泥石流固体物质起动临界深度与最大冲出总量测算方法、泥石流规模预报方法与流程

文档序号:23959021发布日期:2021-02-18 20:52阅读:336来源:国知局
泥石流固体物质起动临界深度与最大冲出总量测算方法、泥石流规模预报方法与流程

[0001]
本发明涉及泥石流活动规模的测算方法,特别是涉及一种测算泥石流起动时可裹挟的固体物质临界深度的方法,一种泥石流最大冲出总量测算方法,以及基于此的泥石流活动规模预报方法,属于地质灾害防治技术、地质灾害监测预警技术领域。


背景技术:

[0002]
泥石流形成是泥石流物源区固体物质在降水与地形条件耦合作用下随水起动汇集的结果。在一次降水条件下,有多少固体物质能够在水力条件下起动,是衡量泥石流活动规模的有效方法。该指标通常也可称为“最大冲出总量”,具体指一次降水条件下单场泥石流活动所输移的固体物质体积量。
[0003]
在泥石流防治技术领域,针对上述指标量的测算,现有技术有两种方案:其一、综合分析各类地形参数、固体物质性质参数在一定水力条件下可能参与泥石流活动的固体物质数量,即“动储量”。例如,采用滑塌面积率、不良地质体累计分布长度与主沟总长的比值对松散物质的活动性进行判定,采用灰色系统模型对流域内动储量进行定量预测,利用泥石流流量、输沙量及其与沟床纵坡、岩性之间的关系反演建立了松散固体物质临界集中量模型,综合面积滑塌率、不良地质体长度比、流域内爆发泥石流碎屑物的最低标准三个指标,对泥石流易发程度和规模进行判别,以及依据泥石流历时冲刷深度推导动储量的计算公式等。其二、综合泥石流固体物质冲出总量的多项影响因素建立经验模型。例如,基于流域面积、沟道坡度、沟道高差、物源储量、岩性特征等参数对泥石流固体物质冲出总量进行研究,建立相关预测模型。也有研究结果是在经验模型基础上进一步给出最大冲出量与泥石流物源区总物质储量间的简洁经验关系,例如,将流域内总物源的10%作为水源条件为百年一遇降水条件下单场泥石流的最大冲出量,以及在20年一遇条件下,灾区泥石流沟的最大冲出量与沟道内松散物质储量之间存在很强的幂函数关系。
[0004]
现有技术在测算最大冲出总量时,存在缺陷在于多是从定性或是半经验半定量的角度进行,尚无统一的度量标准。由此造成因研究区差异而使各类测算的度量精度差异较大,以及各类测算方案普适性不高、应用明显受限。并且对于根据已有样本建立的经验模型,若发生泥石流规模超过已有样本规模,则估算量将严重不足。这进一步导致,现有测算方法在针对偏离常态的黑天鹅式的泥石灾害的规模估计不足。而实际灾害防治中,这类灾害事件又是最需要借助科学测算数据制订灾后应急与救援方案的。


技术实现要素:

[0005]
本发明的目的就是针对现有技术的不足,提供一种有普遍适用性的泥石流最大冲出总量测算方法。
[0006]
为实现上述目的,本发明首先提供一种泥石流固体物质起动临界深度测算方法,其技术方案如下:
[0007]
一种泥石流固体物质起动临界深度测算方法,测算泥石流起动时可裹挟的固体物质临界深度,其特征在于:首先,现场调查获取泥石流物源区基本参数;其次,根据物源区水源条件与固体物质条件判断物源区泥石流起动属于非饱和渗流-径流起动模式,或者是非饱和渗流起动模式,最后,计算确定泥石流固体物质起动临界深度,具体:对于非饱和渗流-径流模式,依式1计算确定泥石流物源起动临界深度h
p
,对于非饱和渗流起动模式,依式2计算确定泥石流物源起动临界深度h
p
',
[0008][0009][0010]
式中,h
p
—非饱和渗流-径流模式的泥石流固体物质起动临界深度,
[0011]
单位m,
[0012]
h
p
'—非饱和渗流起动模式的泥石流固体物质起动临界深度,单位m,
[0013]
c—物源区固体物质粘聚力,单位kn/m2,物源区基本参数确定,
[0014]
γ
w
—水的容重,单位kn/m3,常数或物源区基本参数确定,
[0015]
h—物源区径流深度,单位m,物源区基本参数确定,
[0016]
γ
sat
—物源区固体物质饱和重度,kn/m3,物源区基本参数确定,
[0017]
n—物源区固体物质孔隙度,物源区基本参数确定,
[0018]
θ—物源区固体物质所处斜坡坡度,单位
°
,物源区基本参数确定,
[0019]
—物源区固体物质摩擦角,单位
°
,物源区基本参数确定。
[0020]
上述泥石流固体物质起动临界深度测算方法是测算在一次降水条件下泥石流起动时可裹挟的固体物质临界深度。方案原理在于:泥石流固体物质起动临界深度h
p
或h
p
'是指当水动力条件(渗流、表面径流等)与重力分量的合力不小于阻力时,土层中可移动固体物质的临界深度。因而,若能给定一定水源条件,对于某一特定的物源区(即通常划定为研究区),在给定固体物质特征的前提下,通过引入降雨入渗模型便可模拟(借助专业模拟软件实现)物源区固体物质的水动力条件进而利用现在技术可以判断物源区的泥石流起动模式(非饱和渗流-径流起动模式或非饱和渗流起动模式)。针对不同起动模式进一步地引入水动力条件(径流、渗流等水动力)、地形条件(坡度θ)以及固体物源条件(固体物质性质,例如容重、粘聚力、内摩擦角、孔隙度等)三类与固体物质可移动性有关的条件量,分别建立由意义明晰的物理变量表达的力学模型式1或式2,便能够实现从定量角度对泥石流固体物质起动临界深度的测算。
[0021]
上述方法中,现场调查包括了针对工程所在物源区现场的各种测绘、测量、模拟实验测试,以及历史灾害记录获取,以及有参照借鉴作用的经验数据获取等。
[0022]
上述方法中,物源区径流深度h、物源区固体物质粘聚力c、物源区固体物质内摩擦角三者都是随物源区水源条件变化而变化的量。在现场调查环节,若物源区固体物质处于稳定状态,则认为物源区固体物质含水状态尚未达到h
max
,便需要根据以实时监测降雨数据为基础,应用richards水分运动方程(richards,1931)与vg导水率模型(van genuchten model,1980),依照水源条件与源区固体物质条件耦合原理对源区固体物质降雨入渗规律
进行数值模拟(采用专业软件如hydrus2d软件实现),得出固体物质降雨入渗特征沿时间t轴的变化数据,根据变化确定到达h
max
状态的时刻t
c
,进一步确定时刻t
c
的物源区径流深度h与固体物质含水率ω,再依固体物质的含水率ω确定物源区固体物质粘聚力c、物源区固体物质内摩擦角将h、c、代入式1、式2计算。
[0023]
根据本发明泥石流固体物质起动临界深度测算方法可应用于泥石流防治工程设计。例如,根据测算得到的泥石流物源起动临界深度h
p
或h
p
',可为物源区泥石流防治工程体安全地基深度设计提供依据与参考。故,本发明提供以下方案:
[0024]
上述泥石流固体物质起动临界深度测算方法在泥石流防治工程设计中的应用。
[0025]
以上述泥石流固体物质起动临界深度测算方法为基础,本发明同时提供一种泥石流最大冲出总量测算方法,其技术方案如下:
[0026]
一种利用上述泥石流固体物质起动临界深度测算方法实现的泥石流最大冲出总量测算方法,用于测算一次降雨引发泥石流的冲出总量,其特征在于:依如下步骤实施:
[0027]
步骤s1、现场调查获取泥石流物源区基本参数;
[0028]
步骤s2、根据泥石流物源区基本参数划分物源区斜坡坡体,确定每一斜坡坡体规格参数,并将泥石流物源区基本参数配置至每一斜坡坡体;
[0029]
步骤s3、对于每一斜坡坡体,根据水源条件与固体物质条件判断物源区泥石流起动属于非饱和渗流-径流起动模式,或者是非饱和渗流起动模式,计算每一斜坡坡体的泥石流物源起动临界深度h
p
或h
p
';
[0030]
步骤s4、对于每一斜坡坡体,依式3计算确定泥石流可起动的固体物质体积量v
i
[0031]
v
i
=d
i
·
l
i
·
h
i
ꢀꢀꢀ
式3
[0032]
式中,v
i
—斜坡坡体可起动的固体物质体积量,单位m3,i为斜坡坡体编号,
[0033]
d
i
—斜坡坡体对应的宽度,单位m,i为斜坡坡体编号,物源区基本参数确定,
[0034]
l
i
—斜坡坡体对应的长度,单位m,i为斜坡坡体编号,物源区基本参数确定,
[0035]
z
i
—泥石流固体物质分布深度,单位m,i为斜坡坡体编号,物源区基本参数确定,
[0036]
h
i
—斜坡坡体可起动临界深度h
p
或h
p
',单位m,i为斜坡坡体编号,当h
p
≤z
i
,h
i
=h
p
或h
p
';当h
p
>z
i
时,h
i
=z
i

[0037]
步骤s5、依式4计算物源区内一次降雨引发泥石流的冲出总量v
s
[0038][0039]
式中,v
s
—物源区内一次降雨引发泥石流的冲出总量,单位m3。
[0040]
上述泥石流最大冲出总量测算方法,首先将根据地形数据将物源区划分为不同的斜坡坡体作为计算单元,其次,针对每一斜坡坡体计算泥石流物源起动临界深度h
p
或h
p
',再次,基于h
p
或h
p
'与每一斜坡坡体的长度宽度规格参数计算确定每一斜坡坡体在当次降水条件下固体物质可起动体积量v
i
,最后,将所有计算单元的结果求和,计算确定物源区内一次降雨引发泥石流的冲出总量v
s
测算值。该方案在本发明泥石流固体物质起动临界深度测算方法的基础上实现,因而也是基于意义明晰物理变量的全定量测算方案。
[0041]
本发明同时提供上述泥石流最大冲出总量测算方法在泥石流灾害监测预警中的应用,以及上述泥石流最大冲出总量测算方法在泥石流防治工程设计中的应用。
[0042]
泥石流最大冲出总量是衡量泥石流活动规模大小简洁且有效的指标。在泥石流起
动条件中,地形条件与固体物质特征条件相对稳定,降水条件则存在较高的变化率。因而,对于本发明泥石流最大冲出总量测算方法,若将测算原理中利用降水条件具体为实时动态降水条件,则测算结果是随实时降水条件变化的泥石流的冲出总量v
s
的变化值,便可以根据此值进行泥石流发生规模的预报。故,本发明同时提供泥石流活动规模预报方法,其技术方案如下:
[0043]
一种利用上述泥石流最大冲出总量测算方法实现的泥石流活动规模预报方法,其特征在于:根据降雨实时监测数据确定物源区径流深度h、物源区固体物质粘聚力c、物源区固体物质内摩擦角的实时变化值,再测算泥石流物源起动临界深度h
p
或h
p
'的实时变化值,以及物源区内一次降雨引发泥石流的冲出总量v
s
的变化值,并发出预报信息。
[0044]
与现有技术相比,本发明的有益效果是:本发明泥石流固体物质起动临界深度测算方法与最大冲出总量测算方法,是全定量测算方法。测算方法从泥石流起动的机理分析着手,将影响固体物质移动形成泥石流的三大基本条件分别分解为可定量化的量值,再通过具有明晰物理意义的动力学模型建立测算方案。该测算方案的度量依据可靠性高,能够针对性解决现有技术受限于某一特定物源区对象,以及对偏离常值的意外极端泥石流灾害事件测算不足的缺陷,具有更广的适用性。本发明还提供基于泥石流最大冲出总量测算方法建立的泥石流活动规模预报方法,能够将测算方法科学、普适性的有益效果带入泥石流险情预警。
附图说明
[0045]
图1是泥石流固体物质起动临界深度测算方法技术路线示意图。
[0046]
图2a、图2b是2013年“7.26”泥石流前5天降雨量及暴发过程中的分钟雨量。
具体实施方式
[0047]
下面结合附图,对本发明的优选实施例作进一步的描述。
[0048]
实施例一
[0049]
如图1~图2所示,采用本发明方法测算四川省都江堰市白沙河流域锅圈岩泥石流沟2013年7月26日降雨事件引发的泥石流中的相关量值。
[0050]
图1是泥石流固体物质起动临界深度测算方法技术路线示意图。
[0051]
1、开展现场调查
[0052]
现场调查包括了针对工程所在物源区现场的各种测绘、测量、模拟实验测试,以及历史灾害记录获取,以及有参照借鉴作用的经验数据获取等。
[0053]
锅圈岩泥石流沟位于都江堰市区以北约10km处,是深溪沟左岸的一条支沟,隶属于白沙河水系。该泥石流沟分布于龙门山断裂带的中部偏南区段,是汶川地震的核心震区,地震烈度较高,具体等级为xi度。流域(包括沟道和两侧斜坡)特征为:整个流域面积约0.15km2,主沟长近0.58km,平均纵坡比降为0.27。流域内的最高、最低海拔分别为1222m、943m,相对海拔高差为279m。泥石流沟内物源区固体物质结构较为松散,呈欠固结状态,主要成分以碎石、块石、细砂粒为主,分选性差且孔隙度高,多是由地震活动及风化作用形成。源区固体物质主要集中在坡面,沟道松散固体物质相对较少,可不考虑沟道松散堆积体无水力条件下的可移动数量。整理获取的泥石流物源区基本参数包括:
[0054]
物源区地形数据:现场调查或gis数据提取的dem数据。
[0055]
物源区固体物质性质参数:现场取样,完成必要的现场或室内实验测量确定泥石流源区固体物质饱和容重γ
sat
、固体物质孔隙度n,固体物质粘聚力c与固体物质含水率ω之间的函数关系、固体物质内摩擦角值与固体物质含水率ω之间的函数关系(式5)。
[0056][0057]
物源区水动力条件参数:从锅圈岩沟雨量站的雨量监测数据获取降雨过程数据。数据类型为实时监测数据见图2a、图2b所示“7.26”泥石流前5天降雨量及暴发过程中的分钟雨量。
[0058]
2、划分计算单元
[0059]
根据物源区斜坡坡体特征划分斜坡坡体作为计算单元。在物源区内划分出4个斜坡坡体(表1),再将泥石流物源区基本参数配置到每一斜坡坡体(表2)。
[0060]
表1斜坡坡体规格参数
[0061][0062][0063]
表2斜坡坡体基本参数
[0064][0065]
由于本实施例采用实时降雨数据,因而用于测算泥石流规模的物源区径流深度h、物源区固体物质粘聚力c、物源区固体物质内摩擦角三个参数是依降水过程变化的量。最终列入表2的值计算过程如下:
[0066]
以实时监测降雨数据为基础,采用richards水分运动方程与vg导水率模型将水源条件与源区固体物质进行耦合,借助hydrus2d软件模拟物源区固体物质的降雨入渗特征过程。当各计算单元坡脚开始出现大量积水(软件模拟水头高度=0.6m)时,判断为固体物质达到最大临界深度时刻,标记该时刻为时刻t
c
。读取时刻t
c
的径流深度h(列入表2)、各计算单元固体物质含水率ω。将各计算单元ω值代入式5,计算确定各计算单元c值、值,列入表2。
[0067]
3、测算每一斜坡坡体泥石流物源起动临界深度
[0068]
根据模拟结果中的边界通量是否有表层径流数据存在,判别每一斜坡坡体的起动
模式。若存在表层径流数据,则属于非饱和渗流-径流起动模式;反之,则属于非饱和渗流起动模式。根据数据判别显示,物源区内4个斜坡坡体的泥石流起动属于非饱和渗流起动模式。将各斜坡坡体的各参数代入式2,计算得到每一斜坡坡体的泥石流固体物质起动临界深度h
p
(表3)。
[0069]
4、测算每一斜坡坡体可起动的固体物质体积量v
i
[0070]
将各参数代入式3计算得到可起动的固体物质体积量v
i
(表3)。
[0071]
表3斜坡坡体h
p
、v
i
[0072][0073]
5、测算物源区内本次降雨条件引发泥石流的冲出总量v
s
[0074]
根据表3数据,依式4计算有,物源区内“7.26”降事件引发泥石流的冲出总量v
s
=7806.5m3。
[0075]
6、结果验证
[0076]
将测算结果v
s
=7806.5m3与当场次泥石流的实际监测量(约6904.8m3)进行比较。结果显示,本发明方法测算相对误差为13.1%。由于泥石流固体物质在起动、搬运、堆积等过程的随机性而导致泥石流活动的复杂性,使得泥石流活动规模精确预测的难度较高,实际案例表明预测结果的弹性区间较大,一般在40%~90%。因而,本发明测算方案是一个较好的预测方案。
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1