电量计量精度检测方法、其装置及计算机存储介质与流程

文档序号:14909920发布日期:2018-07-10 23:07阅读:350来源:国知局

本发明涉及电量计量技术领域,尤其涉及一种电量计量精度检测方法、其装置及计算机存储介质。



背景技术:

锂电池基于其性能和使用上的优势,已经开始广泛的应用于各个不同的领域,作为直流电源使用。现有技术中提供了许多种不同的,以锂电池为基础的电量计量方案,获取相应的电池电量信息以用于锂电池的运行管理中。

不同的电量计量方案具有相应的特点和计量精度,由于领域的不同或使用的目的不同,人们对锂电池的电量计量的精度要求也不尽相同。

在特定的领域,比如无人机、智能机器人、医疗设备等领域,电量计量的精度可能会影响或决定产品的性能,需要设计和使用具有足够精度的电量计量方案。

而电量计量方案检验精度的提升以及最终的效果验证都是以高精度的验证方法为前提的。因此,如何精确的对电量计量方案的精度进行评估是人们期待解决的问题。



技术实现要素:

为了解决上述技术问题,本发明实施例提供一种可以对电量计量方案进行精确评估的电量计量精度检测方法、其装置及计算机存储介质。

为解决上述技术问题,本发明实施例提供以下技术方案:一种电量计量精度检测方法。所述电量计量精度检测方法包括:获取电源的电流参数;对电流参数进行积分,计算对应时间段内的使用电量;根据所述使用电量,计算电源当前的真实电量;根据所述真实电量与检测电量,确定电量计量的误差。

可选地,所述根据所述使用电量,计算电源当前的真实电量,具体包括:

确定电源的满充电量;根据所述使用电量和所述满充电量,计算电源当前的真实电量。

可选地,所述确定电源的满充电量,具体包括:对满充的电源进行放电,并采集所述电源的放电电流;当所述电源放电至截止电压点时,记录所述电源的总放电时间;所述截止电压点为电芯标称容量为0的截止电压点;计算在总放电时间流过的所述放电电流的积分,作为所述满充电量

可选地,所述获取电源的电流参数,具体包括:以预定的周期,采集电源的放电电流;确定在不同周期内的平均放电电流。

可选地,所述对电流参数进行积分,计算对应时间段内的使用电量,具体包括:将所述平均放电电流与所述周期的时长相乘,获得当前周期的使用电量;累加对应时间段内所有周期的使用电量,获得对应时间段内的使用电量。

可选地,所述根据所述真实电量与检测电量,确定电量计量的误差,具体包括:计算在不同采样时间的真实电量与检测电量之间的误差;生成所述误差随采样时间的变化曲线。

为解决上述技术问题,本发明实施例还提供以下技术方案:

一种电量计量精度检测装置。所述电量计量精度检测装置包括:参数采集模块,用于获取电源的电流参数;积分计算模块,用于对电流参数进行积分,计算对应时间段内的使用电量;电量计算模块,用于根据所述使用电量,计算电源当前的真实电量;误差计算模块,用于根据所述真实电量与检测电量,确定电量计量的误差。

可选地,所述电量计算模块包括:满充电量计算单元以及当前电量计算单元;所述满充电量计算单元用于确定电源的满充电量;所述当前电量计算单元用于根据所述使用电量和所述满充电量,计算电源当前的真实电量。

可选地,所述满充电量计算单元具体用于:对满充的电源进行放电,并采集所述电源的放电电流;当所述电源放电至截止电压点时,记录所述电源的总放电时间;所述截止电压点为电源的电量方案设置为0时的电源电压;计算在总放电时间流过的所述放电电流的积分,作为所述满充电量。

可选地,所述参数采集模块具体用于:以预定的周期,采集电源的放电电流,并且确定在不同周期内的平均放电电流。

可选地,所述积分计算模块具体用于:将所述平均放电电流与所述周期的时长相乘,获得当前周期的使用电量,并且累加对应时间段内所有周期的使用电量,获得对应时间段内的使用电量。

可选地,所述误差计算模块具体用于:计算在不同采样时间的真实电量与检测电量之间的误差;生成所述误差随采样时间的变化曲线。

为解决上述技术问题,本发明实施例还提供以下技术方案:一种计算机存储介质,其上存储有计算机程序。所述计算机程序被处理器执行时实现如上所述的电量计算量精度检测方法的步骤。

与现有技术相比较,本发明实施例的电量计算量精度检测方法采用了电流积分的方式对锂电池的电量进行计算,能够获得非常高的数据精度,计算电量的状态可以很准确,为高精度的电量评估提供了保证,可以作为检验电量计量方案的基础。

【附图说明】

一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。

图1为本发明实施例的应用环境示意图;

图2为本发明实施例提供的评估系统的结构框图;

图3为本发明实施例提供的电量计算量精度检测方法的方法流程图;

图4为本发明实施例提供的计算满充电量的方法流程图;

图5为本发明实施例提供的误差曲线;

图6为本发明实施例提供的电量计算量精度检测装置的功能框图;

图7为本发明实施例提供的锂电池放电过程的参数表格。

【具体实施方式】

为了便于理解本发明,下面结合附图和具体实施例,对本发明进行更详细的说明。需要说明的是,当元件被表述“固定于”另一个元件,它可以直接在另一个元件上、或者其间可以存在一个或多个居中的元件。当一个元件被表述“连接”另一个元件,它可以是直接连接到另一个元件、或者其间可以存在一个或多个居中的元件。本说明书所使用的术语“上”、“下”、“内”、“外”、“底部”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。

除非另有定义,本说明书所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本说明书中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是用于限制本发明。本说明书所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。

此外,下面所描述的本发明不同实施例中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。

图1为本发明实施例提供的应用环境。如图1所示,所述应用环境包括测试装置10、评估系统20以及锂电池30。

锂电池30是一个或者多个电芯,以任何形式排列形成的电池组,用于为电动机等电器设备提供直流电源。锂电池30可以根据实际情况,具有相应的容量、体积大小或者封装形式。锂电池30可以在受控的情况下放电或者充电,模拟正常的工作运行情况。

测试装置10可以是任何类型或者品牌的电量计量系统,通过采集相应的数据来计算确定锂电池当前的电量情况。该测试装置可以运行有一种或者多种合适的软件程序,记录数据并基于这些数据进行运算。

测试装置10与锂电池30之间建立有必要的电性连接,测试装置10通过这些电性连接采集、获取锂电池30的数据以确定锂电池当前的电量。

评估系统20与所述测试装置10之间建立有通信连接,通过该通信连接获取测试装置10的数据,并执行预设的检测评估方法,以评价测试装置10测试计算获得电量计量数据的误差。评估系统20可以基于现有任何类型的电子计算系统来实现。

图2为本发明实施例提供的评估系统20的结构框图。如图2所示,该评估系统20可以包括:处理器21、存储器22、输入装置23、显示屏24以及通信模块25。

所述处理器21、存储器22、输入装置23、显示屏24以及通信模块25之间通过总线的方式,建立任意两者之间的通信连接。

处理器21为任何类型的单线程或者多线程的,具有一个或者多个处理核心的处理器,作为评估系统20的控制核心,用于获取数据、执行逻辑运算功能以及下发运算处理结果。

存储器22作为一种非易失性计算机可读存储介质,例如至少一个磁盘存储器件、闪存器件、相对于处理器21远程设置的分布式存储设备或者其他非易失性固态存储器件。

存储器22可以具有程序存储区,用于存储非易失性软件程序、非易失性计算机可执行程序以及模块,供处理器21调用以使处理器21执行一个或者多个方法步骤。存储器22还可以具有数据存储区,用以存储处理器21下发输出的运算处理结果。

输入装置23是用于采集用户输入指令的用户交互设备,例如鼠标、键盘、触控面板或者其它输入设备。输入装置23接收用户输入的数字或者字符信息,提供给处理器21以使处理器21执行对应的控制指令。

显示屏24是用于以特定的形式,向用户展示相应的数据的显示设备,其可以是任何类型的显示器、例如LED显示器、显像管显示器或者LCD显示器。显示屏24接收到由处理器21输出的显示信息,并相应的转换为图像信息提供给用户。

通信模块25是用于与测试装置10建立通信连接,提供物理信道的功能模块。通信模块25可以是任何类型的无线或者有线通信模块,例如WiFi模块、蓝牙模块或者网络接头等。通信模块25还可以与外围的终端建立连接,向外围的终端提供评估系统20计算获得或者接收到的信息。例如,通信模块25可以与服务器连接,向服务器上传相应的数据。

图3为本发明实施例提供的电量计量精度检测方法的方法流程图。图3所示的方法可以由上述的评估系统20执行,用以对测试装置10对锂电池的电量测试结果进行评估,确定其误差。

如图3所示,该方法具体可以包括如下步骤:

310、获取电源的电流参数。

该电流参数是指在某一时刻或者某个时间段内,电源(即待检测的锂电池)放电或者充电电流。

对于大多数的使用场景而言,电源在放电阶段的电量计量是主要关注的部分。电量计量的精度一般也是指对于锂电池放电的精度估计。为陈述简便,以下仅描述针对放电过程中的电量计量精度的检测。

320、对电流参数进行积分,计算对应时间段内的使用电量。

在获取上述电流参数以后,对其进行积分的数学运算以后,便可以获得在一定时间段内消耗的电量。在此,使用“使用电量”这样的术语表示锂电池在特定时间段内输出的电量。

330、根据所述使用电量,计算电源当前的真实电量。

由于步骤320是通过积分运算的方式计算获得的锂电池实际消耗的电量,其是一个非常标准而且准确电量数值。因此,可以以此作为标准,计算获得锂电池当前真正剩余的真实电量。

340、根据所述真实电量与检测电量,确定电量计量的误差。

检测电量是指评估系统20通过检测装置10检测获得的锂电池当前电量。评估系统20以真实电量作为参照标准,用以确定检测电量存在的误差。

该电量计量的误差具体可以通过多种不同的方式表示。例如,可以求出当前电量与检测电量之间的差值以后,通过差值占真实电量的比值来表示电量计量的误差。

在本实施例中,采用了电流积分的方式对锂电池的电量进行计算,能够获得准确的电量消耗情况,并以此作为评估的标准对锂电池的电量计量进行评价,具有较高的检测精度,可广泛的应用于不同的电量计量方案中。

在一些实施例中,为了计算电源当前的真实电量,可以采用预先确定电源的满充电量。然后,将满充电量与真实电量求差值来计算电源当前的真实电量。

该满充电量是指锂电池在充电完成以后(通常根据锂电池在充电达到预定的充电电压来判断),所具有的电量。

图4为本发明实施例提供的用于确定满充电量的方法流程图。如图4所示,所述方法可以包括如下步骤:

410、对满充的电源进行放电,并采集所述电源的放电电流。

放电是指连接锂电池,对锂电池的电量进行消耗的过程。其具体可以通过接入特定的负载的方式实现。在放电过程中,评估系统20可以通过检测装置10采集锂电池的放电电流。

该放电电流具体可以是多种不同的电流参数,包括但不限于瞬时电流、采集周期内的平均电流等。

420、当所述电源放电至截止电压点时,记录所述电源的总放电时间。

在锂电池的充放电使用过程中,具有两个不同的使用状态节点。其中一个是锂电池的满充状态。另一个是锂电池的零电量状态。其中,满充状态是指锂电池已经充分的充电,具有最高的电量。而零电量状态是锂电池已经充分放电,达到电芯标称容量为0的截止电压点。

如上所述,与满充状态的判断相类似的,上述截止电压点为电芯标称容量为0的截止电压点。亦即是,当检测到锂电池的电压已经达到该截止电压点时,表明锂电池的电量已经处于0点。

430、计算在总放电时间流过的所述放电电流的积分,作为所述满充电量。

评估系统20在确定锂电池已经充分放电以后,便可以通过积分的方法,计算锂电池在满充状态至零电量状态之间,输出或者消耗的放电电量,作为满充电量。

上述总放电时间是指锂电池从满充状态的最高电压到零电量状态的截止电压点之间经历的放电时间。对放电电流在总放电时间上的积分相当于在此过程中锂电池消耗的电量。

因此,计算获得的满充电量是非常标准的,以其作为基础,计算获得的真实电量相应的也具有非常高的精确度,可以应用于评估电量计量的准确度。

以下以检测装置10常规使用的周期性采集锂电池30的放电电流的方法为例,详细描述本发明实施例提供的电量计量精度检测方法。

1)以预定的采样周期,通过检测装置采集电源的放电电流、时间、电量状态、锂电池的电芯电压等参数。

2)获取或者计算在每个采样周期中,锂电池的平均放电电流。

3)将所述平均放电电流与采样周期的时长相乘,获得当前采样周期的使用电量。将这个使用电量与在先累积的使用电量累加,便可以获得当前的使用电量。

4)将预先获得满充电量与使用电量相减,求得的差值即为锂电池当前的真实电量。

5)以步骤4)计算获得的真实电量作为标准,计算与检测装置计量的电量状态的误差。

6)计算获取多个采样时间的误差以后,生成误差跟随采样时间变化的误差曲线,用以表示检测装置的电量计量精度。例如,图5所示的本发明实施例提供的检测装置的误差曲线示意图。

如图5所示,随着锂电池放电的进行,检测装置的误差逐渐变大,但总体波动范围在4%以内。该曲线值的大小反应了检测装置的电量计量精度的高低。

以TI的电量计量芯片为例,应用本发明实施例提供的电量计量精度检测方法计算后发现:通常具有阻抗跟踪算法的电量计误差可以做到3%以内,基于电压补偿算法的电量计可以做到5%以内的误差。

另外,电量计参数的正确设置,电芯与化学ID的匹配程度等因素也会很大程度的影响电量计或电量方案的精度。

因此,使用本发明实施例提供的电量计量精度检测方法时,可以提供相应的误差数据,从而进一步的验证或者检验使用的电量方案是否正确设置,电芯是否匹配等,具有良好的应用前景。

以下详细描述以TI的电量计量芯片作为检测装置10时,评估系统10执行的电量计量精度检测方法的具体过程:

一、预先将样品锂电池充满,并一定的电流放电至截止电压点。记录整个过程中,检测装置10检测获得的采样时间、平均电流、检测电量以及锂电池的电芯电压。

具体可以使用相对应的bqstudio、EVM、Arbin、Maccor等软件记录上述数据,并整理为如图7所示的表格形式。

在图7中,ElapsedTime为采样时间(即每个采样周期的周期长度),AvgCurrent为平均电流,Cell_Vlltage为电芯电压,SOC_gauge为检测电量,以百分比表示。

二、通过如下算式计算在特定时间段流过的电量:

dQ=(ElapsedTimeN+1-ElapsedTimeN)×AvgCurrentN/3600+Calculated_dQ N-1

其中,dQ为电量,N为第n个采样周期。Calculated_dQN-1为上一个采样周期累加的电量值。

在本实施例中,检测装置10的采样时间单位为S,为了方便起见,将其转换为小时,以使最终计算获得的电量结果为常用的电量单位(mAh)。

三、对于特定的锂电池来说,通过上述步骤计算获得的,在锂电池从满充状态到零电量状态的时间流过的电量即为锂电池的满充容量。

四、在预先确定锂电池的满充容量以后,通过如下算式即可计算在某个采样周期的剩余电量:

Calculated_RM=FCC_true–Calculated_dQN

其中,Calculated_RM为真实电量,FCC_true为满充电量,Calculated_dQN为当前采样周期流过的电量。

然后,根据剩余电量,应用如下电量计算公式计算锂电池的真实电量Calculated_SOC(即剩余电量占满充电量的百分比):

Calculated_SOC=Calculated_RM/FCC_true*100

五、获取到在当前采样周期,检测装置10获得的检测电量,采用如下计算公式计算该检测电量与真实电量之间的差值,确定检测装置10的误差SOC_error:

SOC_error=Calculated_SOCN–SOC_gaugeN

其中,Calculated_SOCN表示对应时间的计算电量状态,SOC_gaugeN表示对应时间的实际电量状态。

在确定多个采样周期(即采样时间点)的误差以后,便可以以此为基础数据,绘制成相应的表格(例如如图7所示的表格)或者曲线(例如如图5所示的误差曲线),向用户展示,提供这些误差数据。其中,图5为图7所示的误差数据绘制获得的误差曲线。

本发明实施例还进一步的提供了一种电量计量精度检测装置。图6为本发明实施例提供的电量计量精度检测装置的功能框图。如图6所示,该电量计量精度检测装置包括:参数采集模块610、积分计算模块620、电量计算模块630以及误差计算模块640。

其中,参数采集模块610用于获取电源的电流参数。积分计算模块620用于对电流参数进行积分,计算对应时间段内的使用电量;电量计算模块630用于根据所述使用电量,计算电源当前的真实电量。误差计算模块640用于根据所述真实电量与检测电量,确定电量计量的误差。

在实际运行过程中,首先通过参数采集模块610获取到相关的电流参数(例如平均电流或者瞬时电流)。然后交给积分计算模块620对电流参数进行积分,计算对应时间段内的使用电量。电量计算模块630在获取到使用电量以后,以此为基础,计算当前的真实电量并提供给误差计算模块640。误差计算模块640以真实电量作为标准,确定检测电量存在的误差。

具体的,如图6所示,所述电量计算模块可以包括:满充电量计算单元631以及当前电量计算单元632。

其中,所述满充电量计算单元631用于确定电源的满充电量。所述当前电量计算单元用于根据所述使用电量和所述满充电量,计算电源当前的真实电量。当然,上述满充电量是预先采集计算获得,可以存储在特定的存储器中,在电量计算模块进行电量计算时调用。

在一些实施例中,所述满充电量计算单元631具体用于:对满充的电源进行放电,并采集所述电源的放电电流;当所述电源放电至截止电压点时,记录所述电源的总放电时间并计算在总放电时间流过的所述放电电流的积分,作为所述满充电量。

其中,所述截止电压点为电芯标称容量为0的截止电压点,可以通过监测电芯的电压确定是否到达了截止电压点来判断电芯已经处于零电量状态。

在另一些实施例中,所述参数采集模块610具体用于:以预定的周期,采集电源的放电电流,并且确定在不同周期内的平均放电电流。

所述积分计算模块620具体用于:将所述平均放电电流与所述周期的时长相乘,获得当前周期的使用电量,并且累加对应时间段内所有周期的使用电量,获得对应时间段内的使用电量。

所述误差计算模块640具体用于:计算在不同采样时间的真实电量与检测电量之间的误差;生成所述误差随采样时间的变化曲线。

本发明实施例提供的电量计量精度检测模块可以评估误差的波动范围大小,从而检验设计的电量方案的电量精度高低或检验电量方案的参数配置是否正确配置,甚至还可以据此检验产品的性能,应用于指导生产等。

由于电量计量精度检测装置对于电流、时间的采样精度可以控制在很高的水平,并使用的是电流积分和完全放电的方式。因此,计算电量的状态可以很准确,为高精度的电量评估提供了保证。另外,电量计量精度检测装置采用了实时比较计算电量状态和实际电量状态的差值的方式,可以对整个放电过程进行实时的精度评估。

应当说明的是,上述装置实施例与方法实施例基于相同的发明构思,方法实施例中公开的内容以及具有的效果也可以由相应的装置所实现,为陈述简便,在此不再重述。

本领域技术人员应该还可以进一步意识到,结合本文中所公开的实施例描述的示例性的电量计量精度检测方法的各个步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。

本领域技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。所述的计算机软件可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体或随机存储记忆体等。

最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;在本发明的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本发明的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1