频识别测试仪的输出场强; 将射频识别测试仪的状态选择为阅读器模拟器状态,设定射频识别测试仪的中心频率为915MHz、输出功率为OdBm后,射频识别测试仪向矢量信号分析仪输出信号,将矢量信号分析仪的状态选择为射频识别分析,设定矢量信号分析仪的中心频率为915MHz、输出电平为OdBm和触发方式为中频幅度并选择前向及对应的速率,及选择矢量信号分析仪的分析结果为命令后,从矢量信号分析仪的结果种类汇总画面中读取射频识别测试仪的调制指数、频率误差和输出信号波形参数; 设定信号发生器的输出频率和输出电平后,信号发生器输出连续波信号,从所述微波功率计读取信号发生器的输出功率后,保持信号发生器的输出功率不变并向所述射频识别测试仪输出,将射频识别测试仪的工作状态选择功率测量,将射频识别测试仪的接收频率设置为与所述信号发生器的输出频率相同的频率、预期接收电平设置为大于或者等于所述微波功率计读取到的信号发生器的输出功率后,从射频识别测试仪中读取从所述信号发生器接收到的接收功率; 设置所述信号发生器的中心频率为915MHz、输出功率为OdBm,并选择输出类型为模拟阅读器的信号及 触发类型为单次触发,选择射频识别测试仪中的阅读器一致性测试面板,并射频识别测试仪的中心频率为915MHz、分析电平为OdBm,设置触发模式为分析上升沿触发后,按射频识别测试仪的获取键获取信号,触发信号发生器以向射频识别测试仪发送一次阅读器信号,射频识别测试仪对取样得到的阅读器信号选择时间范围并进行分析得到阅读器分析信号,从所述阅读器分析信号中读取调制指数。
6.如权利要求5所述的射频识别测试仪校准方法,其特征在于,根据所述输出功率的计数值和衰减器的衰减值确定射频识别测试仪的输出功率的步骤中,所述射频识别测试仪的输出功率按下式确定:
Ps=P+A, 其中,Ps表示射频识别测试仪的输出功率,单位为dBm,P表示功率计读数,单位为dBm,A表示衰减器的衰减值,单位为dB。
7.如权利要求5所述的射频识别测试仪校准方法,其特征在于,根据所述输出电压幅度确定射频识别测试仪的输出场强的步骤中,根据如下公式确定射频识别测试仪的输出场强:
H=V/ k c, 其中,H为射频识别测试仪的输出场强,单位A/m,V为所述数字示波器测量的感应线圈的输出电压幅度,单位为mVp-p, k c为所述感应线圈的校正因子。
【文档编号】G01R35/00GK103926547SQ201410133168
【公开日】2014年7月16日 申请日期:2014年4月3日 优先权日:2014年4月3日
【发明者】詹志强, 陆福敏, 于磊, 夏铭, 来磊, 蔡青, 桑昱 申请人:上海市计量测试技术研究院
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1