用于宝石的荧光分级的设备和方法与流程

文档序号:19785002发布日期:2020-01-24 13:27阅读:156来源:国知局
用于宝石的荧光分级的设备和方法与流程

本申请是分案申请,原申请的申请日为2016年3月30日、申请号为201680031346.5、发明名称为“用于宝石的荧光分级的设备和方法”。

相关申请的交叉参考

本申请主张2015年3月30日申请且名称为“apparatusandmethodforfluorescencegradingofgemstones(用于宝石的荧光分级的设备和方法)”的美国专利申请第14/673,780号的优先权,该申请的全文以引用的方式并入本文中。

本文中所揭示的设备和方法大体上涉及宝石(具体为切割宝石)的荧光分级。具体为,设备和方法涉及具有不规则或花式形状的切割宝石的荧光分级。本文中所揭示的设备和方法进一步涉及基于色彩分量分析的数字影像处理。



背景技术:

钻石和其它宝石通常由多个经训练和技术擅长者基于钻石和其的视觉外观而被分析和分级。例如,钻石分析的基础包括四个c(色彩、澄清度、切割和克拉重量)的分析,其中的两个(色彩和澄清度)传统上由人工检测评定。宝石也被评估非寻常视觉性质。例如,某些宝石在uv照明下产生荧光发射,此荧光的程度和分布也用以分级这样的宝石。如同色彩和澄清度分级,荧光分级先前主要基于人类视觉感知而被评估。分析和分级需要基于视觉比较的判断的练习、看法的形成和得出精细区别的能力。

检测和分析的程序通常耗时,涉及由各经训练和技术擅长者的检测、测量和检查的多个回合。程序也涉及质量控制且可包含各种非破坏性测试来识别可影响样品的质量的处理、填料或其它缺陷。最后,程序包含钻石与用作相对于钻石色彩和荧光的历史标准的参考集钻石比色石的密集视觉比较。

已产生仪器来改良效率且容许在缺乏经训练和技术擅长者的情况下的宝石分析。例如,对geurtz等人的美国专利第7,102,742号揭示宝石荧光测量装置,其包含紫外(“uv”)发射腔室、uv辐射源、和光仪表组件。uv辐射源包含上发光二极管(“led“)和下led,其自经历测试宝石上方和下方两者辐射宝石。然而,当前仪器不可提供一致和可再生荧光等级至花式形状切割石头;这样的宝石被分类为阶梯切割、心形、卵形、椭圆形、梨形、三角形、公主形切割或除圆形亮型切割(rbc)外的任何其它切割。另外,当前仪器不可提供色相信息且操作者必须手动地输入荧光的色彩。此导致不正确分级,因为由人眼不容易看见弱荧光的色彩。

需要设备和方法,其可提供与由经训练和技术擅长者提供的评估和分级一致并准确的宝石评估和分级(例如荧光分级)。



技术实现要素:

在一方面中,本文提供一种用于评估宝石的荧光特性的设备。设备包括不透光平台,其中平台具有经配置以支撑待评估宝石的表面;光源,其经成形以至少部分围封平台,其中光源与平台表面的水平大约相同或低于平台表面且经设计以提供均匀紫外(uv)辐射至平台上的宝石;影像捕获组件,其中使影像捕获组件以相对于支撑宝石的平台表面的预定角度定位,且其中影像捕获组件和平台经配置以相对于彼此旋转;和远心透镜,其经定位以将照明宝石的影像提供至影像捕获组件。

在一方面中,本文提供一种用于评估宝石的色彩特性的设备。设备包括:不透光平台,其中平台具有经配置以支撑待评估宝石的表面;在平台的表面上方的光源,其中光源经设计以提供均匀紫外(uv)辐射至平台上的宝石;影像捕获组件,其中使影像捕获组件以相对于支撑宝石的平台表面的预定角度定位,且其中影像捕获组件和平台经配置以相对于彼此旋转;和远心透镜,其经定位以将照明宝石的影像提供至影像捕获组件。

在一些实施方式中,设备进一步包括准直透镜,其中准直透镜和光源经耦合以提供均匀uv照明至平台上的宝石。

在一些实施方式中,设备进一步包括光学漫射器,其中光学漫射器和光源经耦合以提供均匀uv照明至平台上的宝石。

在一些实施方式中,设备进一步包括准直透镜和光学漫射器,其中准直透镜、光学漫射器和光源经耦合以提供均匀uv照明至平台上的宝石。

在一些实施方式中,设备进一步包括反射器装置,其具有至少部分球形的且包括反射性材料的内部表面。反射器装置至少部分覆盖光源和平台表面,且引导来自光源的uv辐射朝向定位于平台表面上的宝石。在一些实施方式中,反射器装置的内部表面具有半球形形状。

在一些实施方式中,设备进一步包括计算机可读介质,其用于储存由影像捕获组件收集的影像。

在一些实施方式中,设备进一步包括接口,其在光源与平台表面之间用于调整uv辐射的输出强度。

在一些实施方式中,设备进一步包括uv滤光器,其在影像捕获组件与远心透镜之间用以消除全部uv成分。

在一些实施方式中,由光源提供的uv辐射包括转移辐射、直接uv辐射、和其组合。

在一些实施方式中,光源进一步提供均匀非uv照明至宝石。

在一些实施方式中,远心透镜是物体-空间远心透镜或双远心透镜。

在一些实施方式中,平台经配置以绕旋转轴旋转,该旋转轴垂直于其中宝石被定位的平台的侧面。

在一些实施方式中,平台经配置以绕旋转轴旋转360度。

在一些实施方式中,平台是平坦圆形平台,且其中旋转轴穿过圆形平台的中心。

在一些实施方式中,平台表面包括uv反射性材料。

在一些实施方式中,平台表面包括漫射uv反射性材料。

在一些实施方式中,平台表面包括白色漫反射性材料。

在一些实施方式中,光源经配置为围绕平台表面的环形灯。在一些实施方式中,光源包括多个发光led。在一些实施方式中,led发射365纳米或385纳米的荧光。

在一些实施方式中,led与带通滤光器耦合。在一些实施方式中,带通滤光器被设定在365纳米或385纳米。

在一些实施方式中,led经配置为围绕平台表面的环形灯。

在一些实施方式中,光源包括近似日光光源和多个发光led。在一些实施方式中,led与带通滤光器耦合。在一些实施方式中,带通滤光器被设定在365纳米或385纳米。

在一些实施方式中,影像捕获组件与平台表面之间的预定角度是在近似零度与近似45度之间。在一些实施方式中,影像捕获组件与平台表面之间的预定角度是在近似10度与近似35度之间。

在一些实施方式中,影像捕获组件选自彩色相机、ccd相机、和一个或多个cmos传感器。

在一些实施方式中,影像捕获组件捕获由uv辐射照明的宝石的多个彩色影像,各影像包括宝石的全影像。

在一些实施方式中,影像捕获组件捕获照明宝石的多个彩色影像,其中当影像捕获组件与平台表面在不同相对旋转位置处时取得各影像,且其中各影像包括宝石的全影像。

在一些实施方式中,多个彩色影像包括4个或4个以上彩色影像、5个或5个以上彩色影像、10个或10个以上彩色影像、15个或15个以上彩色影像、20个或20个以上彩色影像、或800个或800个以上彩色影像,且其中各影像在独特影像角度处取得且包括多个像素。

在一些实施方式中,荧光特性是荧光强度水平、荧光色彩、或其组合。

在一方面中,本文提供一种评估样本宝石的荧光特性的方法。例如,方法包括步骤:(i)判定多个荧光影像中的荧光影像的荧光屏蔽,这是基于自多个影像中的影像所判定的轮廓屏蔽和基于所述荧光影像的明显荧光区域;(ii)量化多个荧光影像的荧光影像中的荧光屏蔽中的各像素中的个别色彩分量,借此将个别色彩分量的值转换成表示各像素的色彩特性的一个或多个参数;(iii)判定多个荧光影像的全部影像中的界定区域中的全部像素的一个或多个参数的每个的平均值;和(iv)基于多个荧光影像的全部影像中的界定区域中的全部像素的一个或多个参数的平均值而计算样本宝石的第一荧光记分。

此处,多个影像的各影像包括由非uv光源照明的样本宝石的全影像。多个荧光影像的各影像包括由均匀uv光源照明的样本宝石的全影像。另外,影像和荧光影像在除照明光源外的相同条件下被捕获。

在一些实施方式中,方法进一步包括步骤:(v)基于多个荧光影像的全部影像的轮廓屏蔽中的像素而计算样本宝石的第二荧光记分。

在一些实施方式中,方法进一步包括步骤:(vi)通过比较第一荧光记分或第二荧光记分与先前判定的一个或多个参考荧光宝石的对应荧光记分的值而评估样本宝石的荧光特性。

在一些实施方式中,第一荧光记分反映该荧光的色彩且其中第二荧光记分反映强度。

在一些实施方式中,方法进一步包括步骤:使用在独特不同影像旋转角度处同时维持恒定影像视角的影像捕获组件而收集样本宝石的多个影像。

在一些实施方式中,方法进一步包括步骤:使用在独特不同影像旋转角度处同时维持恒定影像视角的影像捕获组件而收集样本宝石的多个荧光影像。此处,在多个荧光影像中的各荧光影像对应于多个影像中的影像且两者均在相同影像旋转角度和影像视角下被捕获。

在一些实施方式中,方法进一步包括步骤:判定多个荧光影像中的各荧光影像的荧光屏蔽。

在一些实施方式中,方法进一步包括步骤:量化多个荧光影像的各荧光影像中的荧光屏蔽中的各像素中的个别色彩分量。

在一些实施方式中,方法进一步包括步骤:使用在独特不同影像旋转角度处同时维持恒定影像视角的影像捕获组件而收集样本宝石的新的多个荧光影像,其中在多个荧光影像经收集的时间与在新的多个荧光影像经收集的时间之间存在时间间隙;基于新的多个荧光影像通过应用步骤(i)至步骤(vi)而赋予新的荧光等级;和基于时间间隙而比较荧光等级和新的荧光等级。

在一些实施方式中,时间间隙是在2分钟与5小时之间。

本领域技术人员将理解,在适用的情况下可结合设备或方法的任何方面而使用本文中所描述的任何实施方式。

附图说明

本领域技术人员将理解,下列所描述的附图仅为绘示性目的。附图不意欲以任何方式限制本教导的范围。

图1描绘包含光学单元和宝石评定单元的宝石光学评估系统的示例性实施方式。

图2a描绘在闭合配置中的宝石光学评估系统的示例性示意性实施方式(光源未被展示)。

图2b描绘在敞开配置中的宝石光学评估系统的示例性示意性实施方式(光源未被展示)。

图3描绘具有围绕环形灯照明的样本平台的示例性实施方式。

图4描绘绘示影像视角和影像旋转角度的示例性示意图。

图5a描绘具有内部反射性表面的顶部反射器的示例性实施方式。

图5b描绘具有内部反射性表面的顶部反射器的示例性实施方式。

图5c描绘具有内部反射性表面的顶部反射器的示例性实施方式。

图5d描绘具有内部反射性表面的顶部反射器的示例性实施方式。

图6a描绘用于链接宝石评定单元与光学单元的连接器模块的示例性实施方式。

图6b描绘用于链接宝石评定单元与光学单元的连接器模块的示例性实施方式。

图6c描绘用于链接宝石评定单元与光学单元的连接器模块的示例性实施方式。

图7a描绘示例性实施方式,其展示由近似日光光源照明的rbc钻石。

图7b描绘示例性实施方式,其展示在应用轮廓屏蔽之后由近似日光光源照明的rbc钻石的影像。

图7c描绘示例性实施方式,其展示轮廓屏蔽的提取。

图7d描绘示例性实施方式,其展示明显荧光区域的提取。

图7e描绘示例性实施方式,其展示轮廓屏蔽的提取。

图7f描绘示例性实施方式,其展示明显荧光区域的提取。

图8描绘计算机系统的示例性组织。

图9a描绘用于数据收集和分析的示例性程序。

图9b描绘用于数据收集和分析的示例性程序。

图9c描绘用于数据收集和分析的示例性程序。

图10描绘在规则照明和uv照明下取得的示例性影像。

图11描绘示例性实施方式,其绘示荧光发射中的不同强度。

图12描绘示例性实施方式,其绘示非均质荧光发射。

图13描绘示例性实施方式,其绘示在具有不同形状的宝石中的荧光发射。

图14描绘示例性实施方式,其绘示在不同色彩中的荧光发射。

图15描绘示例性实施方式,其绘示在不同色彩中的荧光发射。

具体实施方式

除非另有指示,否则根据相关技术的一般技术人员的通常使用而理解术语。为图解说明目的,钻石用作代表性宝石。本领域技术人员将理解,本文中所揭示的设备、系统和方法适用于经uv曝露能够发射荧光的全部类型的宝石。基于类似设备用于颜色分级的系统和方法被公开在与本案同时申请的名称为“apparatusandmethodforassessingopticalquealityofgemstones(用于评估宝石的光学性质的设备和方法)”美国专利申请第xx/xxx,xxx号中,该申请的全文以引用的方式并入本文中。

如背景技术中所提及,当前自动仪器不能提供某些宝石(诸如具有不规则或花式形状的宝石)的荧光性质的准确、完整和一致评估。解释此失效的一个原因是宝石的荧光强度显著地受诸多因子影响,诸如宝石相对于侦测器的定向、宝石的位置、和宝石的大小。另外,即使一些宝石是规则圆形亮型切割(rbc),这些宝石也展现非均质荧光分布且当前仪器仍不可提供可再生荧光等级用于这样的石头。

为克服现有问题,如本文中所揭示的改良荧光分级仪器具有如下列特性:(1)提供一致和可再生荧光等级至自其大小和形状无限制的宝石;(2)提供一致和可再生荧光色彩;(3)使用容易和快速操作提供一致和可再生荧光等级(例如,操作者无需使石头放置于相同位置中)。

在一方面中,本文提供用于宝石(诸如切割钻石)的荧光评估的改良荧光分级设备。设备适用于分级宝石(诸如切割钻石),包含具有不规则形状、大小、色彩和荧光分布的宝石。示例性设备100绘示于图1中,其包含(但不限于)(例如)宝石评定组件10、具有uv滤光器的光源20、远心透镜30、和影像捕获组件40。

基于功能性,本文中所揭示的设备的组件可被划分成两个主要单元:宝石呈现单元和光学单元。宝石呈现单元提供均匀照明至受分析的宝石且光学单元捕获呈现的宝石的影像。

另外且未描绘于图1中,示例性设备进一步包括计算机处理单元,其用于分析由影像捕获组件收集的信息。

如图1中所绘示,示例性宝石呈现单元继而包括至少两个部分:宝石评定组件10和光源20。宝石评定组件是呈现宝石的地方。如图2a和图2b中所描绘,宝石评定组件具有闭合配置和敞开配置。此处,为清楚地绘示不同配置,在图2a和图2b中省略光源20。在闭合配置(例如,参见图2a)中,经历分析的宝石被完全隐藏且自观察者不可见。在一些实施方式中,为避免由环境光或其它光引起的不一致性,宝石评定组件是自其排除环境光或其它光的隔离和闭合系统。宝石评定组件和光学单元以互补方式接合,使得自样本宝石容纳于其内的隐藏样本腔室排除环境光或其它光。虽然荧光光源未描绘于图2a和图2b中,但是本领域技术人员将理解需要此光源用于宝石的荧光分级。

在闭合配置下,由光学单元接收并捕获关于受分析的宝石的影像信息,光学单元包括远心透镜30和影像捕获装置40(例如相机)。

在敞开配置(例如参见图2b)中,不收集任何影像信息。代替地,使经历分析的宝石曝露至观察者。在敞开配置中,揭露宝石呈现单元具有两个部分:底部呈现组件50和顶部反射器组件60。在一些实施方式中,如图2b中所绘示,使顶部反射器组件安装于可移动侧轨上。当使顶部反射器在这样的轨道上移动远离光学单元时,底部呈现组件50被曝露。如图2b中所展示,顶部反射器组件60的开口的形状和设计与光学单元的光学连接器模块(例如图2b中的组件70)的形状和设计互补。在一些实施方式中,光学连接器模块是远心透镜30附接至其的透镜盖。

示例性底部呈现组件50绘示于图3中。圆形白色反射性平台510用作使样本宝石520放置于其上的基座。使同心圆环灯530放置于圆形平台外部,使得使平台完全围封于环形灯530内。

平台510(也被称为载物台或样本载物台)对本文中所揭示的系统是重要的。重要的是,其提供支撑至受分析的宝石。在一些实施方式中,平台的顶部表面是水平的且平坦的。另外,其用作载物台用于远心透镜30和影像捕获装置40的数据收集和随后分析。为达成数据一致性,使远心透镜30以相对于平台510的顶部表面的第一预定角度定位。在一些实施方式中,使影像捕获装置40以相对于平台510的顶部表面的第二预定角度定位。在一些实施方式中,第一预定角度和第二预定角度是相同的且其已经最佳化用于数据收集。在一些实施方式中,第一预定角度和第二预定角度是不同的,但均已经最佳化用于数据收集。第一预定角度和第二预定角度可被称为影像视角或相机视角。

平台510的顶部表面与光学单元(例如,远心透镜30和相机40)的相对配置的示例性图解说明描绘于图4中。此处,使包含远心透镜30和影像捕获装置40两者的光学单元以相对于平台表面的预定角度(α)定位。

在一些实施方式中,圆形反射性平台是可旋转的。例如,使平台安装于转子上或与转子连接在一起。在优选实施方式中,使经历分析的宝石放置于平台表面的中心处,如图3中所绘示。接着,使平台相对于光学单元旋转,使得由影像捕获装置收集在不同角度处的宝石的影像。

在一些实施方式中,使平台表面绕旋转轴旋转,该旋转轴穿过圆形平台表面的启始的中心且垂直于平台表面;例如,参见图4中所描绘的轴zz。

在一些实施方式中,使平台相对于光学单元以设定的角变化旋转。这些角变化的量值判定数据收集的程度;例如,多少影像将为宝石的收集。例如,若使平台以12度的角变化旋转,则全旋转将允许收集宝石的30个影像。可以任何值设定角变化以促进数据收集和分析。例如,使平台以0.5度或更小、1度或更小、1.5度或更小、2度或更小、3度或更小、4度或更小、5度或更小、6度或更小、7度或更小、8度或更小、9度或更小、10度或更小、12度或更小、15度或更小、18度或更小、20度或更小、24度或更小、30度或更小、45度或更小、60度或更小、90度或更小、120度或更小、150度或更小、或180度或更小的角变化旋转。将理解,可以任何数目设定角旋转变化。也将理解,可使平台旋转任何值的总旋转角度,不受限于360度全旋转。在一些实施方式中,数据(例如彩色影像)是针对小于360度全旋转的旋转的收集。在一些实施方式中,数据(例如彩色影像)是针对多于360度全旋转的旋转的收集。

在一些实施方式中,平台或其部分(例如顶部表面)使用反射性表面涂布来达成反射性。在一些实施方式中,平台或其部分(例如顶部表面)包括反射性材料。在一些实施方式中,平台或其部分(例如顶部表面)由反射性材料制成。在一些实施方式中,反射性材料是白色反射性材料。在一些实施方式中,反射性材料是tef1ontm材料。在一些实施方式中,反射性材料包含(但不限于)聚四氟乙烯(ptfe)、spectralontm、硫酸钡、金、氧化镁、或其组合。

优选地,可旋转平台是圆形的且大于任何待分析样本宝石的大小。在一些实施方式中,平台是水平的且当其在旋转时保持水平。

在一些实施方式中,平台的高度是固定的。在一些实施方式中,手动地或经由计算机程序的控制而调整平台的高度。优选地,可通过经由由计算机单元运行的计算机程序的控制而上升或下降平台。

在一些实施方式中,平台是平坦的。在一些实施方式中,使宝石样本定位于其上的中心区域是平坦的且平台上的更周边区域是不平坦的。整个平台采用平坦圆顶状结构的确认。

在一些实施方式中,可调整平台与照明源之间的相对位置。例如,可使照明源移动靠近或远离平台。

平台可由任何刚性且非透明材料(诸如金属、木头、黑色玻璃、塑料或其它刚性聚合材料)制成。在一些实施方式中,平台和/或围绕平台的区域使用非反射性或低反射性材料涂布。

最广义而言,光源20包含(但不限于)用于产生光的源、一个或多个滤光器、用于传导产生的光的组件、和发射产生的光作为uv照明的组件(例如圆环灯)。在图3中所描绘的实施方式中,圆环灯530提供uv照明至样本宝石。如本文中所揭示,用于产生光的源有时被称为光源。本领域技术人员将理解,照明组件也是光源的部分。

在一些实施方式中,光产生源与最终照明组件分离,例如,其与外部圆环灯连接在一起(例如由光传输缆线)以提供照明源。在这样的实施方式中,在照明源达到圆环灯之前或之后应用短通滤光器和带通滤光器用于uv光选择。因而,由圆环灯最终提供的照明具有界定的紫外特征;例如,具有在uv范围内的一个或多个波长。这样的波长可为来自400纳米至10纳米、400纳米至385纳米、385纳米至350纳米、350纳米至300纳米、300纳米至250纳米、250纳米至200纳米、200纳米至150纳米、150纳米至100纳米、100纳米至50纳米、或50纳米至10纳米的范围的任何波长。

在一方面中,如本文中所揭示的光产生源能够产生荧光激发(例如在365纳米处)。在另一方面中,如本文中所揭示的光产生源提供光照明用于宝石轮廓识别。通过使用特殊光源和不同类型的光源的组合而达成此双功能性。

在一些实施方式中,使用能够发射uv和白光两者的可调谐光源。例如,此可调谐光源包括一个或多个led。有利地,此光源可用于轮廓识别和荧光测量两者。例如,内建机构可用以允许使用者在两个操作模式之间切换。在一些实施方式中,光源(例如发射uvled)发射在所需波长处(例如在365纳米处)的uv照明。例如,发射在单一波长(例如365纳米或385纳米)处的uv光的uvled是可用的(例如来自hamamatsu公司)。在一些实施方式中,光源(例如发射uvled)发射在一定范围处的uv照明且通过应用被设定在例如365纳米处的uv通滤光器(uv-passfilter)而发射所需波长。

在这样的实施方式中,可调谐光源提供均匀顶部照明或均匀底部照明。针对顶部照明,不存在对光源的形状和大小的限制。例如,光源可为圆形的、部分圆形的或完全非圆形(例如,椭圆、正方形或三角形)。也不存在对自宝石样本的距离的限制。例如,使可调谐光源附接至顶部反射组件60的反射性内部表面(例如图2b)。可使用光源的组合;包含(但不限于)一个或多个uvled;具有光学漫射器的一个或多个uvled;具有准直透镜的一个或多个uvled;或具有准直透镜和光学漫射器的一个或多个uvled。本领域技术人员将理解,可提供均匀照明的光源与光学组件的任何组合将适合用作如本文中所揭示的设备中的光源。

针对底部照明,光源优选是与样本平台50的形状兼容的圆环灯(例如图2b)。此处,可产生uv照明的组件被布置成圆形或接近圆形形状。例如,发射在单一波长(例如365纳米或385纳米)处的uv光的uvled是可用的(例如来自hamamatsu公司)。在一些实施方式中,已使环形灯嵌入于一个或多个uvled内。

在一些实施方式中,使用一个以上光源。这些光源的至少一种是uv光源(诸如一个或多个发射uvled)。这些光源的至少另一种是白色光源。可使用任何合适的白色光源,包含(但不限于)荧光灯、卤素灯、xe灯、钨灯、金属卤化物灯、激光诱导白光(ldls),或其组合。

许多组合可被使用于这样的实施方式中。例如,可使用两个环形灯:一个提供均匀uv照明且一个提供均匀近似日光光照明。在此组合中,在一些实施方式中,这两个光源都提供底部照明。在一些实施方式中,一个环形灯提供底部照明,同时另一个提供顶部照明。

在另一示例性组合中,光源包括环形led光源和白色光源。在一些实施方式中,环形uvled用以提供底部照明,且白色光源提供顶部照明。

在另一示例性组合中,光源包括环形白色光源和led光源。在一些实施方式中,环形白色光源用以提供底部照明,且uvled源提供顶部照明。

如所提及,白色光源包括近似日光光源。示例性近似日光光源包含(但不限于)具有色彩平衡滤光器的一个或多个卤素灯、布置于环状结构中的围绕平台表面的多个发光二极管、荧光灯、xe灯、钨灯、金属卤化物灯、激光诱导白光(ldls),或其组合。在一些实施方式中,色彩平衡滤光器用以产生日光等效光源。

在一些实施方式中,在适用的情况下,白色光源或uv光源任一者可为环形光。例如,针对uv光源,可产生uv照明的组件被布置成圆形或接近圆形形状。例如,发射在单一波长(例如365纳米或385纳米)处的uv光的uv发光二极管是可用的(例如来自hamamatsu公司)。在一些实施方式中,已使环形灯嵌入于一个或多个uvled内。

在一些实施方式中,缆线(诸如鹅颈管光导、可挠性光导,均含有一个或多个分支)用以使环形灯连接至光产生源。

uv照明源可采用适用于样本宝石的光学分析的任何形状和大小。例如,照明源可为点光、圆形光、环形光、椭圆形光、三角形光、正方形光或具有合适大小和形状的任何其它光。在一些实施方式中,光照明源的形状是环状或圆形,具有大于圆形平台的直径的直径。

uv照明组件提供可在其下分析样本宝石的输入光。有利地,在无光干扰或几乎无光干扰(例如来自环境光或其它光)的环境中,可以以高的敏感度来分析可在uv照明下产生荧光的宝石。此处,曝露于uv照明的结果是发射可见荧光。当排除来自uv照明的影响时(例如将侦测器或影像捕获组件上的光滤光器设定成仅可见光范围),使发射荧光与零背景(例如无荧光)比较。此处,信号噪声比由于低的或接近零的噪声水平而是非常高的。

已经采用对设备的设计的模块化方法以提供实验可挠性。在一些实施方式中,uv照明的强度可经调整以最佳化影像收集。

已经采用对设备的设计的模块化方法以提供实验可挠性。在一些实施方式中,uv照明的强度可经调整以最佳化影像收集。

如图2a和图2b中所展示,可使顶部反射器模块在使样本宝石定位于其中的区域上方移动。在图2a中所展示的闭合配置中,顶部反射器模块的内部腔室用作密封和隔离样本腔室,其中在受控环境中分析样本宝石。例如,自腔室排除环境光或其它光。使用者可调整腔室内的光强度以最佳化数据收集。在一些实施方式中,收集的数据包含自不同角度观看的宝石的彩色影像。

图5a至图5d绘示顶部反射器组件60的示例性实施方式。总的来说,顶部反射器具有外部形态,其类似于短圆柱体的外部形态,除圆柱体的部分经雕除以形成弯曲斜坡外(例如,参见图5b和图5d中的组件610)。使斜坡的部分移除以允许进入反射器组件的内部。例如,如图5a至图5d中所展示,使斜坡610的下部分移除来形成开口620。在一些实施方式中,开口620的顶部端口(topport)的设计是圆形的;例如,具有来自光学单元的透镜安装通过其的直径。在一些实施方式中,直径与远心透镜的直径相同以防止环境光或其它光进入反射器的内部。在一些实施方式中,直径稍微大于远心透镜的直径,使得需要调适器模块来防止环境光或其它光进入反射器的内部。

顶部反射器模块60的内部是反射性表面630。此内部反射性表面是至少部分半球形的。在一些实施方式中,内部反射性表面采用一个形状,其是具有半径r的圆的渐伸线的部分。在优选实施方式中,使圆定位于平台表面的中心处且具有大于受分析的宝石的大小的直径。基于下列方程式而描述渐伸线表面的形状:

x=r(cosθ+θsinθ)

y=r(sinθ-θcosθ),其中r是圆的半径且θ是弧度的角参数。渐伸线表面将反射光朝向中心圆形区域,使得受分析的宝石的照明被最佳化。

在一些实施方式中,反射性表面630或其部分包括反射性材料。在一些实施方式中,反射性表面630或其部分由反射性材料制成。在一些实施方式中,反射性材料是白色反射性材料。在一些实施方式中,反射性材料是tef1ontm材料。在一些实施方式中,反射性材料包含(但不限于)聚四氟乙烯(ptfe)、spectralontm、硫酸钡、金、氧化镁、或其组合。额外反射性涂布材料包含(但不限于)锌盐(硫化锌)、二氧化钛、二氧化硅、镁盐(氟化镁、硫化镁)。

在具有底部uv照明的一些实施方式中(例如当使用uvled的环形灯时),一个或多个反射性材料用以朝向宝石反射uv照明。在具有顶部uv照明的一些实施方式中,不需要反射性材料。

如图2b中所绘示,光学连接器模块70使宝石评定单元与光学单元链接以容许由影像捕获装置40的数据收集,虽然同时防止环境光或其它光进入宝石评定单元和干扰数据测量。

图6a至图6c提供光学连接器模块的示例性实施方式的更加详细图解说明。在此情况下,连接器是用于接收远心透镜30的透镜盖。在与远心透镜接触的一侧上,透镜盖具有平坦表面710。在接触反射器的相对侧上,透镜盖具有弯曲表面720。在一些实施方式中,弯曲表面720具有与反射器上的弯曲表面610互补的形状。

另外,连接器也具有开口730;参见图6a、图6b、和图6c。在一些实施方式中,开口730具有配置,其容纳远心透镜同时防止来自环境光或其它光的干扰。例如,图6a至图6b中所描绘的开口730具有圆柱形开口,其的大小是非均匀的。例如,在接触透镜侧上的圆柱形开口的直径小于在接触反射器侧上的圆柱形开口的直径。

透镜盖或其它光学连接器模块允许两个不同功能组件的整合。其经设计使得没有或几乎非常少环境光或其它光进入样本腔室。在一些实施方式中,额外组件(诸如密封带)可用以排除环境光或其它光。

系统的另一主要功能组件是被分析的宝石的数据穿过其的光学单元。光学单元提供样本腔室,其实现来自含有样本宝石的区域的可见光谱的收集,同时排除来自腔室外部的光。对含有样本宝石的区域捕获光学测量(诸如影像)且可通过影像的详细结构的分析,以对先前具有异常分级结果的某些石头的原因提供一些见解。

本文中所揭示的示例性实施方式包含(但不限于)光学单元中的两个重要功能模块,远心透镜30和影像捕获组件40(诸如彩色相机)。本领域技术人员将理解,额外组件可存在以促进数据收集。

远心透镜用以使照明宝石的影像提供至影像捕获组件。远心是指独特光学性质,其中通过某透镜设计的主要射线(穿过孔顶部的中心的倾斜射线)是准直的且平行于影像和/或物体空间中的光轴。远心透镜是复合透镜,其在无限远处具有其入射或出射光瞳。有利地,远心透镜在工作距离的范围上提供恒定放大率(物体大小不改变),事实上消除立体角度误差。针对许多应用,这意味物体移动不影响影像放大率,允许在测量应用中的高度精确测量。该水平的准确度和重复性在标准透镜下不能获得。使透镜远心最简单的方法是使孔停在透镜的焦点之一处。

存在三种类型的远心透镜。无穷远处的入射光瞳使透镜物体-空间远心。无穷远处的出射光瞳使透镜影像-空间远心。若两个光瞳均无穷远,则透镜是双远心。

具有高景深的远心透镜用于本文中所揭示的系统中。在一些实施方式中,所使用的远心透镜是物体-空间远心透镜。在一些实施方式中,远心透镜是双远心透镜。在优选实施方式中,缩放应是固定的,用于给定宝石石头的全部影像收集,以进一步确保一致性。

有利地,本设备和系统不需要使样本宝石放置于平台表面的中心处。另外,远心透镜不区别这些样本宝石的大小。相同远心透镜可用以收集非常小宝石和显著较大宝石的影像。

光学单元进一步包括影像捕获组件或侦测器(诸如数字相机)。为仅捕获自这些宝石发射的荧光,应用滤光器来排除来自uv照明的干扰。

在一些实施方式中,影像捕获组件40包括ccd(电荷耦合装置)的一个或多个光电二极管阵列。在一些实施方式中,影像捕获组件40包括一个或多个cmos(互补金属氧化物半导体)影像传感器。在一些实施方式中,影像捕获组件40包括一个或多个光电二极管阵列与cmos传感器的组合。在一些实施方式中,影像捕获组件40是ccd数字相机,诸如彩色数字相机。当分析来自不同荧光分级设备的影像时,若设备使用相同类型的侦测方法,则可获得更一致结果;例如,全部ccd阵列,全部cmos传感器,或两种类型的相同组合。

针对更加准确分析结果,收集的数字影像的分辨率限制是600像素×400像素或以上。在一些实施方式中,针对各色彩分量,各像素具有8位值(例如0至255)。数字相机的模拟至数字转换器(adc)是8位或以上,以有效地处理嵌入于像素中的信息而几乎没有或没有影像质量的损失。在一些实施方式中,根据影像捕获组件的动态范围,adc是10位或以上。在一些实施方式中,adc是在10位与14位之间。

在一些实施方式中,像素中的色彩分量包含(但不限于)红色(r)、绿色(g)和蓝色(b)。在一些实施方式中,像素中的色彩分量包含(但不限于)蓝绿色(c)、品红色(m)、黄色(y)、和键(黑色或b)。在一些实施方式中,像素中的色彩分量包含(但不限于)红色(r)、黄色(y)和蓝色(b)。

影像视角:如图4中所描绘,使光学单元的影像捕获装置(或远心透镜30或两者)以相对于平台表面的预定角(α,也被称为影像视角)定位。在一些实施方式中,影像视角是65度或更小、60度或更小、56度或更小、52度或更小、50度或更小、48度或更小、46度或更小、44度或更小、42度或更小、40度或更小、39度或更小、38度或更小、37度或更小、36度或更小、35度或更小、34度或更小、33度或更小、32度或更小、31度或更小、30度或更小、29度或更小、28度或更小、27度或更小、26度或更小、25度或更小、24度或更小、23度或更小、22度或更小、21度或更小、20度或更小、19度或更小、18度或更小、17度或更小、16度或更小、15度或更小、14度或更小、13度或更小、12度或更小、11度或更小、或10度或更小。在一些实施方式中,影像视角是在约10度与约45度之间。为一致性,针对给定宝石的影像视角当收集影像时将保持恒定。

影像旋转角度:也如图4中所绘示,可由影像旋转角度β描述在成像捕获组件与平台上的预界定位置(例如点540)之间的相对旋转位置。例如,可使影像捕获组件与平台表面相对于彼此旋转,使得以连续影像之间的设定的角变化改变影像旋转角度。例如,两个连续影像之间的角变化可为0.5度或更小、1度或更小、1.5度或更小、2度或更小、3度或更小、4度或更小、5度或更小、6度或更小、7度或更小、8度或更小、9度或更小、10度或更小、12度或更小、15度或更小、18度或更小、20度或更小、24度或更小、30度或更小、45度或更小、60度或更小、90度或更小、或180度或更小。将理解,可以任何数目设定角旋转变化。

也将理解,可使平台和影像捕获组件相对于彼此旋转任何值的总旋转角度,不限于360度全旋转。在一些实施方式中,数据(例如彩色影像)是小于360度全旋转的旋转的收集。在一些实施方式中,数据(例如彩色影像)是多于360度全旋转的旋转的收集。

当收集相同样本宝石的一组影像时,可改变角旋转变化。例如,影像1与影像2之间的角差可为5度,但影像2与影像3之间的差可为10度。在优选实施方式中,连续影像之间的角差在相同样本宝石的相同组影像内保持恒定。在一些实施方式中,仅一组影像是给定样本宝石的收集。在一些实施方式中,针对相同宝石收集多组影像,其中角差在各组内保持恒定但不同于彼此。例如,通过针对连续影像改变旋转影像角度12度而收集第一组影像,而通过针对连续影像改变旋转影像角度18度而收集第二组影像。

针对给定样本宝石而收集的影像数目取决于宝石的特性而改变。示例性特性包含(但不限于)形状、切割、大小、色彩等等。

选择性地收集来自含有样本宝石的平台表面上的区域的可见光谱。在一些实施方式中,针对各宝石收集多个彩色影像。在一些实施方式中,针对各宝石收集多个无色影像。彩色影像有利于判定例如切割钻石的色彩等级。

在一些实施方式中,如将在下列章节中进一步讨论,将处理由ccd相机捕获的影像以识别具有不同色彩或荧光强度的区域。此外,可在这些不同区域上使用来自相机像素的红色信号、绿色信号和蓝色信号而执行比色计算。在一些实施方式中,这样的计算将充分准确以给出荧光等级。在一些实施方式中,这样的计算将充分准确以提供跨钻石的色彩分布,并且这些色彩计算与自测量的光谱获得的那些的比较可帮助识别可能给出异常结果的钻石。

在一些实施方式中,基于自整个样本宝石计算的色彩值而判定荧光等级。在一些实施方式中,基于自样本宝石的色彩区域计算的色彩值而判定荧光等级。

可由侦测器阵列中的像素的数目和大小而判定侦测器的分辨率和容量。一般而言,数字影像的空间分辨率受像素大小限制。不幸的是,虽然减小像素大小改良空间分辨率,但此是以信号噪声比(snr或信号/噪声比)为代价。具体为,当增加影像传感器像素大小或冷却影像传感器时信号噪声比被改良。同时,若影像传感器分辨率保持相同,则影像传感器的大小被增加。较高质量的侦测器(例如更佳数字相机)具有大影像传感器和相对较大像素大小用于良好影像质量。

在一些实施方式中,本发明的侦测器具有1平方微米或更小;2平方微米或更小;3平方微米或更小;4平方微米或更小;5平方微米或更小;6平方微米或更小;7平方微米或更小;8平方微米或更小;9平方微米或更小;10平方微米或更小;20平方微米或更小;30平方微米或更小;40平方微米或更小;50平方微米或更小;60平方微米或更小;70平方微米或更小;80平方微米或更小;90平方微米或更小;100平方微米或更小;200平方微米或更小;300平方微米或更小;400平方微米或更小;500平方微米或更小;600平方微米或更小;700平方微米或更小;800平方微米或更小;900平方微米或更小;1000平方微米或更小;1100平方微米或更小;1200平方微米或更小;1300平方微米或更小;1400平方微米或更小;1500平方微米或更小;1600平方微米或更小;1700平方微米或更小;1800平方微米或更小;1900平方微米或更小;2000平方微米或更小;2100平方微米或更小;2200平方微米或更小;2300平方微米或更小;2400平方微米或更小;2500平方微米或更小;2600平方微米或更小;2700平方微米或更小;2800平方微米或更小;2900平方微米或更小;3000平方微米或更小;3100平方微米或更小;3200平方微米或更小;3300平方微米或更小;3400平方微米或更小;3500平方微米或更小;3600平方微米或更小;3700平方微米或更小;3800平方微米或更小;3900平方微米或更小;4000平方微米或更小;4100平方微米或更小;4200平方微米或更小;4300平方微米或更小;4400平方微米或更小;4500平方微米或更小;4600平方微米或更小;4700平方微米或更小;4800平方微米或更小;4900平方微米或更小;5000平方微米或更小;5100平方微米或更小;5200平方微米或更小;5300平方微米或更小;5400平方微米或更小;5500平方微米或更小;5600平方微米或更小;5700平方微米或更小;5800平方微米或更小;5900平方微米或更小;6000平方微米或更小;6500平方微米或更小;7000平方微米或更小;7500平方微米或更小;8000平方微米或更小;8500平方微米或更小;9000平方微米或更小;或10000平方微米或更小的像素大小。在一些实施方式中,像素大小大于10000平方微米,例如高达20000平方微米、50000平方微米或100000平方微米。

在一些实施方式中,对侦测器的曝露时间可经调整以最佳化影像质量且以促进宝石的光学性质的等级的判定,诸如色彩或荧光水平。在一些实施方式中,荧光发射是相当弱的且因此需要长曝露时间用于评估荧光质量。例如,对ccd侦测器的曝露时间可为0.1毫秒(ms)或更长、0.2毫秒或更长、0.5毫秒或更长、0.8毫秒或更长、1.0毫秒或更长、1.5毫秒或更长、2.0毫秒或更长、2.5毫秒或更长、3.0毫秒或更长、3.5毫秒或更长、4.0毫秒或更长、4.5毫秒或更长、5.0毫秒或更长、5.5毫秒或更长、6.0毫秒或更长、6.5毫秒或更长、7.0毫秒或更长、7.5毫秒或更长、8.0毫秒或更长、8.5毫秒或更长、9.0毫秒或更长、9.5毫秒或更长、10.0毫秒或更长、15.0毫秒或更长、20.0毫秒或更长、25.0毫秒或更长、30.0毫秒或更长、35.0毫秒或更长、40.0毫秒或更长、45.0毫秒或更长、50.0毫秒或更长、55.0毫秒或更长、60.0毫秒或更长、65.0毫秒或更长、70.0毫秒或更长、75.0毫秒或更长、80.0毫秒或更长、85.0毫秒或更长、90.0毫秒或更长、95.0毫秒或更长、100.0毫秒或更长、105.0毫秒或更长、110.0毫秒或更长、115.0毫秒或更长、120.0毫秒或更长、125.0毫秒或更长、130.0毫秒或更长、135.0毫秒或更长、140.0毫秒或更长、145.0毫秒或更长、150.0毫秒或更长、175.0毫秒或更长、200.0毫秒或更长、225.0毫秒或更长、250.0毫秒或更长、275.0毫秒或更长、300.0毫秒或更长、325.0毫秒或更长、350.0毫秒或更长、375.0毫秒或更长、400.0毫秒或更长、425.0毫秒或更长、450.0毫秒或更长、475.0毫秒或更长、500.0毫秒或更长、550.0毫秒或更长、600.0毫秒或更长、650.0毫秒或更长、700.0毫秒或更长、750.0毫秒或更长、800.0毫秒或更长、850.0毫秒或更长、900.0毫秒或更长、950.0毫秒或更长、1秒或更长、1.1秒或更长、1.2秒或更长、1.3秒或更长、1.4秒或更长、1.5秒或更长、1.6秒或更长、1.7秒或更长、1.8秒或更长、1.9秒或更长、2秒或更长、2.5秒或更长、3秒或更长。应理解,曝露时间可相对于(例如)光源强度而改变。

在另一方面中,本文中所揭示的方法和系统用以侦测或评定样本宝石的荧光性质随时间的改变。例如,宝石的荧光的色彩可随着时间改变。同样地,宝石的荧光的强度可随着时间改变。

在这样的实施方式中,多组或多个影像(例如彩色影像)是在一段时间周期内的宝石的收集。例如,使用本文中所揭示的系统,在多个影像角度上自动地收集各组影像。不存在对可随时间收集多少组影像的限制,例如,可收集两组或两组以上影像;三组或三组以上影像;四组或四组以上影像;五组或五组以上影像;六组或六组以上影像;七组或七组以上影像;八组或八组以上影像;九组或九组以上影像;10组或10组以上影像;15组或15组以上影像;20组或20组以上影像;30组或30组以上影像;50组或50组以上影像;或100组或100组以上影像。

在一些实施方式中,全部组影像是通过应用相同系统配置的相同宝石的收集;例如,使用相同相机、相同影像角度、相同反射器、相同平台等等。

在多组影像中,两个连续组影像分别用于从数分钟至数小时或甚至几天的时间间隙,其取决于石头的色彩改变的性质。通过色彩改变可多快地在样本石头中发生而判定时间间隙的持续时间。不存在对时间间隙可为多长或多短的限制。例如,时间间隙可为两分钟或更短;五分钟或更短;10分钟或更短;20分钟或更短;30分钟或更短;60分钟或更短;2小时或更短;5小时或更短;12小时或更短;24小时或更短;2日或更短;5日或更短;或10日或更短。

在一些实施方式中,针对各组影像完成计算以给样本宝石赋予荧光等级。接着,来自多组影像的荧光等级经比较以判定随时间的荧光改变。

在另一方面中,本文也提供数据分析单元,包含硬件组件(例如计算机)和软件组件两者。

数据分析单元储存、转换、分析、和处理由光学单元收集的影像。计算机单元控制系统的各种组件,例如平台的旋转和高度调整、照明源的强度和曝露时间的调整。计算机单元也控制缩放、调整光学单元与宝石平台的相对位置。

图8绘示示例性计算机单元800。在一些实施方式中,计算机单元800包括中央处理单元810、电源812、使用者接口820、通信电路816、总线814、非易失性储存控制器826、可选非易失性储存件828、和内存830。

内存830可包括易失性和非易失性储存单元,例如随机存取内存(ram)、只读存储器(rom)、闪存和其类似物。在一些实施方式中,内存830包括高速ram用于储存系统控制程序、数据、和应用程序,例如自非易失性储存件828加载的程序和数据。将了解,在任何给定时间,内存830中的任意模块或数据结构的全部或一部分事实上可被储存于内存828中。

使用者接口820可包括一个或多个输入装置824(例如键盘、小键盘、鼠标、滚轮、和其类似物)和显示器822或其它输出装置。网络适配卡或其它通信电路816可提供至任何有线或无线通信网路的连接。内部总线814提供计算机单元30的前述组件的互连。

在一些实施方式中,计算机单元800的操作主要由操作系统828控制,其由中央处理单元810执行。操作系统382可储存于系统内存830中。除操作系统382外,系统内存830的典型实施方案可包含用于控制进入由本发明使用的各种文件和数据结构的文件系统834、一个或多个应用模块836、和一个或多个数据库或数据模块852。

在根据本发明的一些实施方式中,应用模块836可包括下文所描述和图8中所绘示的下列模块的一个或多个。

数据处理应用838:在根据本发明的一些实施方式中,数据处理应用838接收并处理在光学单元与数据分析单元之间共享的光学测量。在一些实施方式中,数据处理应用838利用算法来判定影像的部分,其对应于样本宝石且消除无关数字数据。在一些实施方式中,数据处理应用838使数字影像的各像素转换成个别色彩分量。

内容管理工具840:在一些实施方式中,内容管理工具840用以使数据852的不同形式组织成多个数据库854,例如影像数据库856、处理的影像数据库858、参考宝石数据库860、和可选使用者密码数据库862。在根据本发明的一些实施方式中,内容管理工具840用以搜寻并比较寄宿于计算机单元30上的任意数据库。例如,在不同时间取得的相同样本宝石的影像可被组织成相同数据库。另外,关于样本宝石的信息可用以组织影像数据。例如,相同切割的钻石的影像可被组织至相同数据库中。另外,相同源的钻石的影像可被组织至相同数据库中。

储存于计算机单元800上的数据库包括任何形式的数据储存系统,包含(但不限于)平面文件、关系数据库(sql)、和在线分析处理(olap)数据库(mdx和/或其变化形式)。在一些特定实施方式中,数据库是分层olap立方体。在一些实施方式中,数据库均具有星形模式,其不被储存为立方体,但具有界定层级的尺寸表。进一步而言,在一些实施方式中,数据库具有在下层(underlying)数据库或数据库模式中不明确地断裂的层级(例如,尺寸表并不是层级式布置的)。

在一些实施方式中,内容管理工具840利用聚集方法用于判定分级特性。

系统管理和监测工具842:在根据本发明的一些实施方式中,系统管理和监测工具842管理并监测计算机单元30的全部应用和数据文件。系统管理和监测工具842控制哪一使用者、服务器、或装置已进入计算机单元30。在一些实施方式中,通过限制数据自计算机单元800下载或上传存取而达成安全管理和监测,使得数据被保护免受恶意存取。在一些实施方式中,系统管理和监测工具842使用一个以上安全测量以保护储存于计算机单元30上的数据。在一些实施方式中,可应用随机旋转安全系统以保护储存于远程计算机单元30上的数据。

网络应用846:在一些实施方式中,网络应用846使计算机单元800连接至网络且借此连接至任何网络装置。在一些实施方式中,网络应用846在其将数据转移至其它应用模块(诸如数据处理应用838、内容管理工具840、和系统管理和监测工具842)之前接收来自中间网关服务器或一个或多个远程数据服务器的数据。

计算和分析工具848:计算和分析工具848可应用任何可用方法或算法来分析和处理自样本宝石收集的影像。

系统调整工具850:系统调整工具850控制并修改系统的各种组件的配置。例如,系统调整工具850可在不同屏蔽之间切换,改变可调整屏蔽的大小和形状,调整缩放光学器件,设定并修改曝露时间等等。

数据模块852和数据库854:在一些实施方式中,储存于计算机单元800上的数据结构的每个是单一数据结构。在其它实施方式中,任何或全部这样的数据结构可包括多个数据结构(例如,数据库、文件和档案),其可或可不全部储存于计算机单元30上。一个或多个数据模块852可包含任何数目的数据库852,其由内容管理工具840而被组织成不同结构(或其它形式的数据结构)。

除上文所识别模块外,各种数据库854可储存于计算机单元800或可由计算机单元800寻址的远程数据服务器上(例如,计算机单元可发送信息至其和/或自其撷取信息的任何远程数据服务器)。示例性数据库854包含(但不限于)影像数据库856、处理的影像数据库858、参考宝石数据库860、可选部件密码数据组862、和宝石数据864。

影像数据库856用以在宝石被分析之前储存宝石的影像。处理的影像数据库858用以储存处理的宝石影像。在一些实施方式中,处理的影像数据库858也储存自处理的影像转换的数据。转换的数据的实例包含(但不限于)影像中的像素的个别色彩分量,表示影像中的像素的色彩分布的二维或三维图;影像中的像素的计算的l*、c*、a或b值;一个或多个影像的l*、c*、a或b值的平均值。

参考宝石数据库860:现有或已知参考或比色(master)宝石的数据(例如,等级值或l*、c*、a或b值)储存于参考宝石数据库860中。在一些实施方式中,已知参考或比色宝石的信息用作用于判定未知宝石样本的等级值或l*、c*、a或b值的标准。光学质量(诸如色彩或荧光等级)已经判定用于已知参考或比色宝石。例如,亮型切割的样本钻石的光学测量用以计算l*、c*、a或b的值,其接着与相同切割的多个已知参考或比色钻石的l*、c*、a或b的值相比较。样本钻石的等级将通过最紧密地匹配参考宝石而判定。在优选实施方式中,参考宝石具有相同于或类似于样本宝石的大小或重量。

可选使用者密码数据库862:在一些实施方式中,提供可选密码数据库862。密码和其它关于本系统的使用者的安全信息可产生且储存于使用者的密码被储存并管理于其中的计算机单元800上。在一些实施方式中,给予使用者选择安全设定的机会。

在一方面中,本文提供用于系统校准、数据收集、数据处理和分析的方法。例如,宝石的彩色数字影像经获得、处理且计算以提供一个或多个值用于评估并分级切割宝石(诸如钻石)的品质。

并非所有宝石一经uv曝露就发射荧光。即使针对一经uv曝露确实发射荧光的宝石,荧光水平也非常不可能是均匀的,因为在宝石内的荧光材料通常并非均匀分布。进一步而言,并非宝石的全部部分都可发射荧光。荧光分级的重要方面是精确地识别荧光在其内发射的区域且聚焦这样的区域内的数据分析以改良准确度。

针对荧光分析,使用至少两组测试数据。例如,针对在相同条件下(例如,在设定影像视角和设定影像旋转角度下)的给定样本宝石,捕获至少两个影像:在规则非uv照明下(例如在可见近似日光光源下)的一个影像,和在uv照明下的另一影像(例如,荧光或荧光影像,也被称为uv影像)。在一些实施方式中,在规则非uv照明下捕获的影像组用以外推轮廓屏蔽。在一些实施方式中,在uv照明下捕获的影像组用以外推荧光的区域(例如图7c和图7d)。相较之下,使用一组测试数据用于色彩分析。例如,样本宝石是在相同照明条件下(例如在近似日光光源下)同时使用远心透镜以相同影像视角同时以设定的间隔改变影像旋转角度而捕获样本宝石的多个彩色影像。

图7a和图7b绘示钻石的影像,其中背景白色色彩已被掩饰以突显该钻石的存在。如图7b中所绘示,围绕钻石的暗区域形成轮廓屏蔽。在一些实施方式中,轮廓屏蔽对应于样本宝石的实体边界或边缘,如在给定影像视角和给定影像旋转角度处所观察到。因此,轮廓屏蔽的开口涵盖在给定影像视角和影像旋转角度处的样本宝石的全影像或整个区域。如分析章节的方法中所绘示,这样的轮廓屏蔽可被界定用于各影像以隔离分析的区域且提取测量(诸如宽度和高度)。

图7c描绘在轮廓提取之前(a)和轮廓提取之后(b)的在可见光源下的照明宝石。如所绘示,所得轮廓屏蔽对应于在特定影像捕获条件下在二维中的钻石的实体大小。图7d描绘在荧光提取之前(a)和荧光提取之后(b)的在荧光影像中的uv光源照明下的宝石。此处,重要的是,要理解,呈现为荧光影像中的荧光的区域(即,明显荧光区域)在大小上可不同于(例如大于)能够发射荧光的宝石内的区域,因为当荧光发射被捕获于影像中时,可自发射荧光的区域延伸。如(b)中所展示,事实上,明显荧光区域大于钻石自身的实体大小,归因于荧光自样本平台反射。因此,明显荧光区域大大地大于轮廓屏蔽的开口,如在图7c(b)与图7d(b)之间的比较中所绘示。在一些实施方式中,轮廓屏蔽用以计算荧光强度;例如,如由根据照明国际委员会(cie或国际照明委员会)的参数l表示。此处,宝石的整个区域将被评估以准确地定量宝石的总荧光发射水平。

荧光屏蔽用以界定宝石内的区域,区域将受到进一步分析或计算。在图7c和图7d中所绘示的情况下,明显荧光区域大大地大于宝石的实体尺寸(例如,如由轮廓屏蔽的开口表示),其暗示明显荧光区域包含不对应于宝石的任何部分的区域。为消除不准确度,自进一步数据分析中移除超过宝石的实体边界的任何荧光。仅自宝石的边界内的荧光测量将受到进一步计算和分析,以提供自宝石发射的荧光的评估。当荧光自整个宝石发射且明显荧光区域覆盖整个宝石时,通过重迭明显荧光区域(例如,图7d(b))至宝石的轮廓屏蔽上(例如,图7c(b))来识别荧光屏蔽。将消除在明显荧光区域中由轮廓屏蔽界定的边界外部的任何区域。明显荧光区域的剩余部分对应于荧光屏蔽。事实上,荧光屏蔽通过图7c(b)×图7d(b)计算。你可以据此改变上文描述吗?在上文描述下,不可覆盖非均质强荧光钻石。

在其它宝石中,明显荧光区域也可小于宝石的实体边界,如由轮廓屏蔽界定且如图7e和图7f中所展示。图7e绘示自(a)至(b)的轮廓提取,其类似于图7c的轮廓提取。在图7f中,仅自宝石内的有限区域发射荧光。区域是小的,且是不连贯的。在应用荧光提取之后,获得明显荧光区域,如图7f(b)中所指示。在此情况下,明显荧光区域也含有不连贯的较小区域的补片。整个明显荧光区域大大地小于图7e中所展示的轮廓屏蔽。

在图7e和图7f中所绘示的情况下,明显荧光区域大大地小于宝石的实体大小(例如如由轮廓屏蔽的开口表示)。另外,明显荧光区域中的荧光是非连续的,这意味非发射区域已自明显荧光区域排除。为消除不准确度,在一些实施方式中,具有匹配较小明显荧光区域的开口的荧光屏蔽将被用以界定宝石内的区域用于进一步分析。再次,通过重迭明显荧光区域(例如,图7f(b))至宝石的轮廓屏蔽上(例如,图7e(b))来识别荧光屏蔽。将消除在明显荧光区域中由轮廓屏蔽界定的边界外部的任何区域。明显荧光区域的剩余部分对应于荧光屏蔽。仅自荧光屏蔽的开口内的荧光测量将受到进一步计算和分析,以提供自宝石发射的荧光的评估。

在一些实施方式中,荧光屏蔽包括连续开口;例如,参见图7c的(b)。在一些实施方式中,荧光屏蔽包括非连续开口;例如,参见图7f的(b)。在一些实施方式中,荧光屏蔽的总开口区域对应于宝石的实体大小。在一些实施方式中,荧光屏蔽的总开口区域大大地小于宝石的实体大小。

基于本文中所揭示的设备和系统的示例性程序概述于图9a中。本领域技术人员将理解,所提供的步骤是示例性的,且可以任何顺序应用或以任何可能的组合使用。

在步骤9000处,执行系统校准。例如,为具有可再生结果且抵消非uv光源的波动,调整影像捕获组件(诸如彩色相机)的白平衡。在此步骤处,个别色彩分量(例如rgb)的像素增益被调整,使得平台表面的背景影像变成白色。使用裸平台表面完成背景调整;即,样本宝石还未定位于平台表面上。优选地,在光源已稳定之后完成背景调整。在一些实施方式中,在收集样本宝石的影像之前在短时间周期内完成背景调整。在一些实施方式中,在光源已稳定之后且在宝石影像收集之前不久完成背景调整。当顶部反射器模块60在闭合配置中时执行白背景调整。接着,打开顶部反射器模块且使用者可使样本宝石放置于平台表面的中心处。此处应小心,使得平台表面、样本腔室中和针对光学单元的照明和其它条件和设定在样本宝石被放置之前和之后保持相同。

荧光测量由荧光材料(例如荧光体)当其接收来自uv照明的输入能量时发射的可见光。一般而言,将理解uv照明越强烈,荧光材料将越强地发射可见光。

在一些实施方式中,输入uv照明的强度经调整以最佳化荧光测量。例如,功率计(例如自thorlabs的pm160t热传感器功率计)用以测量来自uv光源的光强度。uv强度被调整至相同强度水平以提供可再生荧光测量结果。

在步骤9010处,以不同影像旋转角度同时保持影像视角恒定而捕获样本宝石的彩色影像。在各影像旋转角度处,将捕获宝石的至少两个影像:当宝石由非uv光源(例如近似日光光源)照明时的规则影像和当宝石由uv光源(例如被设定在预定强度处)照明的荧光影像。

在优选实施方式中,连续彩色影像之间的角差遍及全部影像的收集保持恒定。本文中所揭示的任何配置(例如涉及影像视角和影像旋转角度)可应用于影像收集程序。例如,若设定相机每秒拍30张照片且样本平台的一个全旋转花3秒,则在一个全旋转之后将收集90个影像。在一些实施方式中,平台表面完成相对于影像捕获组件的至少一个全旋转。在一些实施方式中,旋转小于全旋转。在一些实施方式中,旋转多于全旋转;例如,1.2个全旋转或更小、1.5个全旋转或更小、1.8个全旋转或更小、2个全旋转或更小、5个全旋转或更小、或10个全旋转或更小。

在步骤9020处,提取轮廓屏蔽用于非uv照明的影像。一般而言,轮廓屏蔽对应于由样本宝石占据的实体区域,其由样本宝石的全影像表示。图7a和图7b绘示在应用轮廓屏蔽之前和之后的相同钻石的影像的差异。如图7b中所描绘,轮廓屏蔽突显且清楚地界定钻石的边缘,使得如同宽度和高度的参数可更加容易被测量。完成轮廓屏蔽提取程序用于针对给定样本宝石取得的全部非uv照明的影像。

存在许多用于边缘侦测的方法,且其大多数可被分组成两类:基于搜寻和基于零交叉。基于搜寻的方法通过首先计算边缘强度的测量(通常为一阶导数式(诸如梯度幅值)),接着使用边缘的局部定向(通常梯度方向)的计算估计来搜寻梯度幅值的局部方向性最大值,来侦测边缘。基于零交叉的方法搜寻自影像计算的二阶导数式中的零交叉以找到边缘,通常为laplacian的零交叉或非线性微分式的零交叉。

至今已知的边缘侦测方法主要差异在于所应用的平滑滤波器的类型和计算边缘强度的测量的方法。因为许多边缘侦测方法依赖影像梯度的计算,所以其在用于在x-方向和y-方向上计算梯度估计的滤波器的类型上不同。

此处,可使用用于提取轮廓屏蔽的任何可适用方法,包含(例如)商业可用软件产品(诸如photoshoptm等等)中的边缘判定滤波器。另外,例如,可开发样本算法,其中在具有匹配背景白色色彩的色彩值的影像中的任何连续区域(如先前所校准)被界定为黑色。因此,连续黑色区域将形成具有对应于样本宝石的全影像的开口的轮廓屏蔽。

基于轮廓屏蔽,针对对应于样本宝石的全影像的各开口区域,几何参数的值(例如,如图7b中所绘示的宝石的宽度和高度)被判定。轮廓屏蔽用于几何参数的更加准确或自动测量。本质上,基于各轮廓屏蔽或更精确地各轮廓屏蔽的开口而判定几何参数。针对各影像进行测量。在此步骤之后,多个组的测量值被判定用于多个彩色影像(或其对应轮廓屏蔽),包含(例如)多个宽度测量和多个高度测量。

在步骤9030处,自在uv照明下捕获的相同样本宝石的影像而提取明显荧光区域。明显荧光区域由由能够发射荧光的样本宝石的部分的荧光发射的程度而界定。如图7d和图7f中所绘示,明显荧光区域可大于或小于宝石的实体大小。具体为,明显荧光区域可为非连续的,归因于发射荧光的宝石的不连贯部分。

在步骤9040至步骤9060处,使明显荧光区域重迭于对应轮廓屏蔽的顶部上以识别荧光屏蔽。重迭步骤的重要方面是识别明显荧光区域的落于样本宝石(如由轮廓屏蔽界定)的实体边界外部的部分。因为荧光发射的此部分不对应于样本宝石内的任何实体区域,所以包含其于评估荧光中可能导致错误。因而,在一些实施方式中,当在样本宝石的实体边界外部存在任何荧光时,将在步骤9050中移除样本宝石的实体边界外部的对应荧光。相较之下,在其它实施方式中,当在样本宝石的实体边界外部不存在荧光时,可在步骤9060处直接计算荧光屏蔽,通常如明显荧光区域自身。

例如,在图7d(a)中,荧光现在穿过整个宝石,导致图7d(b)中所描绘的大的且连续的明显荧光区域。在此情况下,荧光屏蔽是轮廓屏蔽和明显荧光区域的复合物,其通过移除超过样本宝石的实体边界(即轮廓屏蔽)的全部区域而获得。通过使明显荧光区域重迭于轮廓屏蔽上且接着移除超过轮廓屏蔽的实体边界的任何荧光而识别荧光屏蔽。荧光屏蔽是明显荧光区域和轮廓屏蔽的交叉成分。在特定实例中,因为明显荧光区域是连续的且轮廓屏蔽总是连续的,所以所得荧光屏蔽本质上是轮廓屏蔽,如步骤9050和步骤9060中所概述。图7e和图7f中所绘示的情况有一点不同。此处,由样本宝石的不连贯部分发射荧光,导致非连续明显荧光区域,如图7f(b)中所展示。再次,通过使明显荧光区域重迭于轮廓屏蔽上且接着移除超过轮廓屏蔽的实体边界的任何荧光而识别荧光屏蔽。在此特定实例中,在样本宝石的实体边界(即轮廓屏蔽)外部不存在荧光。所得的荧光屏蔽对应于图7f(b)中的明显荧光区域,如步骤9050和步骤9060中所概述。

将理解,若提取的明显荧光区域是非连续的但也延伸超过样本宝石的实体边界(即轮廓屏蔽),则所得荧光屏蔽将为轮廓屏蔽的边界外部的区域被排除的明显荧光区域(例如步骤9050和步骤9060)。再次,通过重迭明显荧光区域(例如,图7c(b))至宝石的轮廓屏蔽上(例如,图7d(b))而识别荧光屏蔽。将消除在明显荧光区域中的由轮廓屏蔽界定的边界外部的任何区域。与该轮廓屏蔽交叉的明显荧光区域的剩余部分对应于荧光屏蔽。

在一些实施方式中,荧光屏蔽对应于整个宝石的20%或更少、整个宝石的25%或更少、整个宝石的30%或更少、整个宝石的35%或更少、整个宝石的40%或更少、整个宝石的45%或更少、整个宝石的50%或更少、整个宝石的55%或更少、整个宝石的60%或更少、整个宝石的65%或更少、整个宝石的70%或更少、整个宝石的75%或更少、整个宝石的80%或更少、整个宝石的85%或更少、整个宝石的90%或更少、或整个宝石的100%或更少。在一些实施方式中,荧光屏蔽对应于样本宝石的整个实体区域。

为改良精确度和一致性,仅荧光屏蔽内的像素将经历计算和进一步分析(例如步骤900)。示例性数据收集、计算和分析程序绘示于图9b和图9c中。

在步骤910处,在非uv照明下捕获样本宝石的多个影像。以不同影像旋转角度同时影像视角保持恒定而捕获彩色影像。影响数据收集的考虑全部是可用的。

在步骤920处,在uv照明下捕获样本宝石的多个荧光影像。以不同影像旋转角度同时影像视角保持恒定而捕获彩色影像。影响数据收集的考虑是全部可用的。术语“荧光影像(fluorescentimage)”和“荧光影像(fluorescenceimage)”将互换地使用。

在步骤930处,荧光屏蔽应用于多个荧光影像中的各荧光影像。用于计算荧光屏蔽的示例性方法已绘示于图9a中且先前已描述。

在步骤940处,荧光屏蔽内的像素经历荧光影像的量化分析。例如,各像素可经分析以量化特定像素中的全部色彩分量的值。通过算法判定色彩分量数,当首先捕获彩色影像时根据该算法而编码像素。在一些实施方式中,影像自其捕获色彩模式(例如cmyk)转换至不同色彩模式(例如rgb)。在针对荧光屏蔽内的各像素中的各色彩分量而量化值之后,可针对在给定荧光影像中的各色彩分量而计算平均值。可针对全部影像重复程序以计算全部荧光影像中的各色彩分量的平均值。最终,可基于来自全部荧光影像的信息而针对各色彩分量计算最终平均值。

在步骤950处,执行转换程序用于在影像中的界定区域内的全部像素以计算一个或多个参数的平均值。910至950的步骤可被重复用于多个彩色影像中的全部影像。最终,可基于来自全部影像的信息而针对各色彩分量计算一个或多个参数(例如,l*、a*、和b*)的平均值。

在步骤960处,基于一个或多个参数的值而计算第一荧光记分。例如,此处,第一荧光记分可为色度(c*)和色相(h)值,其基于cie色彩空间值(例如,l*、a*、和b*)而计算;例如基于下列方程式(图10):

在一些实施方式中,使用由cie公布的标准(例如,作为波长的函数的色彩匹配函数和照明体的表)来分析彩色影像。标准日光照明体的曲线具有6500k的相关色彩温度,d65。此处,此照明体由函数hd65(λ)表示。这些色彩匹配函数:用以计算比色法参数。

在一些实施方式中,第一荧光记分表示由样本宝石发射的荧光的色彩或色相特性。

图9c继续绘示用于荧光等级分析的示例性程序。在步骤962处,量化荧光影像中的宝石的实体区域(例如由对应轮廓屏蔽界定)内的各像素中的个别色彩分量。在一些实施方式中,使各像素分割成表示色彩红色(r)、绿色(g)和蓝色(b)的三个值。在一些实施方式中,使各像素分割成表示色彩青色(c)、品红色(m)、黄色(y)和黑色(k)的三个值。在一些实施方式中,影像自其捕获色彩模式(例如cmyk)转换成不同色彩模式(例如rgb)或反之亦然。接着,个别色彩分量用以计算一个或多个参数,例如cie色彩空间值(例如,l*、a*、和b*)。

在步骤964处,针对在一个作业阶段期间(例如,在相同照明条件下同时影像捕获组件(例如相机)在相同设置下配置)的特定宝石而收集的全部荧光影像而计算一个或多个参数(例如,l*、a*、和b*)。

在步骤970处,针对相同宝石计算第二荧光记分。在一些实施方式中,第二荧光记分表示宝石的荧光强度。在一些实施方式中,第二荧光记分根据所取得的全部荧光影像而表示宝石的平均荧光强度;例如,平均l*值。

在步骤980处,使第一荧光记分和/或第二荧光记分的值(例如,l*、c*、h*)与对应参考宝石的先前判定标准值比较来赋予荧光等级至样本宝石。使用相同或类似程序获得参考宝石的先前判定标准值。例如,一组或多组样本石头(其共享相同或类似色彩、比例或形状特性且其荧光分级值先前已经判定)用作参考宝石或分级标准。在一些实施方式中,荧光色彩是明显的。在一些实施方式中,荧光色彩可能太弱而不能用于准确识别。在这样的情况下,可使样本宝石的第一荧光记分和/或第二荧光记分与均具有不同色彩的多组参考宝石比较。

计算色彩特性(例如,l*、c*和b*)的实例如下。因为钻石是透明材料,所以传输光谱t(λ)和反射光谱r(λ)的和用于三色值x、y和z的计算中:

色度坐标x和y接着被界定为:

达成“感知上均匀”色彩空间的尝试是cie1976色彩空间,另外被称为cielab色彩空间。其参数自三色值如下计算:

亮度,

红绿参数,

和黄蓝参数,

其中xw、yw和zw是针对对应于选定照明体(在此情况下是d65)的白点的三色值。

饱和度或色度被表达为:且色相角被表达为:hab=tan-1(b*/a*)。

源可用于影像/色彩转换和变形。例如,寄宿于docs<dot>opencv<dot>org处的敞开cv项目可用以使rgb值转换成ciel、a、b值。另外,相同或类似资源允许rgb值与色相-饱和度-值(hsv)值之间、rgb值与色相-饱和度-亮度(hsl)值之间、rgb值与在adams色差色彩空间中的cieluv值之间的转换。

本发明可被实施为计算机系统和/或计算机程序产品,其包括嵌入于计算机可读储存介质中的计算机程序机构。进一步而言,本发明的任意方法可被实施于一个或多个计算机或计算机系统中。进一步而言,本发明的任何方法可被实施于一个或多个计算机程序产品中。本发明的一些实施方式提供计算机系统或计算机程序产品,其编码或具有用于执行本文中所揭示的任意或全部方法的指令。这样的方法/指令可储存于cd-rom、dvd、磁盘储存产品或任何其它计算机可读数据或程序储存产品上。这样的方法也可嵌入于永久储存件中,诸如rom、一个或多个可程序化芯片、或一个或多个专用集成电路(asic)中。这样的永久储存件可被本地化在服务器、802.11存取点、802.11无线桥接器/站、重复器、路由器、移动电话或其它电子装置中。编码于计算机程序产品中的这样的方法也可被由因特网或以其它方式而电子地分布,通过计算机数据信号(软件模块嵌入于其中)数字地或在载波上的传输。

本发明的一些实施方式提供计算机系统或计算机程序产品,其含有如本文中所揭示的任意或全部程序模块。这些程序模块可储存于cd-rom、dvd、磁盘储存产品或任何其它计算机可读数据或程序储存产品上。程序模块也可嵌入于永久储存件中,诸如rom、一个或多个可程序化芯片、或一个或多个专用集成电路(asic)中。这样的永久储存件可被本地化在服务器、802.11存取点、802.11无线桥接器/站、重复器、路由器、移动电话、或其它电子装置中。计算机程序产品中的软件模块也可被由因特网或以其它方式通过计算机数据信号(软件模块嵌入于其中)数字地或在载波上的传输而电子地分布。

在详细描述本发明之后,将明白,在不背离随附权利要求中界定的本发明的范围的情况下修改、变动和等效实施方式是可行的。此外,应了解,本揭示内容中的全部实例作为非限制性实例而提供。

实施例

提供下列非限制性实施例以进一步绘示本文中所揭示的发明的实施方式。本领域技术人员应了解,下列实施例中所揭示的技术表示已经发现在本发明的实践中很好地起作用的方法且因此可被考虑以构成针对其实践的模式的实施例。然而,本领域技术人员应可根据本揭示内容了解,在不背离本发明的精神和范畴的情况下,在所揭示的特定实施方式中可做许多改变且仍可获得相同或类似结果。

实施例1

针对规则石头的荧光分级

图10展示在近似日光光源(顶部3个影像)和在uv照明(底部3个影像)两者下取得的样本宝石的影像。在uv照明下,在宝石内的在不同强度下发射荧光的部分是明显的。

实施例2

在参考石头中的荧光发射水平的确认

在此实施例中,具有不同荧光发射强度的4个参考石头经历分析。使影像视角设定于32度处。pointgreygs3-u3-28s5c相机用以捕获在规则照明和uv照明下的影像。此处,由uvled结合带通滤光器和准直透镜提供顶部uv照明。

图11绘示除c值外,l值和h值两者(尤其l值)与在参考石头中观察到的荧光发射的强度相关。

实施例3

具有非均质荧光分布的宝石

图12中的影像展示具有非均质荧光分布的宝石。在不同影像旋转角度处(0度、120度和240度),观察荧光发射的不同水平。当个别地评定各影像时,所得l值、c值、h值暗示荧光强度的不同机械分级。然而,当通过使来自全部影像的效果平均化而计算l值、c值、h值时,机械分级记分和视觉检测分级记分变得一致。

实施例4

具有蓝色荧光的花式形状石头

图13描绘具有花式形状但全部具有蓝色荧光的宝石。此处,使影像视角设定于32度处。pointgreygs3-u3-28s5c相机用以捕获在规则照明和uv照明下的影像。此处,提供顶部uv照明。

石头具有不同形状和大小。在应用本文中所揭示的分析之后,针对各石头的所得机械荧光分级记分与由人类视觉检测提供的荧光分级记分相同。此处,这些石头发射不同水平的蓝色荧光。

实施例5

具有不同荧光色彩的宝石

图14描绘发射不同荧光色彩的两个宝石:在左侧的宝石发射绿色荧光而在右侧的宝石发射黄色荧光。此处,使影像视角设定于32度处。pointgreygs3-u3-28s5c相机用以捕获在规则照明和uv照明下的影像。此处,提供顶部uv照明。

再次,在应用本文中所揭示的分析之后,针对各石头的所得机械荧光分级记分与由人类视觉检测提供的荧光分级记分相同。此处,石头发射不同色彩的荧光。

实施例6

具有不同大小和荧光色彩的宝石

图15描绘发射不同荧光色彩的两个宝石:在左侧的宝石发射黄色荧光而在右侧的宝石发射橘色荧光。此处,使影像视角设定于20度处。pointgreygs3-u3-28s5c相机用以捕获在规则照明和uv照明下的影像。此处,提供顶部uv照明。

在应用本文中所揭示的分析之后,针对各石头的所得机械荧光分级记分与由人类视觉检测提供的荧光分级记分相同。此处,两个样本石头具有显著不同的大小:一个几乎是另一个的三倍大。另外,石头发射不同荧光色彩。

上文所描述的各种方法和技术提供若干方式来执行本发明。当然,将理解,不一定所描述的全部目标或优点可根据本文中所描述的任何特定实施方式来达成。因此,例如,本领域技术人员将识别,这些方法可以达成或最佳化如本文中所教导的一个优点或一组优点的方式而执行,而并不一定达成如可在本文中教导或建议的其它目的或优点。本文中提及各种有利和不利替代。将理解,一些优选实施方式特定包含一个、另一个或若干有利特征,而其它优选实施方式特定地排除一个、另一个或若干不利特征,而其它优选实施方式通过包含一个、另一个或若干有利特征特定地减轻目前的不利特征。

此外,技术人员将识别来自不同实施方式的各种特征的应用。类似地,可由一般技术人员混合且匹配上文所讨论的各种组件、特征和步骤以及每个这样的组件、特征或步骤的其它已知等效物来执行根据本文中所描述的原理的方法。在各种组件、特征和步骤中,将在各种实施方式中特定地包含一些组件、特征和步骤且特定地排除其它的。

虽然已在某些实施方式和实施例的背景下揭示本发明,但本领域技术人员将理解,本发明的实施方式延伸超过特定揭示的实施方式至其它替代实施方式和/或使用及其修改和等效物。

已在本发明的实施方式中揭示许多变化形式和替代组件。本领域技术人员将明白进一步变化形式和替代组件。

在一些实施方式中,用以描述且主张本发明的某些实施方式的表示组分的量、性质诸如分子量、反应条件等等的数值应理解为在一些情况下由术语“约”修饰。据此,在一些实施方式中,在书面描述和随附权利要求中列出的数字参数为可随特定实施方式企图获得的所需特性而变化的近似值。在一些实施方式中,应鉴于所报告的有效数字和通过应用一般凑整技术而解释数值参数。虽然阐述本发明的一些实施方式的广泛范畴的数值范围和参数为近似值,但已尽可能精确地报告特定实施例中所列的数值。本发明的一些实施方式中呈现的数值可含有必定由在其各自测试测量中发现的标准偏差所致的某些误差。

在一些实施方式中,在描述本发明的特定实施方式的上下文中(尤其在下列某些权利要求的上下文中)所用的术语“一”和“一个”和“所述”和类似参考可解释为覆盖单数和复数两者。文中叙述的数值范围仅意欲用作对落于范围内的各单独值的个别引用的快捷方法。除非文中另有说明,否则各个别值如同其在本文中个别地叙述一样并入至本说明书中。除非文中另外指示或与上下文明显矛盾,否则可以任何适宜顺序执行本文中所述的全部方法。本文中相对于某些实施方式而提供的任何和全部实施例或示例性语言(例如“诸如”)的使用仅意欲更充分地阐述本发明且不限制原本主张的本发明的范围。本说明书中的语言不应被理解为表示为实施本发明所必需的任何非主张要素。

本文中所揭示的本发明的替代组件或实施方式的分组不应解释为限制。各组部件可被参考且个别地或与该组的其它部件或本文中发现的其它组件组合地主张。为方便和/或专利性目的,一组的一个或多个部件可包含于该组中或自该组删除。当任何这样的包含或删除发生时,说明书在本文中被认为含有所修改的组,因此满足随附权利要求中所使用的全部马库什组的书面描述。

本文中描述本发明的优选实施方式,包含发明者已知的用于执行本发明的最佳模式。在阅读上述描述后,一般技术人员将明白对那些优选实施方式的变化形式。预期,技术人员可视情况利用这样的变化形式,且可以除本文中所特定描述外的其它方式而实践本发明。据此,本发明的许多实施方式包含为适用法律容许的本发明随附权利要求中所列举主题的所有修改和等效物。此外,除非另外在本文中指明或者另外与上下文明显矛盾,否则本发明涵盖其所有可能变化形式中的上述要素的任何组合。

此外,已遍及本说明书对专利和所印刷出版物做各种参考。上文所述参考和印刷出版物的每个的全部以引用的方式并入本文中。

最后,将理解,本文中所揭示的本发明的实施方式示例本发明的原理。可利用的其它修改可在本发明的范围内。因此,通过实施方式但非限制,可根据本文中的教导利用本发明的替代配置。据此,本发明的实施方式不受限于精确地如所展示和所描述的那些。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1