一种应用于分布式光纤应变解调的泵浦光信噪比提升装置及方法与流程

文档序号:16591056发布日期:2019-01-14 19:07阅读:487来源:国知局
一种应用于分布式光纤应变解调的泵浦光信噪比提升装置及方法与流程

本发明涉及分布式光纤布里渊应变和温度传感器,属于分布式光纤传感技术领域,主要是一种应用于分布式光纤应变解调的泵浦光信噪比提升装置及方法。



背景技术:

分布式光纤传感是一种新型传感方法,其中光纤作为传感介质,将其布设于物体表面或内部,可测得物体表面或内部的应变及温度分布情况。与传统监测手段相比,分布式光纤传感技术具有:

(1)可准确给出每个传感光缆所及的任何位置点处的应变情况,避免因理论建模推算引起的误差。

(2)可对结构体的应变情况进行准确定位,方便排查异常应变处的受力情况,排查故障。

(3)采用通讯光缆,使传感器的成本大幅下降。

(4)一旦光缆受到破坏,方便用otdr等技术对光缆受损位置进行定位并维修。

(6)与电阻式、振弦式等非光纤监测方案比,分布式光纤应变监测系统,实现了光电分离,传感端无电,故抗电磁干扰能力强,适用于煤矿、油田、电厂、炼油厂、炼钢炉等防爆、辐射、高温、危险场所。

分布式光纤传感技术的核心部件是解调仪,其作用是向光纤两端输入两束光,并将光纤中返回的散射信号解算成应变和温度变化。当泵浦光和探测光两束光在光纤中相遇,当频率差在布里渊频谱内,会产生布里渊散射效应,探测光强被泵浦光所改变。若对探测光进行扫频,则可测得光纤中每一个位置点的布里渊频谱特性。由于布里渊频谱与光纤所受应力、温度在一定范围内呈线性关系,故通过测量布里渊频谱,可以推算出光纤每一个位置点处的应变、温度分布。

由于布里渊散射光信号的信号比泵浦光低20db,一般在-40dbm以下,而一般探测器的入射光功率门限在-45dbm以上,导致散射光信噪比较低,给后端解调造成困难。偏振涨落也会引入附加噪声。此外,受调制器线性工作点的限制,泵浦光时域噪声中常混有泵浦光,使散射光信噪比进一步劣化。而调制器受温度等环境因素影响,工作点可能发生漂移,导致泵浦光的信号部分和噪声部分的功率可能波动,影响散射光信噪比。

国内在解调仪方面形成的专利中,专利cn200710156868采用拉曼放大技术提升泵浦光功率,但泵浦光时域噪声也同步提升,且引入拉曼噪声,限制了泵浦光信噪比的提升,方案中引入拉曼放大子系统,提高了整机成本。专利cn201310124500采用脉冲编码和相干检测相结合,提升探测器功率门限,但引入编码噪声,提升检测成本,使解码复杂度提高。专利cn201610953109采用脉冲对提升泵浦光的输入水平,但脉冲对的时基抖动需要精确控制,且需要对两个脉冲的波形进行准确调理,增加解调难度。



技术实现要素:

本发明的目的在于克服现有技术存在的不足,而提供一种应用于分布式光纤应变解调的泵浦光信噪比提升装置及方法,通过种子光路部分保偏实现偏振涨落噪声抑制,通过对调制器偏压进行零点控制从而抑制功率波动和噪声功率,通过放大斩波提升泵浦光的信号部分功率并压低噪声部分的功率,从而提升泵浦光信噪比。

本发明的目的是通过如下技术方案来完成的。一种应用于分布式光纤应变解调的泵浦光信噪比提升装置,基于放大斩波技术,包括:第一调制器、第一零点偏压控制器、第一保偏耦合器、保偏放大器、第二调制器、第二零点偏压控制器、第二耦合器、信源。

所述的第一调制器有一个光输入、一个光输出、两个电输入,光输入与光输出均为保偏光路。

所述的第一零点偏压控制器有一个光输入、一个电输出。

所述的第一保偏耦合器有一个光输入、两个光输出,光输入与光输出均为保偏光路。

所述的保偏放大器有一个光输入、一个光输出,光输入与光输出均为保偏光路。

所述的第二调制器有一个光输入、一个光输出、两个电输入,光输入为保偏光路。

所述的第二零点偏压控制器有一个光输入、一个电输出。

所述的第二耦合器有一个光输入、两个光输出。

所述的信源有两个电输出。

所述的第一调制器的光输入与光源的输出信号连接,光输出与第一保偏耦合器的光输入连接,一个电输入与第一零点偏压控制器的电输出连接,另一个电输入与信源的一路电输出连接。所述的第一保偏耦合器的一路光输出与第一零点偏压控制器的光输入连接,另一路光输出与保偏放大器的光输入连接。所述的保偏放大器的光输出与第二调制器的光输入连接。所述的第二调制器的一个电输入与第二零点偏压控制器的电输出连接,另一个电输入与信源的另一路电输出连接,光输出与第二耦合器的光输入连接。所述的第二耦合器的一路光输出与第二零点偏压控制器的光输入连接,另一路光输出作为泵浦光输出。

本发明另外还提出一种应用于分布式光纤应变解调的泵浦光信噪比提升方法,包括以下步骤:

(1)整形:对泵浦光波形实现脉冲序列的整形和保偏输出;

(2)放大:对泵浦光信号功率进行放大提升和保偏输出;

(3)斩波:通过斩波技术实现泵浦光信噪比的提升。

所述的步骤(1)中,输入为连续光,可通过双端保偏的调制器、零点偏压控制器实现波形的整形和保偏输出。

所述的步骤(2)中,通过保偏放大器实现泵浦光的功率提升和保偏输出。

所述的步骤(3)中,斩波技术可通过调制器和零点偏压控制器实现泵浦光噪声的抑制和信噪比的提升。

本发明的有益效果为:

1.采用两个调制器和一个放大器实现调制放大斩波,提升泵浦光功率,抑制底噪中的泵浦信号,提升泵浦光的信噪比。

2.调制器采用零点偏压控制,使调制器的工作点控制在零点,降低泵浦光噪声功率,稳定泵浦光的功率漂移。

3.采用部分保偏光路,在泵浦光的种子产生部分采用全保偏,在输出端实现非保偏输出,有利于抑制偏振涨落噪声,同时控制解调成本。

通过本专利实施的分布式光纤应变解调仪,可将解调仪泵浦光的信噪比提升10db。

附图说明

图1为本发明实施例中所述的信噪比提升装置结构图;

图2为本发明实施例中所述的信噪比提升方法工作流程原理示意框图。

具体实施方式

本发明提供一种应用于分布式光纤应变解调的泵浦光信噪比提升装置及方法,下面结合实施例对本发明做进一步说明。

参考图1,一种应用于分布式光纤应变解调的泵浦光信噪比提升装置,包括:第一调制器1、第一零点偏压控制器2、第一保偏耦合器3、保偏放大器4、第二调制器5、第二零点偏压控制器6、第二耦合器7、信源8。所述的第一调制器1有一个光输入、一个光输出、两个电输入,光输入与光输出均为保偏光路。所述的第一零点偏压控制器2有一个光输入、一个电输出。所述的第一保偏耦合器3有一个光输入、两个光输出,光输入与光输出均为保偏光路。所述的保偏放大器4有一个光输入、一个光输出,光输入与光输出均为保偏光路。所述的第二调制器5有一个光输入、一个光输出、两个电输入,光输入为保偏光路。所述的第二零点偏压控制器6有一个光输入、一个电输出。所述的第二耦合器7有一个光输入、两个光输出。所述的信源8有两个电输出。

光源输入功率为7dbm,波长1550.12nm、线宽小于1khz。第一调制器和第二调制器可采用带宽10ghz、消光比大于20db的ln调制器,第一调制器为保偏光输入和保偏光输出。信源输入到第一调制器的信号为脉宽20ns、周期500μs、峰峰值5vpp的电脉冲序列。第一保偏耦合器的耦合比为99:1。第一调制器输出的光经过第一保偏耦合器,99%的光输出与保偏放大器相连,1%的光输出连接到第一零点偏压控制器作为参考光。第一零点偏压控制器将第一调制器的工作点控制在零点附近。保偏放大器对泵浦光进行功率提升,峰值功率提升到20dbm以上,输入到第二调制器中。第二调制器的光输入为保偏,光输出与第二耦合器的光输入相连。第二耦合器的耦合比为99:1,99%端作为泵浦光输出,1%的光输出连接到第一零点偏压控制器作为参考光。第二零点偏压控制器将第二调制器的工作点控制在零点附近,将泵浦光的时域噪声压低。泵浦光的信号输出在-20dbm以上,峰值功率从10dbm提升至20dbm以上,信噪比从10db提升至20db以上。

参考图2,一种应用于分布式光纤应变解调的泵浦光信噪比提升方法,包括以下步骤:

(1)整形:对泵浦光波形实现脉冲序列的整形和保偏输出;

(2)放大:对泵浦光信号功率进行放大提升和保偏输出;

(3)斩波:通过斩波技术实现泵浦光信噪比的提升。

所述的步骤(1)中,光源输入的连续光被调制整形成具有一定脉宽和占空比的脉冲序列。调制过程可采用声光调制器、电光调制器等方式实现。为抑制脉冲序列的噪声,以提高种子光路的信噪比,可通过偏压控制器将调制器的工作电压锁定在零点。为了抑制偏振涨落噪声,可对步骤(1)实现全保偏控制。

所述的步骤(2)中,泵浦脉冲序列被放大,脉冲的信号部分和噪声部分的功率都得以提升。可通过双端保偏放大器实现偏振涨落噪声的抑制。放大器可选择半导体光放大器、掺铒光纤放大器等方式。

所述的步骤(3)中,泵浦脉冲序列的时域噪声被斩波,脉冲的噪声部分功率得到抑制。斩波可采用电光调制器实现,为进一步抑制噪声,可通过偏压控制哭喊将调制器的工作电压锁定在零点。

以上所述,仅是本发明的较佳实施例而已,并非是对本发明作其它形式的限制,任何熟悉本专业的技术人员可能利用上述揭示的技术内容加以变更或改型为等同变化的等效实施例应用于其它领域,但是凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与改型,仍属于本发明技术方案的保护范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1