用于检测逆变器的输出电流的设备的制作方法

文档序号:15612550发布日期:2018-10-09 20:44阅读:206来源:国知局

本发明涉及用于检测逆变器的输出电流的设备。



背景技术:

逆变器是典型的电力转换设备,其被配置为接收交流(ac)电力并将其转换为直流(dc)电力,并且然后再次将转换的dc电力转换为ac电力,以控制电力系统。

逆变器在整个行业中以各种形式被使用,比如风扇、泵、升降机、传输设备、生产线等。

逆变器包括被配置为对ac电力进行整流的整流器、被设置在整流器与逆变器部件之间并且被配置为平滑所整流的ac电力的dc链路的电容器、以及逆变器部件。

在从dc链路连接至逆变器部件的输出级(outputstage)处,提供了高势能侧dcp和低势能侧dcn。分流电阻器被连接至低电势侧dcn以检测输出电流。

在由分流电阻器进行的检测中,选择采样定时是很重要的。因为当由于逆变器的硬件结构而造成的电源开关被导通或断开时存在停滞时间、导通时间、电压信号稳定时间等,所以在这些时间对电流进行采样可能造成测量误差的增大。因此,不在有效矢量的起始点而是在从其起始点被延迟了预先确定的时间的定时处执行对电流的采样。

然而,即使在从有效矢量的起始点被延迟了预先确定的时间之后执行对电流的采样,也会由于硬件延迟因素而发生电流检测误差。



技术实现要素:

因此,本公开的目的是提供一种用于检测逆变器的输出电流的设备,即使出现电路延迟因素时,所述设备也能够防止电流检测误差。

为了解决上述目的,根据本公开的一个实施例的用于检测逆变器的输出电流的设备包括:分流电阻器,其被连接至直流(dc)链路的电容器的输出端;检测器,其被连接至所述分流电阻器并且被配置为检测所述输出电流;以及控制器,其被配置为控制所述检测器中的电流的采样定时,其中,所述控制器可以将关于开关电压的有效矢量的长度与预先确定的值进行比较,并且调制所述有效矢量的长度。

在本公开的一个实施例中,所述分流电阻器可以被连接至低电势侧。

在本公开的一个实施例中,所述控制器可以在基于所述有效矢量的长度的中值而延迟了设定的时间的定时处对所述电流进行采样。

在本公开的一个实施例中,所述控制器可以以大于通过所述有效矢量使电流稳定的时间的值来调制所述有效矢量的长度。

在本公开的一个实施例中,所述控制器可以将所述延迟的定时确定为大于通过所述有效矢量使电流稳定的时间的一半的值。

根据本公开,存在能够使电流检测误差的可能性最小化以精确地检测被提供给逆变器部件的输出电流的效果。

附图说明

图1是示出了根据本公开的一个实施例的用于检测逆变器的输出电流的设备的示意图。

图2是示出了对被连接至逆变器部件的开关元件的布置的示意图。

图3是示出了dq轴转换的电压以及对应于该dq轴转换的电压的矢量的示意图。

图4是示出经脉冲宽度调制(pwm)调制的开关电压的图案的示意图。

图5是示出了根据本公开的一个实施例的用于检测逆变器的输出电流的方法的流程图。

图6是示出了当有效矢量的长度足够时电流的采样定时的示意图。

图7是示出了当有效矢量的长度不足时pwm调制以及电流的采样定时的示意图。

具体实施方式

从参照附图的详细描述中,上面的目的、特征和优点将变得显而易见。足够详细地描述了实施例以使本领域技术人员能够容易地实践本公开的技术思想。对众所周知的功能或配置的详细描述可能被省略以免不必要地使本公开的要旨不清楚。在下文中,将参照附图详细描述本公开的实施例。在整个附图中,相似的参考数字指代相似的元件。

在下文中,将参照附图详细描述根据本公开的的一个优选实施例。

图1是示出了根据本公开的一个实施例的用于检测逆变器的输出电流的设备的示意图。

参照图1,整流器210可以对三相交流(ac)电力400(r相、s相和t相)进行整流。可以由被配置为连接高电势侧dcp和低电势侧dcn的直流(dc)链路处的电容器来平滑整流后的电力。

平滑后的dc电力可以被提供给逆变器部件220,并且逆变器部件220可以再次将dc电力转换为三相ac电力,以将三相ac电力提供给电力系统300。

本公开涉及用于检测被提供给上述逆变器中的逆变器部件220的输出电流的设备。

用于检测逆变器的输出电流的设备可以包括分流电阻器110、检测器120、控制器130、控制电源140、存储器150和显示器160。

分流电阻器110可以被连接在设置了电容器的dc链路的低电势侧dcn与逆变器部件220之间。

分流电阻器110是具有极低电阻的电阻器并且被用于电流测量。

检测器120被连接至分流电阻器110和控制器130。

检测器120可以使用跨分流电阻器110两端的信号来检测电流。检测器120可以通过其采样检测电流,并且将检测出的电流提供给控制器130。

控制器130可以被连接至检测器120、显示器160、控制电源140、存储器150和逆变器部件220。

控制器130可以使用从控制电源140供应的电力而从检测器120接收检测出的电流,并且可以控制存储器150、显示器160和逆变器部件220。

控制器130可以控制检测器120中的电流的采样定时。而且,控制器130可以将关于开关电压的有效矢量的长度与预设值进行比较,以调制有效矢量的长度。

控制电源140可以被连接至控制器130并且可以向控制器130提供控制所需的电力。

存储器150可以被连接至控制器130并且可以存储在电流的采样定时处可用的延迟时间、关于有效矢量长度的长度的预设值等。

显示器160可以被连接至控制器130,并且可以在控制器130的控制下可视地将关于所采样的电流的信息显示给用户。

图2是示出了被连接至逆变器部件的开关元件的布置的示意图。

参照图2,被连接在逆变器部件220之内的开关元件可以包括每个分别被设置在三相(u相、v相和w相)的输出线路与电容器的高电势侧dcp之间的上级开关元件s1、s2和s3,以及每个分别被设置在三相(u相、v相和w相)的输出线路与电容器的低电势侧dcn之间的下级开关元件s4、s5和s6。

在本描述中,被设置在相同行中的开关元件被连接至相同相的输出线路,并且因此u相的上级开关元件s1和下级开关元件s4将被表示为sa,v相的上级开关元件s2和下级开关元件s5将被表示为sb,并且w相的上级开关元件s3和下级开关元件s6将被表示为sc。

关于开关电压的矢量可以根据sa、sb和sc中的每个的状态来表示。也就是说,当其中上级开关元件被导通的情况被表示为1,并且其中下级开关元件被导通的情况被表示为0时,开关电压可以被表示为(100)、(110)等。此时,(100)指的是sa的上级开关元件、sb的下级开关元件以及sc的下级开关元件被导通。也就是说,(100)指的是开关元件s1、s5和s6被导通。

图3是示出了dq轴转换的电压以及对应于该dq轴转换的电压的矢量的示意图。

参照图3,示出了dq轴转换的v0(000)、v1(100)、v2(110)、v3(010)、v4(011)、v5(001)、v6(101)和v7(111)。

因为即使开关元件通过v0(000)和v7(111)被导通,电流也不会流入电力系统300,所以v0(000)和v7(111)不被定义为有效矢量。

v1至v6可以被定义为有效矢量,扇区1至6可以分别在v1与v2之间、v2与v3之间、v3与v4之间、v4与v5之间、v5与v6之间以及v6与v1之间被定义,并且可以在除了阴影部分以外的部分中检测输出电流。

下列表1表示在扇区1至6中的每个中可定义的有效矢量,对应于有效矢量的检测出的电流以及检测出的电流与三相输出电流iu、iv和iw中的每个之间的关系。

[表1]

例如,在扇区1中,当测量出了流过具有有效矢量(100)的分流电阻器110的电流idc时,可以看出iu=idc,电流iu流过u相。而且,当测量出了流过具有有效矢量(110)的分流电阻器110的电流idc时,可以从iw=-idc获得流过w相的电流iw。当在扇区1中获得了流过u相的电流iu和流过w相的电流iw时,假定u相、w相和v相的三相处于平衡状态,可以从iu+iv+iw=0的关系获得流过v相的电流。

图4是示出了经脉冲宽度调制(pwm)调制的开关电压的图案的示意图。

参照图4,当有效矢量的长度(时间长度)较小并且因此可能无法保证电流的采样时间时,控制器130可以在开关电压上执行pwm调制以保证大于采样时间的有效矢量的长度。

图5是示出了根据本公开的一个实施例的用于检测逆变器的输出电流的方法的流程图。

可以由根据本公开的一个实施例的用于检测逆变器的输出电流的设备来执行根据本公开的一个实施例的用于检测逆变器的输出电流的方法。因此,将主要以用于检测逆变器的输出电流的设备的检测器120和控制器130来描述根据本公开的一个实施例的用于检测逆变器的输出电流的方法。

在操作s501中,控制器130检测有效矢量的长度。

在操作s503中,控制器130将有效矢量的长度与经pwm调制的有效矢量的长度进行比较。当有效矢量的长度小于或等于经pwm调制的有效矢量的长度时,过程进行至操作s505,否则,过程进行至操作s507。

这里,可以考虑保证采样时间所需的最小时间而设置经pwm调制的有效矢量的长度。例如,经pwm调制的有效矢量的长度可以被设置为比对电流进行采样所需的最小时间大1微秒(μs)。然而,本公开不限于上面所描述的。

同时,保证采样时间所需的最小时间指的是包括开关被导通或断开时的停滞时间、导通时间和电压信号稳定时间的时间。

在操作s505中,控制器130可以执行pwm调制以保证足够长度的有效矢量。因此,控制器130可以以经pwm调制的有效矢量的长度来调制有效矢量的长度。也就是说,控制器130以大于电流稳定的时间的时间来调制有效矢量的长度。

在操作s507中,控制器130可以计算有效矢量的长度的中值。控制器130可以计算当有效矢量未经pwm调制时的有效矢量的长度的中值,而控制器130可以计算当有效矢量经pwm调制时的有效矢量的长度的中值。

在操作s509中,控制器130可以通过从有效矢量的中值施加延迟时间来确定采样定时。在这种情况下,控制器130可以确定延迟时间具有略小于经pwm调制的有效矢量的长度的一半的值。

例如,当采样所需的最小时间为10μs时,控制器130可以将经pwm调制的有效矢量的长度确定为12μs并且将延迟时间确定为5μs。在这种情况下,当有效矢量的长度为10μs时,以12μs的长度调制有效矢量,并且采样定时可以是从经pwm调制的有效矢量的长度的中值的6μs施加5μs的延迟时间而得的11μs。然而,本公开不限于上面所描述的,并且延迟时间可以被自由地确定在小于中值的范围之内。

在操作s511中,检测器120可以通过对应于确定出的采样定时来对电流进行采样,以将所采样的电流提供给控制器130。

图6是示出了当有效矢量的长度足够时电流的采样定时的示意图。

参照图6,例示了其中即使在从有效矢量的起始点经过采样所需的最小时间之后(对应于定时①)执行采样,也可能出现电流误差的情况。

然而,如在本公开的一个实施例中那样,因为控制器130将从有效矢量的长度的中值(点划线)经过延迟时间之后的定时(对应于定时②)确定为采样定时,所以被检测的电流的误差可以被降低。

图7是示出了当有效矢量的长度不足时pwm调制以及电流的采样定时的示意图。

参照图7,可以看出,因为有效矢量的长度不足,所以控制器130以经pwm调制的有效矢量的长度来调制有效矢量。

控制器130以经pwm调制的有效矢量的长度来调制有效矢量,而且将从经调制的有效矢量的中值经过延迟时间之后的定时(对应于定时③)确定为采样定时,使得可以防止在另一个有效矢量处执行采样,并且可以防止在电流值中出现误差。

通过上面的描述,本公开可以使电流检测误差的可能性最小化,以精确地测量被提供给逆变器部件的输出电流。

上面描述的本公开可以由本公开所属领域的技术人员进行各种替代、改变和修改,而不脱离本公开的范围和精神。因此,本公开不限于上述示例性的实施例和附图。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1