一种多光谱海水广角体散射函数测量用光源

文档序号:29850462发布日期:2022-04-30 07:41阅读:88来源:国知局
一种多光谱海水广角体散射函数测量用光源

1.本发明涉及光源设备,具体涉及一种多光谱海水广角体散射函数测量用光源。


背景技术:

2.体散射函数(volume scattering function,vsf,β(λ,φ))是描述光在水体中某一散射体上散射光的角度分布的重要固有光学参数,是波长(λ)及散射角(φ)的函数,是水色遥感、水下军事目标跟踪及生态系统建模等光学海洋学领域亟需的技术,目前广角体散射函数在线/剖面测量技术基本为单一波长,相对于体散射函数角度分布的研究而言,体散射函数的波长分布特征的研究极少,相关数据极为匮乏,这主要归因于散射信号动态范围大、对光源及光学检测单元的技术及工艺要求较高。而多光谱、高光谱体散射特性是水色遥感、光辐射传输模型优化和完善的关键参数,可为生态系统建模、赤潮及其优势藻类的识别提供丰富的特征波长散射信息。多光谱光源的实现,一般采用白光led或卤素灯配以机械转动的不同颜色滤光片实现,该方法结构较为简单,但输出光准直度较差、发散角较大、光利用率低,再有一种方法是采用不同颜色激光器通过单模光纤耦合输出,这种方法光输出发散角可控,但体积大且成本高,对于水下剖面使用且角度分辨率较高、散射通量测量传感器视场角小的广角体散射函数测量技术而言,光源的准直度、发散角的精度以及光源的体积,直接决定散射测量的角度分辨率、散射信号检测可靠性、背景污染程度、定标精度及数据的可靠性。
3.目前国外利用多波段测量海水体散射函数成熟的是单一或不超过三个角度后向体散射的测量,上述仪器采用一个波段光源对准一个探测器实现不同角度不同波长体散射函数测量,探测器是采用大视场角结构,对光源的准直度要求不高,这一结构对于散射角度较少的体散射函数测量仪可行,但对于广角体散射函数测量仪,上述光学结构的安排无可行性。对于广角体散射函数的测量,受技术条件限制,基本为单一波长探测,近年来对单一波长的广角体散射函数测量技术,国内外均有相应的研究进展,但如需测量不同波长体散射函数,则需更换不同波段光源再进行测量,过程耗时繁琐,容易因为安装精度等问题造测量成误差但多光谱测量,同时,由于光的散射对偏振比较敏感,输出多波段光源需要处理成为非偏振光方可有效对散射光信号进行探测,上述两种结构的多波段光源设计方法在实现圆偏振或消偏振上均存在较大的难度。


技术实现要素:

4.为了解决上述背景技术所存在的至少一技术问题,本发明提供一种多光谱海水广角体散射函数测量用光源。
5.为实现上述目的,本发明的技术方案是:
6.一种多光谱海水广角体散射函数测量用光源,包括电机驱动部分、旋转框架部分以及选光部分;
7.所述旋转框架部分包括选光盘轴承座,所述选光盘轴承座的端面设置有出光孔;
8.所述选光部分包括多波段激光器组,所述多波段激光器组由多个不同波段、发散角小、圆偏振准直激光器组成且由电机驱动部分驱动转动,以使得不同波段激光器所发射出的光束经由光盘轴承座的出光孔射出,所述多波段激光器组由电刷控制实现无接触式供电。
9.进一步地,所述电机驱动部分包括电机、减速器以及联轴器;所述电机的转轴与减速器的输入端相联接,减速器的输出端和第一联轴器相联接。
10.进一步地,所述选光部分还包括激光器组锁紧盘、激光器组调整盘和转轴;
11.所述激光器组锁紧盘和激光器组调整盘结构相同,中部为转轴孔,在盘面中间隔分布有激光器安装孔,相邻的两激光器安装孔之间设置有第一缝隙;在所述激光器安装孔中设置有第二缝隙,第二缝隙将激光器安装孔分为两部分,两部分激光器安装孔之间通过螺栓锁紧连接;
12.所述转轴贯穿激光器组锁紧盘和调整盘的转轴孔;
13.所述激光器被锁紧安装在所述激光器安装孔中并通过所述第二缝隙上的螺栓进行准直调整;
14.进一步地,所述选光部分还包括轴承,所述轴承装配在选光盘轴承座的端面中。
15.进一步地,所述旋转框架部分还包括轴承行星环,所述轴承行星环包括大轴承、小轴承、定环、行星环;所述小轴承安装在行星环圆心孔,且小轴承外圈与行星环过盈配合;所述行星环过盈配合安装在大轴承内圈,大轴承外圈固定在定环上;所述定环安装固定在选光盘轴承座内部;所述转轴贯穿并固定安装于所述小轴承内圈,一端安装在所述轴承中。
16.进一步地,所述多波段激光器组的电源线以及控制导线穿过行星环与大轴承的星孔,并与行星环相对固定。
17.进一步地,所述旋转框架部分还包括电刷固定套、选光座、第二联轴器、电刷、传动轴;所述电刷安装在电刷固定套和选光座的内部;所述传动轴穿过电刷,一端与第一联轴器相接,另一端与第二联轴器相接,第二联轴器和所述转轴的另一端相接;选光座的大径端与选光盘轴承座开口端相接并固定。
18.进一步地,所述转轴由第一转轴和第二转轴联接而成。
19.进一步地,所述电刷为多波段激光器组引出导线的整周旋转提供稳定的供电结构支持,其包括内圈和外圈,外圈与选光座固定,内圈与传动轴保持相对固定,内圈与传动轴同步旋转。
20.进一步地,所述多波段激光器组包括多个不同波长激光器,电机为步进电机,步进电机由控制芯片进行驱动控制,多波段激光器组的开关状态由mos管控制;
21.所述多波段激光器组输出光束的发散角只取决于多波段激光器组中的每一个激光器的发散角。
22.本发明与现有技术相比,其有益效果在于:
23.本发明所提供的多光谱光源其发散角、偏振度直接取决于激光器组内各个激光器的准直度、发散角和偏振度,可以有效克服光纤耦合的高成本、大体积以及滤光片分光的准直度差、发散角大、后续消偏振复杂等问题,特别适合用于对光源准直度要求高的光学测量系统,尤其适合用于角度分辨率高、探测视场角小的广角体散射函数测量系统中,光源的准直度高、输出过程控制简单、分光频率可调可控、分光波长可调,极大的简化和小型化了多
光谱光源的使用和体积。
附图说明
24.图1为本发明实施例提供的多光谱海水广角体散射函数测量用光源的整体结构示意图;
25.图2为本发明实施例提供的多光谱海水广角体散射函数测量用光源正面示意图;
26.图3为电机驱动部分的整体示意图;
27.图4为旋转框架部分的整体示意图;
28.图5为选光部分的整体示意图;
29.图6为轴承行星环的结构示意图;
30.图7为光源调整盘、光源锁紧盘的结构示意图;
31.图8为本发明实施例提供的多光谱海水广角体散射函数测量用光源的截面图;
32.图中:1、电机驱动部分:11、步进电机;12、减速器;13、第一联轴器;2、旋转框架部分;21、电刷固定套;22、选光座;23、轴承行星环;231、大轴承;232、小轴承;233、定环;234、行星环;24、选光盘轴承座;25、第二联轴器;26、电刷;27、传动轴;3、选光部分;31、激光器组调整盘;32、激光器组锁紧盘;300、转轴孔;301、激光器安装孔;302、第一缝隙;303、第二缝隙;33、第一转轴;34、轴承;35、多波段激光器组;36、转轴。
具体实施方式
33.实施例:
34.在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接、信号连接;可以是直接相连,也可以是通过中间媒介间接连接,可以说两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明的具体含义。下面结合附图和实施例对本发明的技术方案做进一步的说明。
35.参阅图1-8所示,本实施例提供的多光谱海水广角体散射函数测量用光源主要包括电机驱动部分1、旋转框架部分2以及选光部分3;其中,该旋转框架部分2包括选光盘轴承座24,该选光盘轴承座24的端面设置有一出光孔241;该选光部分3包括多波段激光器组,该多波段激光器组35由发散角小于0.1mrad的4个不同波段圆偏振激光器组成且由电机驱动部分1驱动转动,以使得不同激光器所发射出的光束经由光盘轴承座24的出光孔241射出。也就是说,不同光源的光束会经由选光盘轴承座24的出光孔241射出,因此出光孔241的光束会随着电机的转动而分时输出不同波段圆偏振准直光束。此外,该多波段激光器组由电刷控制实现无接触式供电,以便于在其转动过程更好的实现通断电控制,同时可以有效避免供电电线在激光器组转动过程中被缠绕。
36.由此可见,本发明采用电机直驱准直度较高且消偏振的不同波段微小型半导体激光器分时通过同一出光孔的方式实现多光谱光源的功能。
37.具体地,上述的电机驱动部分1主要由步进电机11、减速器12、第一联轴器13组成,其中,步进电机11的转轴与减速器12的输入端相联接,减速器12的输出端与第一联轴器13联接。其结构如图3所示。
38.具体地,上述的选光部3还包括激光器组锁紧盘32、激光器组调整盘31和转轴;该转轴由第一转轴33和第二转轴36联接而成;如图5、7所示,该光源锁紧盘32和光源调整盘31结构相同,中部为转轴孔300,在盘面中间隔均匀分布有激光器安装孔301,相邻的两激光器安装孔301之间设置有第一缝隙302;在该激光器安装孔301中设置有第二缝隙303,第二缝隙303将激光器安装孔分为两部分,两部分激光器安装孔之间通过螺栓锁紧连接;该转轴贯穿光源锁紧盘32和光源调整盘31的转轴孔300;激光器被锁紧安装在该激光器安装孔301中。如此,由于在相邻的两激光器安装孔301之间设置有第一缝隙302,在该激光器安装孔301中设置有第二缝隙303,光源锁紧盘32可将多波长激光器组35紧凑且均匀地固定在旋转形心上,光源调整盘31则可通过第二缝隙303来利用螺栓对多波段激光器组35中各个激光器组的出射方向进行微小的调节以保证多波段光源的出射光束的平行度。此外,该选光部分还包括轴承34,该轴承34装配在选光盘轴承座24的端面中。
39.优选地,上述的旋转框架部分还包括轴承行星环23,用以保证选光部分3的旋转精度和多波段激光器组35的重复定位精度,如图6所示,具体构件包括:大轴承231、小轴承232、定环233、行星环234。具体地,小轴承232安装在行星环234圆心孔,且轴承外圈与行星环234过盈配合;行星环234过盈配合安装在大轴承231内圈,大轴承外圈固定在定环233上;定环安装固定在选光盘轴承座24内部。该转轴的一段与小轴承232内圈固定,一端安装在所述轴承34中,该多波段激光器组的供电及控制导线穿过行星环234与大轴承231的星孔,并与行星环234相对固定,当选光部分3在旋转时,由于轴承行星环23上安装有一大一小两个轴承,大小轴承与轴承34可以使得该转轴保持较高的旋转精度以能够保证多波段激光器组35光束通过出光口的重复定位精度,该多波段激光器组35导线也可与星环保持相对静止避免因选光结构旋转而是导线缠绕。其结构如图5所示。
40.具体地,如图4所示,上述的旋转框架部分2还包括有电刷固定套21、选光座22、第二联轴器25、电刷26、传动轴27。其中,电刷26安装在电刷固定套21和选光座22的内部,传动轴27穿过电刷26一端与第一联轴器13相接,一端与第二联轴器25相接,第二联轴器25和第二转轴36相联接,如此,步进电机11即可以直接驱动选光部分3转动;该选光座22的大径端与选光盘轴承座24开口端相接并固定,轴承行星环23利用螺栓安装在轴承座24内部,其结构如图3所示。进一步地,该电刷26可为多波段激光器组35引出导线的整周旋转提供稳定的供电结构支持,其包括内圈和外圈,外圈与选光座22固定,内圈与传动轴27保持相对固定,内圈与传动轴27同步旋转。
41.具体的,可在选光部分3上安装四个不同波长激光器来组成多波段激光器组,该多波段激光器组输出光束的发散角只取决于多波段激光器组中的每一个激光器的发散角;选用装有传动比为27:1减速器的28步进电机,并照上述的结构安装成型。步进电机11由lv8728mr进行驱动控制,多波段激光器组35的开关状态由mos管控制,总控芯片采用stm32,上述结构安装在一水密舱体中,舱体外接12v直流电供光源工作及分光。也就是说,本发明所提供的多波段的可选光源,可相应适配到现有国内自主研发的水体的体散射函数测量仪器中(发明专利号:zl201710253401.1),在不降低仪器测量精度的同时提高仪器测量的光谱分辨率。
42.本发明可按照所烧录的程序对多波段激光器组35和步进电机1进行控制。例如,可将由四个不同波长的激光器组成的多波段激光器组35设置为常亮状态,步进电机持续顺时
针旋转来改变出光口和出射光束波长;也可将四个光源35开关状态以旋转一整周作为一个周期,通过出光口选通或阻断。
43.综上,本发明所提供的多光谱光源其发散角、偏振度直接取决于激光器组内各个激光器的准直度和发散角,可以有效克服光纤耦合的高成本、大体积以及滤光片分光的准直度差、发散角大、后续消偏振复杂等问题,特别适合用于对光源准直度要求高的光学测量系统,尤其适合用于角度分辨率高的广角体散射函数测量系统中,光源的准直度高、输出过程控制简单、分光频率可调可控、分光波长可调,极大的简化和小型化了多光谱光源的使用和体积,具有很好的原创性;光源设计中巧妙地利用了轴承行星环、选光部分的轴承组,有效确保用户在选择光源过程中出射光束有较高的重复定位精度。通过采用本发明的光源能够实现提高海水广角体散射函数测量的光谱分辨率的目的。
44.上述实施例只是为了说明本发明的技术构思及特点,其目的是在于让本领域内的普通技术人员能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡是根据本发明内容的实质所做出的等效的变化或修饰,都应涵盖在本发明的保护范围内。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1