使用周期性旋转角度传感器信号的操作的制作方法

文档序号:24399367发布日期:2021-03-26 13:03阅读:54来源:国知局
使用周期性旋转角度传感器信号的操作的制作方法

1.本教导涉及使用周期性传感器信号执行的操作,周期性传感器信号表示由旋转角度传感器检测的变化的旋转角度,并且更具体地,涉及基于这样的周期性信号的输出信号的生成和/或涉及确定对旋转角度传感器的偏移寄存器的更新是否要被执行。


背景技术:

2.通常,旋转角度传感器可以被用于检测物体的旋转角度。例如,磁场传感器可以被用于检测由旋转物体生成的变化的磁场。旋转物体可以是磁场源(诸如,磁极转子、或者可以是铁磁材料的齿轮),磁场源相对于磁体被布置,以便影响由磁体生成的磁场。磁场传感器的输出可以是指示旋转物体的旋转的周期性传感器信号。旋转物体可以被附接到车辆的车轮,从而可以检测车轮的旋转,并且使得磁场传感器的输出可以指示车轮速度。这样的旋转角度传感器可以被视为表示车轮速度传感器。
3.旋转角度传感器可以根据不同信号协议生成输出信号。在所谓的ak协议中,在周期性传感器信号的每个零交叉处生成脉冲图案。在所谓的高分辨率ak协议中,每当周期性传感器信号通过多个阈值中的一个阈值时,都会生成一个脉冲图案。脉冲图案可以包括幅度较大的第一脉冲以及多个信息位,多个信息位代表幅度较小的脉冲。在所谓的pwm协议(pwm=脉冲宽度调制)中,每当周期性传感器信号通过一个或多个阈值时,都可能生成不同宽度的脉冲。与所使用的协议无关,脉冲图案可以包括关于检测的旋转的方向的信息。


技术实现要素:

4.期望使旋转角度传感器相对于振动更稳健。
5.本公开的示例提供用于基于周期性传感器信号生成输出信号的装置,周期性传感器信号表示由旋转角度传感器检测的变化的旋转角度,该装置被配置为:
6.将周期性传感器信号与多个阈值进行比较,以检测周期性传感器信号的阈值交叉;
7.如果自紧接在前的阈值交叉过后旋转方向没有改变,则在阈值交叉时生成包括脉冲图案的输出信号;以及
8.如果自紧接在前的阈值交叉过后旋转方向已经改变,则在阈值交叉时生成不包括脉冲图案的输出信号。
9.本公开的示例提供用于确定旋转角度传感器的偏移寄存器的更新是否要被执行的装置,该装置被配置为:
10.将旋转角度传感器的周期性传感器信号与多个阈值进行比较,以检测周期性传感器信号的阈值交叉;
11.计算旋转方向不变时发生的连续的阈值交叉的数目;
12.如果在旋转方向没有改变的情况下发生的连续的阈值交叉的数目小于阈值的数目,则决定偏移寄存器的更新不被执行;并且
13.如果在旋转方向没有改变的情况下发生的连续的阈值交叉的数目等于或高于阈值的数目,则决定偏移寄存器的更新要被执行。
14.本公开的示例允许旋转角度传感器的输出信号对于小于特定振幅的振幅振动是稳健的。更具体地,在示例中,如果旋转不引起周期性信号沿相同方向通过一个以上的阈值,则在输出信号中防止脉冲图案(所谓的协议)。在示例中,仅在旋转方向没有改变的情况下发生的连续的阈值交叉的数目等于或高于阈值(这些阈值与周期性信号进行比较)的数目的情况下,才可以通过执行偏移寄存器的更新来使旋转角度传感器的偏移校正对于振动具有稳健性。换句话说,如果没有在一个方向上的完整的磁性周期的移动,则不执行偏移寄存器的更新。
附图说明
15.将使用附图描述本公开的示例,其中:
16.图1示出了根据本公开的用于生成输出信号的装置的示例的示意图;
17.图2示出了用于确定偏移寄存器的更新是否要被执行的装置的示例的示意图;
18.图3示出了旋转角度传感器设备的示例的示意图;
19.图4示出了作为车轮速度传感器的旋转角度传感器设备的示例的示意图;
20.图5a)示出了周期性传感器信号的示例;
21.图5b)示出了使用图5a中示出的周期性传感器信号计算的另一个周期性传感器信号的示例;
22.图6示出了表示第一周期性正弦信号、第二周期性正弦信号、周期性传感器信号、阈值交叉和包括脉冲图案的输出信号的曲线图;
23.图7至图12示出了表示用于解释本公开的示例的仿真结果的曲线图;
24.图13示出了用于生成输出信号的方法的示例的流程图;以及
25.图14示出了确定旋转角度传感器的偏移寄存器的更新是否要被执行的方法的示例的流程图。
具体实施方式
26.在下文中,将使用附图详细描述本公开的示例。要指出的是,相同的元件或具有相同功能的元件具有相同或相似的附图标记,并且通常省略对具有相同或相似的附图标记的元件的重复描述。因此,为具有相同或相似附图标记的元件所提供的描述可以相互交换。在下面的描述中,阐述了多个细节以提供对本公开的示例的更彻底的解释。然而,对于本领域技术人员而言显而易见的是,可以在没有这些具体细节的情况下实践其它示例。在其它实例中,以框图的形式而不是详细地示出了公知的结构和设备,以避免使本文所述的示例不清楚。另外,除非另外特别指出,否则本文描述的不同示例的特征可以彼此组合。
27.图1示出了根据本公开的用于基于周期性传感器信号14生成输出信号12的装置10的示例。周期性传感器信号14表示由旋转角度传感器16(诸如,磁性旋转角度传感器)检测的变化的旋转角度。旋转角度传感器16以虚线示出,因为它不必是装置的一部分。装置10将周期性传感器信号14与多个阈值进行比较以检测周期性传感器信号14的阈值交叉。如果自紧接在前的阈值交叉过后旋转方向没有改变,则装置10在阈值交叉时在输出信号14中生成
脉冲图案。如果自紧接在前的阈值交叉过后旋转方向已经改变,则装置10在阈值交叉时在输出信号中不生成脉冲图案。术语紧接在前的阈值交叉是指在时间上最接近所关注的阈值交叉并且发生在所关注的阈值交叉之前的阈值交叉。装置10可以将输出信号12输出到外部设备(诸如,电子控制单元,ecu)。
28.图2示出了用于确定旋转角度传感器16的偏置寄存器22的更新是否要被执行的装置20的示例。装置10将旋转角度传感器16的周期性传感器信号14与多个阈值进行比较,以检测周期性传感器信号的阈值交叉并且计算在旋转方向不变的情况下发生的连续的阈值交叉的数目。如果在旋转方向没有改变的情况下发生的连续的阈值交叉的数目小于阈值的数目,则装置20确定偏移寄存器22的更新不被执行。如果在旋转方向没有改变的情况下发生的连续的阈值交叉的数目等于或高于阈值的数目,则装置20确定偏移寄存器22的更新要被执行。
29.在示例中,装置10和装置20的功能可以被组合在单个装置中。
30.图3示出了根据本公开的旋转角度传感器设备30的示例。旋转角度传感器设备30包括旋转角度传感器16(诸如,磁性传感器),旋转角度传感器16被配置为提供周期性传感器信号14。旋转角度传感器16可以包括偏移寄存器22。旋转角度传感器设备30包括处理单元32,处理单元32可以实现装置10的功能、装置20的功能或装置10和20两者的功能。处理单元32可以接收周期性传感器信号14,并且可以经由接口34输出输出信号12。接口34可以被耦合到ecu。处理单元32还可以被配置为:如果决定更新要被执行,则更新偏移寄存器22,并且如果决定更新不被执行,则不更新偏移寄存器。接口34可以是任何合适的接口,诸如,被配置用于有线通信的接口或被配置用于无线通信的接口。
31.图4示出了车轮速度传感器的示例。车轮速度传感器包括旋转角度传感器设备,诸如以上参照图3说明的旋转角度传感器设备30。车轮速度传感器附加地包括磁性编码器40。磁性编码器40可以包括磁极转子,磁极转子包括如图4所示的多对北磁极和南磁极。在其它示例中,磁性编码器可以包括相对于磁体布置的铁磁材料的齿轮,以便影响由磁体生成的磁场。磁性编码器40可以被固定到轴42,并且可以与轴42一起绕轴42的轴线44旋转。轴42的旋转可以对应于车辆的车轮的旋转,使得由旋转角度传感器16检测的旋转角度对应于车轮的旋转或至少取决于车轮的旋转。因此,可以使用旋转角度传感器16来检测车轮的车轮速度。
32.旋转角度传感器16相对于磁性编码器40被定位,以便当磁性编码器40绕轴线44旋转时生成周期性传感器信号14。在示例中,旋转角度传感器16是磁场传感器,磁场传感器包括多个磁性传感器元件以及第二磁性传感器元件,并且可以被配置为响应于由磁性编码器40施加的磁场输出第一正弦传感器信号,并且第二磁性传感器元件被配置为响应于由磁性编码器40施加的磁场输出第二正弦传感器信号。旋转角度传感器16可以被配置为使用cordic算法、反正切函数或atan2函数中的一个函数计算来自第一正弦传感器信号和第二正弦传感器信号的周期性传感器信号。
33.在示例中,旋转角度传感器16可以包括一个或多个amr传感器元件(amr=各向异性磁电阻)、gmr传感器元件(gmr=巨磁电阻)、tmr传感器元件(tmr=面板磁电阻)或霍尔传感器元件。
34.在示例中,旋转角度传感器16可以包括并排布置的第一传感器元件、第二传感器
元件和第三传感器元件,其中第三传感器元件被同轴地布置在第一传感器元件与第二传感器元件之间。基于来自第一传感器元件和第二传感器元件的检测信号之间的差来生成第一正弦信号,并且基于来自第一传感器元件和第二传感器元件的检测信号的总和与来自第三元件的检测信号之间的差来生成第二正弦信号。这样的传感器元件可以在移动方向上一个接一个地布置,使得在第一正弦信号与第二正弦信号之间生成90
°
的相位差。在示例中,第一正弦信号和第二正弦信号中的一个正弦信号可以被用作周期性传感器信号。在示例中,将第一正弦信号与第二正弦信号进行组合以获得表示周期性传感器信号的锯齿形信号。
35.图5a)示出了正弦传感器信号s1的示例,其可以是上述第一正弦传感器信号与第二正弦传感器信号中的一个正弦传感器信号。该信号有时被称为速度信号。在图5a)中未示出相对于传感器信号s1相移90
°
的第二正弦传感器信号s2。图5b)示出了指示变化的旋转角度cp的周期性传感器信号p。可以基于第一正弦传感器信号s1和第二正弦传感器信号s2的反正切函数,根据以下公式计算表示磁性信号的瞬时相位的角度cp:cp=arctan(s1/s2)。在示例中,可以使用cordic算法、反正切函数或atan2函数来计算cp。
36.将周期性传感器信号p与多个阈值(在图5所示的示例中,六个阈值t1至t6)进行比较。阈值t1对应于
±
180
°
的角度,阈值t2对应于120
°
的角度,阈值t3对应于60
°
的角度,阈值t4对应于0
°
的角度,阈值t5对应于-60
°
的角度,并且阈值t6对应于-120
°
的角度。在其它示例中,可以使用其它数目的阈值,诸如八个阈值,每45
°
对应一个阈值。通过将周期性传感器信号p与多个阈值进行比较,可以检测阈值交叉。阈值交叉对应于图5a)所示的点1至6。
37.图6示出了正弦传感器信号81和82以及由正弦传感器信号81和82计算的周期性传感器信号p。在图6所示的示例中,周期性传感器信号p与八个阈值进行比较,每45
°
对应一个阈值。图6中的曲线图50示出了阈值交叉。每次周期性信号p超过阈值中的一个阈值,即45
°
、90
°
、135
°
、180
°
、225
°
、270
°
、315
°
和360
°
/0
°
,阈值交叉tc由图50中的脉冲指示。因此,在每个磁性周期中会发生八个阈值交叉。
38.如图5和图6所示,根据本公开的示例,阈值的数目被均匀地分布在周期性传感器信号的值的整个范围内。此外,在本公开的示例中,阈值的数目被分布在周期性传感器信号的值的整个范围内,其中在相同方向上的连续的阈值交叉的数目指示周期性信号在一个方向上的整个周期内的移动,在相同方向上的连续的阈值交叉的数目等于或高于阈值的数目。在本公开的示例中,阈值的数目可以是4、6或8。
39.如图6所示,可以在每个阈值交叉tc处在输出信号60中生成一个脉冲图案pp或协议。这表示高分辨率模式,其中当周期性信号p超过多于一个阈值(诸如,如图5b)所示的六个阈值或如图6所示的八个阈值)时,在输出信号中生成脉冲图案pp。根据图6,在每个磁性周期中生成八个输出协议。在车轮速度传感器的情况下,可以在低速下使用这种高分辨率模式,而在高速下可以使用低分辨率模式,其中当周期性传感器信号超过阈值中的特定的一个阈值(诸如0
°
)时在输出信号中生成脉冲图案,而当周期性传感器信号超过不同于特定阈值的其它阈值中的一个阈值时在输出信号中不生成脉冲图案。高分辨率模式可以被用在自动驾驶中和支持电动发动机控制回路中。
40.如图6所示,每个脉冲模式可以包括具有第一幅度的第一脉冲以及有时被称为ak位的一些位。位可以具有低于第一幅度的第二幅度。这些位被编码以将信息提供给输出信号的接收器。在示例中,位中的一个位指示传感器在高分辨率模式中并且位中的一个位指
示旋转的方向。位中的其它位可以指示特定阈值,该阈值被超过,因此导致在输出信号中生成脉冲图案。位中的另一个位可以指示旋转角度传感器是处于校准模式还是未校准模式。
41.旋转角度传感器可以被配置为使用第一正弦信号和第二正弦信号来检测旋转方向。在示例中,旋转角度传感器被配置为基于两个连续的阈值交叉之间的角度<p的梯度或基于接通与第一阈值交叉之间的角度<p的梯度来检测旋转方向。因此,示例允许旋转方向的快速计算。在其它示例中,旋转角度传感器可以以不同的方式检测旋转方向。
42.已经认识到,在高分辨率模式下,振动可能导致周期性传感器信号中的变化,这可能导致周期性传感器信号的阈值交叉。本公开的示例涉及允许旋转角度传感器的输出信号对于振动稳健的装置和方法。示例涉及车轮速度感测应用,尤其涉及abs(防抱死系统)车轮速度感测应用。本公开的示例可以独立于车轮的振动运动而将正确的信息提供给电子控制单元ecu。本公开的示例防止传递错误的信息并且防止丢失正确的偏移补偿(校准)。本公开的示例允许产生正确数目的ak协议,即输出信号中的脉冲图案以及正确的ak位值。本公开的示例涉及实现根据本公开的教导的车轮速度传感器。
43.通常,在abs应用中,振动并不像在其它速度感测应用(诸如,变速器或发动机应用)中那样普遍。但是,在某些情况下,车轮可能会经历一些小的向前/向后运动,诸如猛关车门、人们进出汽车和在交通灯处停顿。例如,由于发动机自身振动的增加,三缸发动机汽车可能对此类问题非常敏感。本公开的示例提供了应对可能由于这种振动而发生的不正确信息和不正确偏移校正的方法。
44.本公开的示例基于以下思想:不在相同的角度阈值上切换两次,即,不在相同的角度阈值上在输出信号中两次生成脉冲图案。为此,仅在自紧接在前的阈值交叉过后旋转方向未改变时,才在输出信号中生成脉冲图案。因此,最多上至相邻阈值之间的角度差的振动不会在输出信号中产生脉冲图案。因此,存在对相邻阈值之间的角度差的正/负的振动抑制。在图6所示的八个阈值示例中,存在
±
45
°
(磁性度)的振动抑制。对于大于相邻阈值之间的角度差的振动,诸如
±
45
°
,不会抑制输出信号中的脉冲图案,并且会(诸如,以ak位的形式)在输出信号中输出正确的脉冲数目和正确的信息。因此,ecu可以了解确切的车轮移动。在汽车的移动检测的情况下,在旋转方向改变后,除第一个脉冲图案外,还抑制其它脉冲图案(协议)将导致移动检测中的延迟。在诸如自主停车用例的应用中,应避免这种延迟。
45.因此,在本公开的示例中,本文所公开的装置被配置为将周期性传感器信号与多个阈值进行比较,以检测周期性传感器信号的阈值交叉,以检测自紧接在前的阈值交叉过后是否发生了旋转方向的改变,并且仅在自紧接在前的阈值交叉过后旋转方向未发生改变时,才在传感器交叉时生成脉冲图案。
46.本公开的进一步的方面基于以下思想:除非由周期性传感器信号指示的角度跨越周期性传感器信号在相同方向上进行比较的阈值的总数,否则不更新用于传感器校准和/或残余偏移补偿的偏移寄存器。在图6所示的示例中,使用了八个阈值,因此,除非角度在相同方向上跨越八个阈值,否则将不更新偏移寄存器。发生如此多次连续的阈值交叉这一事实意味着,在一个方向上存在一个完整的磁性周期的移动,因此传感器已经看到了磁场的实际最大值和最小值。换句话说,考虑了周期性传感器信号的一个完整周期。如果没有发生如此多次连续的阈值交叉,则车轮正在向前和向后移动,并且传感器将其识别为大振动,从而禁止了偏移更新。
47.因此,在本公开的示例中,本文公开的装置被配置为检测阈值交叉,以检测在所检测到的阈值交叉中的每两个阈值交叉之间是否发生旋转方向的改变,以计算在旋转方向没有改变的情况下发生的连续的阈值交叉的数目,并且仅在旋转方向没有改变的情况下连续的阈值交叉的数目至少指示整个磁性周期的移动的情况下才执行偏移寄存器的更新。完整的磁性周期意味着,在磁极转子或齿的情况下,一对磁北极和磁南极已经通过传感器,而在齿轮的情况下,齿隙已经通过传感器。
48.使用本公开的教导,传感器不仅在启动阶段而且在校准模式下能够避免错误的偏移更新。在示例中,传感器处于能够通过跟踪旋转角度而立即检测方向变化的位置,而无需等待半个周期或整个周期。因此,在示例中,传感器能够通过禁止偏移/幅度更新来立即做出反应。
49.在校准模式下,当最后方向的数目的历史记录不完全一致时可以执行禁止。该数目对应于与周期性传感器信号进行比较的阈值的数目。如果历史记录中的至少一个值与其它值不同,则历史记录不一致。因此,即使在单次改变方向的情况下,也可以设置标志,并禁止任何错误的偏移更新,直到检测到具有确定方向的新周期为止。为了检测历史记录是否一致,计算了在旋转方向没有改变的情况下发生的阈值交叉的数目。如果检测到方向的改变,则重新启动对阈值交叉的数目进行计数。
50.在未校准模式下,在启动时,如果周期性信号未在相同的方向上跨越阈值的数目,则偏移不会被更新。因此,在启动时的任何振动都将被偏移控制回路忽略,并且仅在传感器已经看到一个完整的磁性周期(即,主要检查器信号以相同方向通过了所需数目的阈值)之后,偏移才会被标记为有效。由于角度始终是单调的,因此没有卡住状态的风险。如果在一个方向上已经检测到一部分周期的移动,但随后出现振动,则传感器将识别该周期并且将重置检测到的跨越的阈值的计数,以便仅在满足条件后才执行或恢复任何更新。
51.因此,根据本公开的示例,可以以可靠且正确的方式执行偏移寄存器的更新。本公开的示例基于以下假设:角度(即,周期性传感器信号)始终是单调的,使得可以相信一个完整磁性周期之上的方向。因此,本公开的示例被应用于在一个磁性周期之上单调的周期性传感器信号。
52.图7至图12示出了如上参考图6所述的使用八个阈值的仿真结果。振动的起始相为22.5
°
。该图示出了第一仿真信号81’和第二仿真信号82’,仿真信号包括周期性部分和振动部分、基于81’和82’计算所得的传感器信号p’、以及所得的输出信号12。在图7至图12中,如果0
°
的阈值被跨越,则输出信号12中的相应的脉冲图案包括具有第一幅度的第一脉冲,并且如果不同于0
°
的阈值被跨越,则输出信号12中的相应的脉冲图案包括具有小于第一幅度的第二幅度的第一脉冲。因此,当与图6中的脉冲图案相比时,图7至图12中的脉冲图案的第一脉冲包括附加的信息。另外,图7至图12示出了指示旋转方向的信号70和指示旋转方向是否发生变化的信号72。
53.图7示出了在校准模式下的仿真结果,其中振动幅度为15
°
。如图7所示,在振动阶段vib期间,在输出信号12中没有生成脉冲图案。原因是在振动阶段期间没有发生阈值交叉,或者在振动阶段vib中的每个阈值交叉之间发生旋转方向的变化。
54.图8示出了在校准模式下的仿真结果,其中振动幅度为60
°
。因此,振动大于
±
45
°
。如图8中所示,如果自从先前阈值交叉之后发生了旋转方向的变化,则在信号p’中的阈值交
叉时,在输出信号12中不生成脉冲图案。根据图8,由于振动幅度为60
°
,这是在每个第二阈值交叉处。最后,图9显示了校准模式下的仿真结果,其中振动幅度为240
°

55.图10至图12示出了在未校准模式下的仿真结果。在图10的模拟中,振动幅度为15
°
,在图11的模拟中,振动幅度为60
°
,并且在图12的模拟中,振动幅度为240
°
。除了上面说明的信号外,图10至图12还示出了指示传感器是否被校准的校准信号74。在所示的示例中,信号74的高电平指示传感器未被校准,并且信号74的低电平指示传感器被校准。传感器被校准的时间在图7至图12中被指示为tc。从图10和图11清楚可见,例如,仅在信号p’指示经过了完整的磁性周期之后才完成校准。这是由于以下事实:根据本公开的方面,仅在旋转方向没有改变的情况下发生连续的阈值交叉的数目等于或高于阈值的数目的情况下,才执行偏移寄存器的更新。
56.偏移寄存器可以存储校正值以补偿偏移,诸如dc偏移和/或从其导出周期性传感器信号的传感器信号的幅度差。可以在传感器的启动时的校准期间,即在传感器处于未校准模式时,确定校正值。在确定校正值之后,将其写入偏移寄存器。因此,偏移寄存器最初被更新,并且传感器处于校准模式。校正值随后被用于计算周期性传感器信号。可以在传感器以校准模式操作期间确定更新的校正值,并且可以基于更新的校正值来更新偏移寄存器。可以以连续或周期性的方式确定这种更新的校正值。根据本公开,仅在传感器已经看到如上所述的完整的磁性周期的情况下才更新偏移寄存器。
57.如图13所示,本公开的示例提供了基于周期性传感器信号生成输出信号的方法,周期性传感器信号表示由旋转角度传感器检测的变化的旋转角度。在100处,将周期性传感器信号与多个阈值进行比较以检测周期性传感器信号的阈值交叉。在102处,如果自紧接在前的阈值交叉过后旋转方向没有改变,则在阈值交叉时生成包括脉冲图案的输出信号。在104处,如果自紧接在前的阈值交叉过后旋转方向已经改变,则在阈值交叉时生成不包括脉冲图案的输出信号。
58.本公开的示例提供确定旋转角度传感器的偏移寄存器的更新是否要被执行的方法。在110处,将旋转角度传感器的周期性传感器信号与多个阈值进行比较,以检测周期性传感器信号的阈值交叉。在112处,对在旋转方向没有改变的情况下发生的多个连续的阈值交叉进行计数。在114处,如果在旋转方向没有改变的情况下发生的连续的阈值交叉的数目小于阈值的数目,则决定偏移寄存器的更新不被执行。在116处,如果在旋转方向没有改变的情况下发生的连续的阈值交叉的数目等于或高于阈值的数目,则决定偏移寄存器的更新要被执行。
59.本公开的示例提供了车轮速度传感器,车轮速度传感器被配置为将输出信号提供给外部设备(诸如,车辆的电子控制单元,ecu)。在操作中,传感器可以被连接到ecu,ecu从传感器的输出信号计算目标车轮的速度、旋转方向和移动。传感器可以被配置为提供以所谓的ak协议编码的输出信号。外部设备可以将来自传感器的信息用于各种应用,诸如abs、eps(电子助力转向)、tsc(牵引力控制系统)、自动停车、坡道保持器、电动发动机控制和其它应用。
60.本公开的示例提供了非常稳健抗振动的算法,并且可以以低速用于abs应用中。即使当车轮振动时,本公开也允许控制单元具有关于车轮移动的正确信息。在本公开的示例中,该算法包括以下方面。执行磁性信号的瞬时相位的计算。对于高分辨率应用和快速方向
检测,可能已经实现了这种计算。执行角度阈值交叉识别,这可能已经实现以用于高分辨率应用和快速方向检测。一些数字逻辑被用于在车轮振动的情况下禁用偏移更新(直到识别到相同方向上的特定数目的连续的阈值交叉),并且在实际移动的情况下重新启用偏移更新。如果自紧接在前的阈值交叉过后旋转方向已经发生改变,则使用一些数字逻辑来禁用在输出信号中的脉冲图案的生成。
61.利用不同参数对这种算法或方法执行了仿真:
62.未校准模式/校准模式
63.起始相位:22.5
°
、67.5
°
、112.5
°
、157.5
°
64.振动幅度:
±
15
°

±
30
°

±
60
°

±
120
°

±
240
°
65.部分仿真结果如图7至图12所示。
66.因此,本公开的装置和方法提供了用于旋转角度传感器的振动稳健性特征,特别是用于车轮速度传感器的振动稳健性特征。因此,本公开的示例可以允许用于自动驾驶和停车应用的车轮速度传感器的改进的性能。
67.可以使用不限于任何特定硬件和机器可读指令配置的离散模块和/或数据处理部件以硬件来实现本文描述的装置和处理单元中的每个装置和处理单元。可以使用模拟和/或数字硬件部件(诸如,专用集成电路、现场可编程门阵列、cmos电路、数字信号处理器、微处理器和微控制器)来实现装置和处理单元。可以在包括硬件部件(诸如,处理器和存储设备、以及机器可读指令)的任何计算或数据处理环境中实现装置和处理单元。机器可读指令可以被存储在任何适当的存储器中,并且可以由处理器执行以便实现本文描述的功能和过程。在一些实现中,功能被组合成单个部件。在其它实现中,相应的功能可以由多个部件的相应的集合来执行。存储器设备可以存储过程指令、机器可读指令,用于提供功能和实现本文描述的方法。存储器设备可以包括有形的机器可读存储介质。适用于体现这些指令和数据的存储器设备包括所有形式的计算机可读存储器,例如包括:半导体存储器设备(诸如eprom、eeprom和闪存设备)、磁盘(诸如内部硬盘和可移动硬盘)、磁光盘和rom/ram设备。因此,在示例中,可以以硬件或以硬件与机器可读指令的组合来实现装置和处理单元,以实现本文描述的一些功能或全部功能。
68.本公开的示例涉及非暂态机器可读存储介质,非暂态机器可读存储介质编码具有可由处理器执行的指令(诸如,计算设备的处理资源),以执行本文描述的方法。
69.本文描述的示例可以以硬件、机器可读指令或者硬件和机器可读指令的组合的形式来实现。任何这样的机器可读指令都可以以易失性或非易失性存储的形式存储,诸如,rom之类的存储设备(不论其是否可擦除或可重写),或者以存储器的形式存储,诸如,ram、存储器芯片、设备或集成电路或者以光学或磁性可读介质存储,诸如cd、dvd、磁盘或磁带。存储设备和存储介质是机器可读存储的示例,其适合于存储当被执行时实现本文描述的示例的一个或多个程序。
70.尽管已经在装置的上下文中将一些方面描述为特征,但是显然,这种描述也可以被视为方法的对应的特征的描述。尽管已经在方法的上下文中将一些方面描述为特征,但是很清楚,这样的描述也可以被认为是关于装置的功能的对应的特征的描述。
71.在前面的详细描述中,可以看出,为了简化本公开,在示例中将各种特征组合在一起。这种公开的方法不应被解释为反映了这样一种意图,即所要求保护的示例需要比每个
权利要求中明确记载的特征更多的特征。相反,如所附权利要求所反映的,发明的主题可能少于单个公开示例的所有特征。因此,所附权利要求由此被结合到详细描述中,其中每个权利要求可以作为单独的示例而独立存在。尽管每个权利要求可以单独作为一个单独的示例,但是应注意,尽管从属权利要求在权利要求中可以指与一个或多个其它权利要求的特定组合,但是其它示例也可以包括从属权利要求与每个其它从属权利要求的主题的组合,或者每个特征与其它从属权利要求或独立权利要求的组合。除非指出不旨在特定的组合,否则本文提出了这样的组合。此外,意图是将权利要求的特征也包括到任何其它独立权利要求中,即使该权利要求没有直接地依赖于独立权利要求。
72.上面描述的示例仅是本公开的原理的示例。应当理解,本文所述的布置和细节的修改和变化对于本领域技术人员而言是显而易见的。因此,本发明的意图仅由未决专利权利要求的范围限制,而不受本文的实施例的描述和解释所呈现的具体细节的限制。
73.参考符号列表
74.10
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
用于生成输出信号的装置
75.12
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
输出信号
76.14
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
周期性传感器信号
77.16
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
旋转角度传感器
78.20
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
用于确定是否更新的装置
79.22
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
偏移寄存器
80.30
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
旋转角度传感器设备
81.32
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
处理单元
82.34
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
接口
83.40
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
磁性编码器
84.42
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
旋转轴
85.44
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
旋转轴轴线
86.t1-t6
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
阈值
87.81’82,81’,82
’ꢀ
传感器信号
88.p、p
’ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
周期性传感器信号
89.50
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
阈值交叉曲线图
90.60
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
输出信号
91.tc
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
阈值交叉
92.pp
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
脉冲图案
93.70
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
方向信号
94.72
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
方向改变信号
95.vib
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
振动阶段
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1