基于激光散射原理的发电机绝缘过热监测装置的制作方法

文档序号:20791632发布日期:2020-05-20 00:15阅读:351来源:国知局
基于激光散射原理的发电机绝缘过热监测装置的制作方法

本实用新型涉及电气监测技术领域,尤其涉及一种基于激光散射原理的发电机绝缘过热监测装置。



背景技术:

随着发电机容量的不断增大,其材料和结构需承受更大的功率密度,利用率越来越接近极限。发电机各部分的温升裕量越来越小,使得冷却效率轻微的降低都会非常危险,这样极容易引发发电机内部局部过热而影响发电机正常运转甚至产生严重的安全事故。

多年来,大型发电机一般是通过发电机状态监测装置或核心监测仪器来监控和保护发电机,防止过热。发电机上的绝缘材料由于导热性能差,往往最先过热,绝缘材料过热时会发生热分解(或裂解),释放出大量的亚微粒子。现有绝缘过热探测装置一般通过测量气室探测器的输出电流下降,进而触发报警;还有绝缘过热检测装置采用较于传统测量气室检测灵敏度更高的云室探测器测量亚微粒子浓度。这两种方法都可以进行发电机的过热监测,但存在测量误差较大、误报警多的现象,用户无法通过装置的报警去确认发电机绝缘过热的真实故障。因为绝缘材料受热达到一定温度后,在材料的周围会产生微粒,若低于此温度,不会产生微粒,但一旦达到临界温度,在表面每秒每平方厘米产生数百万亚微颗粒、有机挥发物等粒子,传统的测量气室探测器通过射线电离来测量,测量出来的是微电流,其数值的大小受气流影响较大,无法真实反映亚微颗粒的浓度。



技术实现要素:

本实用新型的目的是克服上述现有技术的缺点,提供一种更直观、更精确测量亚微粒子含量及浓度、误报警率低的基于激光散射原理的发电机绝缘过热监测装置。

本实用新型是通过以下技术方案来实现的:

基于激光散射原理的发电机绝缘过热监测装置,包括气路检测单元、电路数据分析单元和控制显示单元。

所述气路检测单元包括激光发生器、亚微过滤器、测量气室、光强传感器和电磁阀,发电机绝缘部分采集的待检空气经过所述亚微过滤器,过滤掉非亚微粒子后进入测量气室;所述激光发生器发射激光至所述测量气室,所述光强传感器用于接收并检测测量气室中的散射光强;所述气路检测单元与所述电路数据分析单元电连接,以将检测数据传输给电路数据分析单元;所述电磁阀用于控制测量气室待测空气的进入。

所述电路数据分析单元包括温湿度变送器、数据采集控制器、光电转换器和通信模块,所述光电转换器与所述气路检测单元电连接,将采集的光信号转换成电压信号,再通过a/d转换成数字信号;所述温湿度变送器与所述数据采集控制器相连,用于测量装置内的温度和湿度,并将数值传送给数据采集控制器;所述数据采集控制器与所述光电转换器电连接,以对数字信号进行分析处理,判断亚微粒子浓度是否高于预设阀值,并将分析结果传输给所述控制显示单元,以及根据分析结果控制所述气路检测单元;所述通信模块与数据采集控制器电连接,将分析处理的数据信息传送给近端监控系统或远程监控系统,以及接收控制命令。

所述控制显示单元与所述数据采集控制器电连接,接收并显示分析处理结果。

进一步地,所述控制显示单元包括触摸显示屏、电源开关按钮、usb接口、工作正常指示灯和预警指示灯;所述触摸显示屏用于数据和报警内容显示、参数设置等,所述usb接口用于导出数据,工作正常指示灯和预警指示灯分别用于指示发电机工作正常与否。通过触摸显示屏可以查看测量的实时数据,对测量参数进行设置,得到报警信息,以及箱体内的温湿度等。

进一步地,所述气路检测单元、电路数据分析单元和控制显示单元中的电连接通过接线端子部分进行,所述接线端子部分包括34个端子和1个usb接口,其中22个端子和usb接口用以装置内部连接,12个端子用以外部通信。通过接线端子进行内部和外部连接,使装置装配简单,检修方便,且外部整洁美观。

进一步地,气路检测单元中还包括红外检测模块,采用红外复合测量技术来检测发电机绝缘过热所产生的主要有机挥发物浓度,所述红外检测模块包括红外发射管、红外接收管和红外接收电路,所述红外发射管发射红外光,红外光穿过所述测量气室后被所述红外接收管接收,并经过所述红外接收电路放大、滤波后将信号传输给所述电路数据分析单元。待测气体经过亚微过滤器后进入测量气室,吸收特定波长的红外光,吸收强度与待测气体浓度满足朗伯-比尔吸收定律,通过分析吸收前后红外光强的变化获得待测气体的主要组分的浓度。此检测技术与激光散射技术均为基于光学原理的检测技术,两者在数据处理分析上具有较好的兼容性。

进一步地,上述基于激光散射原理的发电机绝缘过热监测装置还包括设备箱体,所述设备箱体包括箱体本体及设置在所述箱体本体上的前门,所述气路检测单元和电路数据分析单元设置于所述箱体本体内部,所述控制显示单元设置在所述前门上。

进一步地,所述设备箱体上设置有散热窗,散热窗上可装配散热风扇,用于箱体内散热。

进一步地,所述箱体本体与前门之间设置有密封条,用于前门与箱体本体间的密封,密封条设置在箱体本体上或前门上。

所述数据采集控制器进行数据分析和控制的方法如下:若检测到亚微粒子数量或有机挥发物粒子浓度高于预设阀值时,将控制启动亚微过滤器且自动延长测量采样周期,经过有效过滤后,各种指标数值仍超过预设阀值,装置将发出报警。

所述数据采集控制器对数据的分析处理是先得出光强随时间变化的曲线,再基于米氏(mie)理论的算法得出亚微粒子等效粒径及单位体积内不同粒径颗粒的数量。mie理论是描述散射现象的严格理论,通过光散射来测量粒径大小及分布,是激光散射探测方法的关键技术,主要适用于从亚微米到微米尺寸段的粒子。

利用激光散射原理,即令照射在测量气室中的悬浮亚微离子上的激光产生散射,同时在某一特定角度收集散射光,得到光强随时间变化的曲线。米氏散射是当大气中粒子的直径与辐射的波长相当时发生的散射,主要由大气中的微粒,如烟、尘埃、小水滴及气溶胶等引起。米氏散射又称粗粒散射,其粒子的尺寸接近或大于入射光波长,其散射光强在各方向是不对称的,顺入射光方向上的前向散射最强;粒子越大,前向散射越强。

上述基于激光散射原理的发电机绝缘过热监测装置的检测方法,包括下列步骤:

s1、检测气体通过所述气路检测单元的亚微过滤器进入到达测量气室进行检测;

s2、测量气室中的光强传感器将采集到的信息输送给所述电路数据分析单元,测得的数据通过其中数据采集控制器的微处理运算及相关的数学模型进行综合分析;

s3、若测量周期内所连续采样的各种指标数值达到预设的阀值,将启动亚微过滤器且自动延长测量采样周期;经过有效过滤后,各种指标数值仍超过预设阀值,将发出报警;在控制显示单元中的显示屏上自动显示报警的内容,同时触发报警灯和报警继电器输出。

本实用新型将激光散射探测技术用于发电机绝缘过热监测领域,相比于传统的以电流的变化反映过热产生的亚微粒子浓度的检测技术,可以更精确地测量发电机过热产生的亚微粒子含量及浓度,提高测量精度,并且通过微处理控制可输出正确报警,减少误报发生。

本实用新型结合行业领先的红外复合测量技术,通过激光散射技术和红外技术的联合检测得到绝缘材料受热分解出的亚微粒子含量和有机挥发物的粒子浓度,这与传统通过射线测量出电流的方法相比,优点在于能具体分析受热分解后气体中典型成分含量,结果更加准确,且均是基于光学原理的测量技术,有利于后续的数据处理和分析。当测量周期内所连续采样的各种指标数值达到预设的阀值,装置会启动亚微过滤器且自动延长测量采样周期,经过有效过滤后,各种指标数值仍超过预设阀值,装置才会发出报警,有效地改善了传统绝缘过热监测装置易误报警的问题。

附图说明

图1为本实用新型实施例1的装置结构示意图。

图2为本实用新型实施例1中各部分连接关系示意图。

图3为本实用新型实施例2中各部分连接关系示意图。

附图标记:1-箱体本体;2-前门;3-气路检测单元;4-电路数据分析单元;5-控制显示单元;6-接线端子部分;7-散热窗。

具体实施方式

实施例1

基于激光散射原理的发电机绝缘过热监测装置,如图1、图2所示,包括设备箱体,及集成在设备箱体内的气路检测单元3、电路数据分析单元4和控制显示单元5。设备箱体包括箱体本体1及扣合在箱体本体1上的前门2,箱体本体1上设置有散热窗7,散热窗7上装配有散热风扇,箱体本体与前门的扣合处还设置有密封条。

所述气路检测单元3设置于箱体本体1内的底板上,包括激光发生器、亚微过滤器、测量气室、光强传感器和电磁阀,发电机绝缘部分采集的待检空气经过所述亚微过滤器,过滤掉非亚微粒子后进入测量气室;所述激光发生器发射激光至所述测量气室,所述光强传感器用于接收并检测测量气室中的散射光强;所述气路检测单元3与所述电路数据分析单元4电连接,以将检测数据传输给电路数据分析单元4;所述电磁阀用于控制测量气室待测空气的进入。

所述电路数据分析单元4设置于箱体本体1的后板上,包括温湿度变送器、数据采集控制器、光电转换器和通信模块,所述光电转换器与所述气路检测单元电连接,将采集的光信号转换成电压信号,再通过a/d转换成数字信号;所述温湿度变送器与所述数据采集控制器相连,用于测量装置内的温度和湿度,并将数值传送给数据采集控制器;所述数据采集控制器与所述光电转换器电连接,以对数字信号进行分析处理,判断亚微粒子浓度是否高于预设阀值,并将分析结果传输给所述控制显示单元5,以及根据分析结果控制所述气路检测单元;所述通信模块与数据采集控制器电连接,将分析处理的数据信息传送给近端监控系统或远程监控系统,以及接收控制命令。

所述控制显示单元5设置于箱体本体1的前门2上,与所述数据采集控制器电连接,接收并显示分析处理结果。

所述控制显示单元5包括触摸显示屏、电源开关按钮、usb接口、工作正常指示灯和预警指示灯;所述触摸显示屏用于数据和报警内容显示、参数设置等,所述usb接口用于导出数据,工作正常指示灯和预警指示灯分别用于指示发电机工作正常与否。

所述气路检测单元3、电路数据分析单元4和控制显示单元5中的电连接通过接线端子部分6进行,所述接线端子部分6设置在箱体本体1的前板上。所述接线端子部分包括34个端子和1个usb接口,其中22个端子和usb接口用以装置内部连接,12个端子用以外部通信。通过接线端子进行内部和外部连接,使装置装配简单,检修方便,且外部整洁美观。

所述数据采集控制器进行数据分析和控制的方法如下:若检测到亚微粒子数量或有机挥发物粒子浓度高于预设阀值时,将控制启动亚微过滤器且自动延长测量采样周期,经过有效过滤后,各种指标数值仍超过预设阀值,装置将发出报警。

所述数据采集控制器对数据的分析处理是先得出光强随时间变化的曲线,再基于米氏mie理论的算法得出亚微粒子等效粒径及单位体积内不同粒径颗粒的数量。利用激光散射原理,即令照射在测量气室中的悬浮亚微离子上的激光产生散射,同时在某一特定角度收集散射光,得到光强随时间变化的曲线。米氏散射是当大气中粒子的直径与辐射的波长相当时发生的散射,主要由大气中的微粒,如烟、尘埃、小水滴及气溶胶等引起,散射光强几乎与波长无关。米氏散射又称粗粒散射,其粒子的尺寸接近或大于入射光波长,其散射光强在各方向是部队称的,顺入射光方向上的前向散射最强;粒子越大,前向散射越强。米氏散射理论主要适用于从亚微米到微米尺寸段的粒子。

上述基于激光散射原理的发电机绝缘过热监测装置的检测方法,包括下列步骤:

s1、检测气体通过所述气路检测单元3的亚微过滤器进入到达测量气室进行检测;

s2、测量气室中的光强传感器将采集到的信息输送给所述电路数据分析单元4,测得的数据通过其中数据采集控制器的微处理运算及相关的数学模型进行综合分析;

s3、若测量周期内所连续采样的各种指标数值达到预设的阀值,将启动亚微过滤器且自动延长测量采样周期;经过有效过滤后,各种指标数值仍超过预设阀值,将发出报警;在控制显示单元5中的显示屏上自动显示报警的内容,同时触发报警灯和报警继电器输出。

实施例2

其余与实施例1相同,如图3所示,除了气路检测单元3中还包括红外检测模块,采用红外复合测量技术来检测发电机绝缘过热所产生的主要有机挥发物浓度,所述红外检测模块包括红外发射管、红外接收管和红外接收电路,所述红外发射管发射红外光,红外光穿过所述测量气室后被所述红外接收管接收,并经过所述红外接收电路放大、滤波后将信号传输给所述电路数据分析单元4。待测气体经过亚微过滤器后进入测量气室,吸收特定波长的红外光,吸收强度与待测气体浓度满足朗伯-比尔吸收定律,通过分析吸收前后红外光强的变化获得待测气体的主要组分的浓度。此检测技术与激光散射技术均为基于光学原理的检测技术,两者在数据处理分析上具有较好的兼容性。

上列详细说明是针对本实用新型可行实施例的具体说明,该实施例并非用以限制本实用新型的专利范围,凡未脱离本实用新型所为的等效实施或变更,均应包含于本案的专利范围中。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1