一种D-葡萄糖的检测方法和应用与流程

文档序号:20834314发布日期:2020-05-22 16:40阅读:771来源:国知局
一种D-葡萄糖的检测方法和应用与流程
本发明属于手性信号检测
技术领域
,涉及一种d-葡萄糖的检测方法和应用。
背景技术
:手性识别对映异构体中的手性分子非常重要,特别是在立体选择性合成、生物传感、生物成像、医药领域等方面。因此,开发有效识别和定量对映纯分子的有效方法已成为现代纳米材料设计的主要动机。迄今为止,已经对表面修饰的金属纳米颗粒、半导体以及碳基纳米材料等进行了深入研究,以用于生物分子的手性识别。但是,当前的方法主要依靠通过表面修饰(例如化学键合和静电引力)来调节纳米材料表面和手性配体之间的相互作用。尽管已经取得了很大的进步,但是纳米材料的稳定性和手性识别的敏感性仍然不能令人满意。具有吸收波长可调的配体诱导的手性过渡金属氧化物因其广泛的潜在应用而引起了广泛的兴趣,包括生物传感、高光谱成像和光检测等。例如,kotov等公开的用手性配体(如脯氨酸,天冬氨酸和半胱氨酸)修饰的手性wo3-x和co3o4纳米颗粒表现出很强的光学手性,当存在顺磁性时甚至会增强。在这种情况下,这种手性是由金属-配体电荷转移(mlct)效应引起的,这是由于未配对电子从金属δ轨道过渡到基于配体的π和π*轨道而引起的,表明金属原子的价态对于此类原子非常重要。目前对于mlct手性起源的研究仍然很少。对于葡萄糖的检测一般基于紫外或荧光光谱分析,由于紫外、荧光的普适性,即大量物质存在紫外吸收或荧光发射光谱,检测特异性较低,无法直接识别手性葡萄糖(d-葡萄糖和l-葡萄糖)。cn110231486a公开了一种葡萄糖的检测方法,包括一种葡萄糖检测试剂盒,包括葡萄糖氧化酶溶液、碱性水溶液、mno2nps和鲁米诺工作液;一种葡萄糖的检测方法,它包括:1)待测样品与浓度为0.8~1.5mg/ml的葡萄糖氧化酶溶液混合,在30~37℃下反应6-10min;2)取100μl反应后溶液与100μlnaoh水溶液、10μl浓度为0.01-1.0mg/mlmno2nps和鲁米诺工作液混合;3)测量cl信号,根据回归方程计算葡萄糖浓度。该专利虽然可以检测葡萄糖的浓度,但是并无法区分手性葡萄糖的浓度。因此,需要提供一种可以识别检测手性葡萄糖的检测方法。技术实现要素:本发明的目的在于提供一种d-葡萄糖的检测方法和应用。本发明提供的检测方法利用手性半胱氨酸封端的二氧化钼与葡萄糖氧化酶(gox)配合使用,可以实现对d-葡萄糖的检测,对于其他非d-葡萄糖的糖分子样品无响应,具有高的选择性;同时检测灵敏度高且d-葡萄糖检测限(lod)较低。为达到此发明目的,本发明采用以下技术方案:第一方面,本发明提供了一种d-葡萄糖的检测方法,所述检测方法包括利用手性半胱氨酸封端的二氧化钼进行检测。在本发明中,由于过氧化氢可以使二氧化钼的化学价发生变化,进而使手性半胱氨酸封端的二氧化钼的手性信号发生变化,而葡萄糖氧化酶只能特异性的催化d-葡萄糖氧化生成过氧化氢,因此,利用手性半胱氨酸封端的二氧化钼可以特异性的识别检测d-葡萄糖。在本发明中,所述检测方法包括如下步骤:(1)绘制标准曲线;(2)将待测样品与手性半胱氨酸封端的二氧化钼混合,检测混合溶液的圆二色光谱;(3)通过步骤(2)中得到的圆二色光谱的cd峰绝对值,对应标准曲线,确定待测样品中d-葡萄糖的浓度。在本发明中,所述标准曲线以d-葡萄糖的浓度为横坐标,以手性半胱氨酸封端的二氧化钼的圆二色光谱的cd峰绝对值为纵坐标。由于手性半胱氨酸封端的二氧化钼的圆二色光谱的cd峰变化值与过氧化氢浓度变化值呈线性关系,而葡萄糖氧化酶对d-葡萄糖催化生成过氧化氢也呈线性关系,因此,标准曲线为一次线性关系,每一种d-葡萄糖的浓度均对应唯一的cd峰绝对值。即测试待测样品中的手性半胱氨酸封端的二氧化钼的圆二色光谱的cd峰值,即可得到待测样品中d-葡萄糖的浓度。优选地,所述标准曲线的绘制方法包括如下步骤:(a)分别配置不同浓度的d-葡萄糖溶液,所述d-葡萄糖溶液中包括葡萄糖氧化酶;(b)将d-葡萄糖溶液与手性半胱氨酸封端的二氧化钼混合,利用圆二色光谱检测手性半胱氨酸封端的二氧化钼的cd峰绝对值;(c)以d-葡萄糖的浓度为横坐标,以cd峰绝对值为纵坐标,绘制标准曲线。优选地,步骤(a)所述d-葡萄糖溶液中d-葡萄糖的浓度为0-100000μm,例如1μm、50μm、100μm、600μm、800μm、1000μm、5000μm、10000μm、50000μm、80000μm等,优选200-1000μm,例如400μm、600μm、800μm等。优选地,步骤(a)中至少配制3种以上(例如4种、5种、6种、7种、8种等)不同浓度的d-葡萄糖溶液,进一步优选5种以上。优选地,所述d-葡萄糖溶液中,所述葡萄糖氧化酶的浓度为50-400u/ml,例如100u/ml、150u/ml、200u/ml、250u/ml、300u/ml、350u/ml等,进一步优选100u/ml。优选地,步骤(b)中的混合溶液中,所述手性半胱氨酸封端的二氧化钼的浓度为0.1-100mmol/l,例如0.2mmol/l、0.5mmol/l、1mmol/l、2mmol/l、5mmol/l、10mmol/l、12mmol/l、20mmol/l、50mmol/l、80mmol/l、90mmol/l等,进一步优选10mmol/l。优选地,步骤(b)所述混合的时间为10-120min,例如20min、30min、50min、100min、110min等,进一步优选30min。优选地,所述手性半胱氨酸封端的二氧化钼包括l-半胱氨酸封端的二氧化钼和/或d-半胱氨酸封端的二氧化钼。优选地,所述手性半胱氨酸封端的二氧化钼的制备方法如下:利用手性半胱氨酸与三氧化钼反应,得到手性半胱氨酸封端的二氧化钼。优选地,所述手性半胱氨酸和所述三氧化钼的摩尔比为(50-200):3,例如60:3、70:3、80:3、85:3、90:3、95:3、100:3、120:3、150:3、180:3等,进一步优选100:3。优选地,所述反应包括超声5min后在避光反应下孵育1周。优选地,所述三氧化钼以溶液的形式参与反应。优选地,所述三氧化钼的制备方法包括如下步骤:将二硫化钼与过氧化氢混合反应,得到所述三氧化钼。优选地,所述手性半胱氨酸包括l-半胱氨酸和/或d-半胱氨酸;优选地,所述手性半胱氨酸为l-半胱氨酸,所述手性半胱氨酸封端的二氧化钼为l-半胱氨酸封端的二氧化钼(l-cys-moo2np)。优选地,所述手性半胱氨酸为d-半胱氨酸,所述手性半胱氨酸封端的二氧化钼为d-半胱氨酸封端的二氧化钼(d-cys-moo2)。为了保证cys-moo2np在溶液中分散良好,水溶液中的样品均通过离心3分钟进行纯化,以8000rpm的转速除去沉淀物(如有沉淀),并在使用前保持在20℃。第二方面,本发明提供了根据第一方面所述的d-葡萄糖的检测方法在生物体内活性氧自由基或多巴胺的检测中的应用。由于半胱氨酸封端的二氧化钼对外界环境中的氧化剂具有灵敏响应,因此在生物细胞内的新陈代谢中所产生的氧负离子、羟基自由基、多巴胺、次氯酸根、过氧化氢等氧化剂的传感与检测都是可以通过该方法实现。相对于现有技术,本发明具有以下有益效果:(1)在本发明中,由于过氧化氢可以使二氧化钼的化学价发生变化,进而使手性半胱氨酸封端的二氧化钼的手性信号发生变化,而葡萄糖氧化酶只能特异性的催化d-葡萄糖氧化生成过氧化氢,因此,利用手性半胱氨酸封端的二氧化钼可以特异性的识别检测d-葡萄糖。(2)由于手性半胱氨酸封端的二氧化钼的圆二色光谱的cd峰变化值与过氧化氢浓度变化值呈线性关系,而葡萄糖氧化酶对d-葡萄糖催化生成过氧化氢也呈线性关系,因此,d-葡萄糖的浓度与cd峰绝对值同样呈线性关系,即可以利用待测样品中的手性半胱氨酸封端的二氧化钼的圆二色光谱的cd峰值得到待测样品中d-葡萄糖的浓度。附图说明图1是制备例1合成的d-cys-moo2np的hrtem图。图2是基于hrtem的制备例1合成的d-cys-moo2np的粒径尺寸分布图。图3是制备例1的圆二色光谱图。图4是制备例1提供的样品的xps能谱图。图5为制备例1提供的样品的mo3d区域的高分辨率xps光谱及拟合结果图。图6是实施例1中拟合的标准曲线图。图7是实施例2中拟合的标准曲线图。图8是d-cys-moo2np与各种糖的选择性研究结果图。图9是性能测试中对于d-葡萄糖的检测限的拟合曲线图。具体实施方式下面通过具体实施方式来进一步说明本发明的技术方案。本领域技术人员应该明了,所述实施例仅仅是帮助理解本发明,不应视为对本发明的具体限制。制备例1一种d-半胱氨酸封端的二氧化钼纳米颗粒(d-cys-moo2np),制备方法如下:(1)moo3溶液的制备:剧烈搅拌下,将0.8g原始黑色mos2粉(5mmol)溶解在462.5ml去离子水中,之后,将37.5ml的30wt%的h2o2添加至所制备的溶液中;然后,黑色混合物变成透明的黄色,将溶液加热到80℃,除去过量的h2o2。待混合后的分散液变为透明,停止热处理。(2)制备d-cys-moo2np:将60mgd-半胱氨酸(d-cys)添加到1.5ml(10mm)步骤(1)得到的moo3溶液,将混合物超声处理5分钟,然后在黑暗中孵育1周,得到d-cys-moo2np。制备例2一种l-半胱氨酸封端的二氧化钼纳米颗粒(l-cys-moo2np),制备方法参考制备例1,区别在于将d-cys替换为l-cys。性能测试1对制备例1-2提供的手性半胱氨酸封端的二氧化钼纳米颗粒进行性能测试,方法如下:(1)粒径分布:利用高分辨透射电子显微镜(hrtem)观察其粒径大小;图1为制备例1合成的d-cys-moo2np的hrtem图,图2是基于hrtem的制备例1合成的d-cys-moo2np的粒径尺寸分布图,其观察并统计了100个单个纳米颗粒,由图1和图2可知,其手性半胱氨酸封端的二氧化钼纳米颗粒的粒径大小在24.9±0.8mm范围内。(2)圆二色光谱测试:使用jascoj-1500圆二色谱仪器进行圆二色光谱测试;图3为制备例1的圆二色光谱图,由图可知,可以观测到很强的cd信号。分别记录了在376nm和580nm处的两个cd谱带,以下记作峰(i)和峰(ii),配体的手性对映异构体显示相反的线形,而纯l-或d-半胱氨酸具有cd谱带在220nm处,表明本发明制备得到了手性半胱氨酸封端的二氧化钼纳米颗粒。(3)样品元素分析:利用x射线光电子能谱(xps)进行分析;图4为制备例1提供的样品的xps能谱图,图5为mo3d区域的高分辨率xps光谱及拟合结果图,图4中证实了半胱氨酸以及钼和氧的存在,图5中对mo3d的高分辨率xps光谱进行拟合时,mo3d5/2-mo3d3/2双峰的拆分能量约为3.15ev,固定面积比为3:2,拟合需要在钼的3d5/2峰上使用两个位置,一个用于mo(iv),一个用于mo(vi),分别在229.2ev和232.5ev位置,这与文献报道吻合;mo(movi)的这种较高氧化态的贡献(<5%)可能是由于moo2纳米颗粒的部分表面氧化所致。根据xps结果得出的moiv比率约为94.8%。既证明了二氧化钼的存在;226.9ev处的肩峰可能是由于嫁接在np上的半胱氨酸配体的s2s贡献,这也可以通过161.8ev的s2p峰证实。实施例1一种d-葡萄糖的检测方法如下:(1)绘制标准曲线:a.制备0.5ml的gox和d-葡萄糖的水溶液,其中包含80μl的gox(5u/μl)和不同浓度的d-葡萄糖,酶促反应系统孵化30min;其中,d-葡萄糖浓度分别为200μm、400μm、600μm、800μm和1000μm。b.将1.5mld-cys-moo2溶液(400μl,10mm)添加到上述溶液中,将反应体系连续搅拌30min,利用圆二色光谱检测手性半胱氨酸封端的二氧化钼的cd峰绝对值。c.以d-葡萄糖的浓度为横坐标,以cd峰绝对值为纵坐标,绘制标准曲线。(2)将待测样品、d-cys-moo2和溶剂混合,检测混合溶液的圆二色光谱;(3)通过步骤(2)中得到的圆二色光谱的cd峰绝对值,对应标准曲线,确定待测样品中d-葡萄糖的浓度。图6为实施例1中拟合的标准曲线图,由图可知,相关系数r2=0.988>0.98,表明线性关系良好。实施例2与实施例1的区别在于,将d-cys-moo2替换为l-cys-moo2。图7为实施例2中得到的标准曲线,由图可知,相关系数r2=0.997>0.99,表明线性关系良好。性能测试2对实施例提供的检测方法进行验证,方法如下:(1)准确性验证:制备d-葡萄糖的待测液,其中包含80μl的gox(5u/μl)和不同浓度的d-葡萄糖,酶促反应系统孵化30min;其中,d-葡萄糖浓度分别为385μm、560μm和937μm,然后利用实施例提供的检测方法进行检测,检测结果见表1:表1检测方法实测值(μm)制备值(μm)误差/%实施例1400.43854.0实施例1546.95602.3实施例1925.89371.2实施例2406.93855.7实施例2539.35603.7实施例2932.39370.5由实施例和性能测试可知,本发明提供的检测方法可以准确的进行d-葡萄糖的检测,检测准确度较高,误差较小,误差在6%以下。(2)选择性研究:利用该体系进行了不同糖的检测,果糖、麦芽糖、木糖、乳糖、蔗糖、l-葡萄糖和d-葡萄糖,研究表明只有d-葡萄糖有明显的响应,证明对d-葡萄糖的特异性识别;图8为d-cys-moo2np对各种糖的选择性研究结果图。由图8可知,该体系内只对d-葡萄糖有响应,对l-葡萄糖及其他糖类均无响应。(3)检测限(lod):分别配制d-葡萄糖浓度为0μm、1μm、3μm、5μm、10μm、30μm和50μm的混合溶液,其中含有80μl的gox(5u/μl),参照绘制标准曲线的方法进行测试;图9为检测限的拟合曲线图,由图可知,拟合曲线y=a+bx,a=0.455,b=0.218,r2=0.992;计算得到检测限(lod)为0.446μm。由实施例和性能测试可知,本发明提供的检测方法可以实现对d-葡萄糖的特异性检测,检测准确度和灵敏度高,同时,对d-葡萄糖的检测限较低,在0.446μm以下。申请人声明,本发明通过上述实施例来说明本发明的d-葡萄糖的检测方法和应用,但本发明并不局限于上述工艺步骤,即不意味着本发明必须依赖上述工艺步骤才能实施。所属
技术领域
的技术人员应该明了,对本发明的任何改进,对本发明所选用原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1