抑制雷达系统中雨滴杂波的方法和装置的制作方法

文档序号:6139056阅读:318来源:国知局
专利名称:抑制雷达系统中雨滴杂波的方法和装置的制作方法
技术领域
本发明涉及雷达系统,具体地说,涉及抑制雷达系统中雨滴杂波的装置和方法,该雷达系统用于检测在主车辆驾驶员难于观察的区域中是否存在障碍物。
长期困扰车辆驾驶员的一个问题是难于观察在车内驾驶员位置不易观察到的位置或区域内接近车辆的障碍物或其它车辆。这种靠近车辆但却不能由驾驶员位置直接观察到的位置或区域通常称为“盲区”。例如,相对于车辆的前进方向顺时针测量,在角度90°~170°之间的区域(即,车辆右侧、驾驶员位置稍稍靠后的区域)就是典型的盲区,特别是对于大型车辆尤为如此,例如公共汽车和卡车。驾驶员在右转弯或并入右侧车道时没有注意到右侧盲区中的物体(通常是其它车辆)是大量交通事故的根源。另一个常见的盲区是车辆的正后方区域。在车辆倒车时(即后退),尤其应当注意该区域。因此,车辆驾驶员能够检测到位于驾驶员盲区中的障碍物(特别是其它车辆)对于安全驾驶车辆是非常重要的。
解决盲区障碍物检测问题的一种现有技术方案是利用反光镜帮助车辆驾驶员检测是否存在可能带来灾难的障碍物。这类反射镜具有各种外形和各种透镜。除此之外,这类反射镜还安装在不同的位置以尽最大可能地帮助驾驶员检测盲区中是否存在障碍物。例如凹面镜通常安装在车辆的右侧,并对准右侧的盲区。
反光镜向驾驶员提供一些在车辆的特定盲区内是否存在障碍物的信息。然而,不利的是,反光镜在夜间或恶劣天气条件下毫无用处。即使在最好的条件下,使反射光畸变的反光镜通常需要驾驶员观察右后方的盲区。一些驾驶员发现很难恰当地理解反光镜中(例如通常用作右侧反光镜的凸面镜)出现的这种图像。此外,反光镜易于反射从后面接近的车辆前灯,由此使安装反光镜的车辆的驾驶员目眩。因此,需要更加完善、更加令人满意的解决方法。
另一种利用反光镜检测车辆盲区中是否存在障碍物的众知方法是在车辆上安装摄像机,为驾驶员提供车辆盲区中的障碍物的可视图像。然而,这种方法既复杂又昂贵,需要视频摄像机和视频监视器。此外,视频监视器可以提供复杂的图像,该图像即使在无畸变的条件下也难于在繁重交通条件下出现的紧张状态中快速地进行解读。此外,监视器还容易分散驾驶员的注意力。此外,与反光镜类似,这种摄像机系统在夜间或恶劣天气条件下例如雨天、冰雹或雪天将失去效用。
另一种使用反光镜的方法是将雷达波导向各个盲区。然后,检测雷达波的反射波,确定每个盲区中是否存在障碍物。1994年6月28日授予Alan Packett的、并已转让给本发明所有人的美国专利5,325,096公开了一种这样的系统,该系统在此引用作为参考。这些系统使用的是向车辆盲区发射射频(RF)信号的通用雷达收发机。发射信号由盲区中的障碍物反射。比较发射信号的频率和雷达系统接收的反射信号的频率,确定反射信号中是否存在多普勒频移。多普勒频移通常意味着盲区中存在障碍物。
不利的是,这种多普勒盲区传感器在恶劣天气条件下常常会产生误警(即检测到错误目标),特别是在雨天。产生误警的主要原因有两个1在雷达传感器附近的雨滴降落产生雨滴杂波;2来自潮湿道路表面、潮湿“非道路”表面和道路两侧潮湿树叶的反射。不利的是,现有技术车辆雷达系统有可能将雨滴杂波、潮湿道路表面和潮湿树叶误警为危险目标物体。结果,现有技术雷达系统将错误地警告驾驶员在驾驶员盲区内存在物体。这为驾驶员带来了干扰。主车辆(即,装有雷达系统的车辆)经过的雨滴杂波、潮湿道路表面和潮湿树叶使雷达系统错误地指示在主车辆盲区内存在物体,即使没有任何危险存在,这将使主车辆的驾驶员对雷达系统的可靠性失去信任,使系统不能有效地警告驾驶员存在真正的危险。另外,这种指示将分散驾驶员的注意力,干扰驾驶员。
因此,需要一种检测车辆盲区中是否存在危险障碍物的廉价方案。这种方案还应当能够在夜间和恶劣天气条件下使用,并且不会在主车辆经过时因道路两侧的雨滴杂波、潮湿道路表面和潮湿树叶而产生干扰条件。本发明提供了这样一种方案。
本发明是一种检测主车辆盲区中是否存在目标的新颖方法和装置,并且只有在出现这种目标时才向主车辆的驾驶员提供指示。雷达系统即使工作在恶劣天气条件下也能检测目标,并不会因潮湿道路和其它潮湿环境产生的雨滴杂波而产生误警。雷达系统利用测距技术抑制预定目标检测区域之外的雨滴杂波产生的虚假目标。本发明是一种采用连续波(CW)发射、调频(FM)操作采用频率调制切换技术的多普勒雷达系统。雷达系统同时独立地测量多个检测目标的距离和接近速度。在一种优选实施方案中,频率调制切换技术包括频移键控(FSK)技术。固定波束天线收发机发射具有选定的中心频率和至少两种频率漂移(f1和f2)的射频(RF)信号。在一种优选实施方案中,发射RF信号的中心频率是24.725GHz,频率漂移在选定的中心频率附近间隔大约1.25MHz。
发射RF信号由天线视场中的物体反射。两个发射频率,f1和f2,在由目标反射时,产生对应于发射频率的两个多普勒信号。反射信号下变换为两个不同的基带信号,通道0信号和通道1信号分别对应f1和f2发射信号。基带信号包含天线视场中物体的多普勒频移。雷达系统对返回信号进行放大、滤波、信号分离和数字化处理,产生数字数据流。调整数字数据流,并将其保存在分别与不同的通道0信号和通道1信号对应的环形缓冲器中。每个缓冲器分为四个均由256个字构成的段。利用这种存储方案,512样本点段由两个连续输入的数据段构成。数字信号处理器(DSP)对512样本点段进行快速复立叶变换(FFT),将信号数据由时域变换到频域。DSP利用变换后的数据计算天线视场中目标的存在与否、距离和接近速度。
因为天线发射信号的功率值是恒定的,所以DSP利用反射信号的功率变化检测是否存在目标。如果接收功率在通道0数据和通道1数据中的同一多普勒频率上超过预定功率值,那么就初步判定存在目标。DSP确定通道0信号和通道1信号之间的确切相位关系。通过分析两个信号之间的相位差确定目标距离。相对天线的运动也由DSP计算。DSP利用从目标返回的信号的多普勒频移计算相对天线的移动。DSP可以识别和跟踪多个目标。
一旦确定了目标距离,本发明将抑制与选定的持续时间相对应的预定检测区域之外的目标。根据本发明,如果目标的任何一部分处于检测区域之内,并且1)目标位于天线前面的时间至少为TH1秒;2)目标距离在最小距离和最大距离之间;3)目标的移动速度高于相对天线的最小接近速度,那么雷达系统将指示检测到目标。在一种优选实施方案中,最小距离和最大距离分别是2英尺和12英尺。抑制距天线小于2英尺的目标,可以显著地降低雨滴杂波引起的误警。同样,抑制距天线大于12英尺的目标,雷达系统可以降低潮湿树叶和其它潮湿的“非道路”背景产生的误警。另外,通过抑制距天线大于12英尺的目标,雷达系统在目标距主车辆多于一个车道而不会产生与主车辆碰撞的危险时不会报警。此外,通过将方形NXN盖板阵列天线调整为菱形结构,就可以有效地产生自然的线性幅度衰减,这有助于抑制潮湿道路目标产生的杂波。


图1是本发明侧视多普勒雷达系统的优选实施方案框图。
图2示出本发明侧视雷达系统采用的典型目标检测区。图2a示出装有图1所示雷达系统的主车辆的顶视图。图2b示出图2a主车辆的后垂直剖面图。
图3示出本发明天线接收机中使用的采样电路的简化框图。
图4是示出用于控制图3采样电路的开关定时控制信号的时序图。
图5是用于确定是否存在目标的方法的高级流程图。
图6示出图1所示的雷达天线的一种实施方案,该天线具有配置为菱形的天线盖板单元,以降低潮湿道路表面产生的雨滴杂波的影响。
相同的参考标号和标记在各种附图中表示相同的单元。
在本发明中,所示的优选实施方案和实例应当认为是示例性的,而不是对本发明的限制。
本发明的优选实施方案是检测主车辆盲区中的物体、并且只有在存在这种物体时才向主车辆驾驶员提供指示的方法和装置。本发明即使工作在雨天或其它恶劣天气条件下也不会向驾驶员产生误警。概述根据本发明的一个实施方案,利用侧视多普勒雷达系统检测驾驶员盲区中的物体。图1示出本发明侧视多普勒雷达系统的优选实施方案框图。如图1所示,侧视多普勒雷达系统100优选地包括天线102,处理模块(“PM”)104和显示单元106。在一个实施方案中,天线102和PM104包容在同一个优选地安装在主车辆(图2)侧面的机械壳体内。在一个实施方案中,侧视雷达系统100为应用而进行了改装,并与前视雷达系统(未示出)一起工作。前视雷达系统用于检测和警告主车辆驾驶员在主车辆行驶路线的前方(即,危险地靠近和处于主车辆前方的物体)可能出现危险物体。1994年4月12日授予Asbury等人,并已转让给本发明所有人的美国专利5,302,956描述了这样一种示例性前视雷达系统。
本发明的侧视多普勒雷达系统100将警告主车辆驾驶员在主车辆侧面出现的潜在危险物体。雷达系统100优选地测量待检测目标的距离。如果雷达系统100确认目标目标与主车辆处于同一车道内,那么它就向前视雷达系统发送“目标出现”信号。通常,前视雷达系统将通过点亮指示器或发出警报来产生适当的报警。在这个实施方案中,PM104通过前视雷达系统与显示单元106通讯。或者,处理模块通过显示单元106直接与驾驶员通讯(即,侧视雷达系统100独立于前视雷达系统工作)。
显示单元106可以安装在驾驶室内部(例如,当主车辆是卡车时可以安装在驾驶室内)或安置在便于驾驶员观察的任意位置。如图1所示,显示单元106优选地包括至少两个视觉报警指示器108和110,和一个声音报警指示器(例如扬声器)112。视觉报警指示器108和110是通常安装在与天线102处于相同主车辆侧的反光镜上或在其附近的超高亮度的发光二极管(LED)。结果,在主车辆驾驶员观察反光镜时,驾驶员可以很容易地看到报警指示器108和110。将报警指示器108和110安装在已有的反光镜上使它们通过驾驶员头部的正常移动就可以被看到。然而,驾驶员不应当受到在正常交通条件下频繁出现的、对驾驶员毫无用处的障碍物指示的扰乱或干扰,除非要进行将要使车辆与障碍物相撞的操作。如图1所示,除了报警指示器108和110之外,还安装了强制声音指示器112,它能够在出现障碍物并且主车辆的转向灯启动时产生可听到的音调、哨音或嗡嗡声。
图2示出本发明侧视雷达系统100产生的典型目标检测区域。图2a示出在其中布置了图1所示雷达系统100的主车辆200的顶视图。图2b示出图1主车辆200的后垂直视图。天线102和PM104优选地包容在同一机械壳体内,并安装在主车辆200的适当侧面。如图2a所示,天线102和PM104安装在主车辆200的右后侧。因此,天线102以这种方式安装可以检测主驾驶员盲区中的目标。通常,目标是各种受监视的车辆,例如摩托车、乘客汽车和卡车。静止物体,例如距天线102为预定距离的防护栏、隧道壁,和其它的分布物体均认为是有效目标,将由雷达系统100检测。一旦完成检测,雷达系统100就产生“目标出现”信号,并向前视雷达系统或显示器106输出。在一个实施方案中,目标出现信号从开始检测到目标到检测结束之后的1.5秒钟之内始终保持激活状态。
图2示出本侧视雷达系统100产生的典型覆盖区域。通常,如果目标的任何一部分处于“检测区”202(阴影区域)之内,并且1)在天线102前面的出现时间至少为TH1秒;2)距天线的(径向)距离在最小距离和最大距离之间;3)移动速度高于相对天线的最小接近速度,那么雷达系统将检测到目标。在一个优选实施方案中,TH1大约为0.3秒,最小距离大约为2英尺,最大距离大约为12英尺,最小接近速度大约为每小时0.07英里。因此,在优选实施方案中,如果目标的任何一部分处于检测区202之内,并保持在天线102前面的时间至少为0.3秒,距离在2英尺和12英尺之间,相对天线102的移动速度高于0.07英里每小时,那么雷达系统100将检测到目标。最小距离和最大距离阈值是由PM104(图1)执行的软件确定的。反射能量极低的目标(即,使非常少的能量反射回天线102的目标)将减小检测区202。与此相反,具有高反射能量的目标将增大检测区202。侧视多普勒雷达系统-详细描述再次参照图1,PM104完成本发明侧视雷达系统100的许多重要功能。例如,PM104为天线102产生定时信号,从天线102接收返回的模拟信号,调节模拟信号,并完成将模拟信号转换到数字域的模数(“A/D”)转换。PM104利用PM专用集成电路(ASIC)120和数字信号处理器(“DSP”)122处理数字化天线数据。PM104与显示单元106通讯(或者与前视雷达系统通讯),以指示警报和内部测试(“BIT”)失败条件。PM104还包括非易失性随机存取存储器(“RAM”)和快闪RAM电路。
如图1所示,PM104优选地包括天线驱动器114、天线接收器116、A/D转换器、PM ASIC120、DSP122、RAM124、闪烁RAM126、和电源128。在一个优选实施方案中,DSP122包括德克萨斯仪器公司制造的TMS320C203数字信号处理器集成电路。电源128工作在6V和32V之间。天线驱动器114、天线102和天线接收器116共同协作构成微米波收发机。收发机发射并接收天线102的视场中的物体反射回来的射频(RF)信号。反射信号返回天线102,并在天线处由天线接收器116“下转换”为基带信号。如雷达领域众知的,由于“多普勒”效应,反射接收信号的频率在其受到反射时将偏离发射信号的频率。只要反射发射信号的物体存在相对于收发机的运动,就会出现多普勒效应。最终的频率漂移称为“多普勒频移”。根据本发明,天线接收器116产生的基带信号包括天线视场中的物体导致的多普勒频移。
天线接收器116包括对基带信号进行放大、滤波和解复用的模拟电路。解复用的信号输入到A/D转换器118的输入端。在优选实施方案中,A/D转换器118包括18比特的双通道模拟-数字转换器。PM ASIC120和DSP122调整并处理A/D转换器118产生的数字化数据,以确定是否存在目标以及目标的距离。因为天线102发射的信号功率值是恒定的,所以输入到A/D转换器118的信号的功率变化可归因于接收信号的功率变化。DSP122利用这一事实在天线的视场内检测是否存在目标。如果A/D转换器118的输出信号功率值超过预定阈值(Pth),那么DSP122就可以判定存在目标。此外,如果距离显示出目标与主车辆处于同一车道(即如果距离处于预定的最小距离和最大距离之间),那么“目标出现”信号就出现在输出传输线130上。
有利的是,本发明侧视多普勒雷达系统100即使工作在恶劣天气条件下也可以精确地检测与主车辆处于同一车道的目标。不仅仅是检测天线视场中目标或物体的运动(现有技术的盲区传感器就是这样做的),本发明还使用距离信息区分雨滴杂波和有效目标。根据本发明的方法和装置,侧视多普勒雷达系统100可以抑制处于天线102最小距离范围内的所有目标。在一个实施方案中,最小距离大约为2英尺。发明人已经观察到,雨滴杂波产生的大多数误警是由距天线2英尺范围内出现的雨滴杂波产生的。因此,通过抑制距天线2英尺范围内检测到的所有目标,本侧视雷达系统100可以很好地消除雨滴杂波产生的误警。结果,本侧视雷达系统100在雨天的检测效果远远优于现有技术的盲区传感器。
本侧视多普勒雷达系统100的收发机部分(即,天线102、天线驱动器114和天线接收器116)处理信号的过程类似于美国专利5,302,956中描述的前视测距多普勒雷达系统的收发机部分。例如,在一个优选实施方案中,收发机部分包括产生发射信号的振荡器,例如镓砷(GaAs)GUNN二极管振荡器。GUNN二极管振荡器耦合到微波集成电路(MIC)上的肖特基二极管混频接收器和相关电路。
发射信号的频率随着由PM ASIC120耦合到振荡器的频率控制电压信号406变化(在下面将参照图4详细描述该信号)。电压值由PMASIC120控制。提供给振荡器的电压值在两个电压值(F1/F2)之间变化,由此使发射频率在两个漂移频率(f1和f2)之间变化。在优选实施方案中,天线102的发射信号中心频率大约是24.725GHz。两个漂移频率(此后称之为通道0发射频率f1和通道1发射频率f2)优选地间隔大约2.5MHz,并且时分复用为单路输出。通道0发射频率f1是24.725GHz-1.25MHz,或24.72375GHz。通道1发射频率f2是24.725GHz+1.25MHz,或24.72625GHz。如下面将要详细描述的,发射频率f1和f2以大约为10kHz的时分切换速率发射。
在一个优选实施方案中,天线驱动器114包括电压调节器。电压调节器向振荡器提供F1/F2调制的电压值。在一个实施方案中,F1和F2电压值均通过在PM104中执行的软件控制。结果,就可以在不需要手工调整的条件下得到发射信号频率。
在本发明优选实施方案中,天线102发射发射信号,同时接收天线102视场中的物体反射回来的信号。肖特基二极管混频器(未示出)与发射信号和接收信号耦合在一起。因此,接收的RF信号和发射信号进行比较。混频器的输出是“差异”或“下转换”信号,其频率等于发射信号频率和接收信号频率之间的差值。信号开关将如图3所描述的在时间上将下转换差异信号解复用并对其进行采样。
天线接收机116中采样电路300的简化框图示于图3。采样电路300控制天线102接收的、并由混频器产生的差异信号解复用。如图3所示,采样电路包括前置放大器(“pre-amp”)302,两个模拟信号开关304a和304b,两个低通滤波电容306和308,和两个输出放大器310和312。差异信号输入到采样电路300的输入线301,并作为输入信号提供给前置放大器302。前置放大器302的输出提供给信号开关304a和304b。在一个优选实施方案中,信号开关304a和304b包括摩托罗拉公司提供的MC14053BD模拟开关。信号开关304a和304b用于在时间上解复用天线接收器116中的混频器产生的差异信号。
前置放大器302对混频器耦合过来的差异信号进行放大。提供给前置放大器302的信号包括接收到的、并且和发射信号混频的各种信号。通常,在发射信号时,多个目标将信号的一部分反射回天线102。这些目标中的一部分是相对于天线102静止的,而另一部分相对于天线102是运动的。利用无线电波在受到相对于发射机或接收机运动的目标反射时而产生的多普勒频移,发射信号和接收信号之间的频率差异可以用来确定目标的相对速度,并且在假定不同目标的相对速度存在差异的条件下,还可以辨别不同的目标。
如图3所示,前置放大器302的输出耦合到信号开关304a和304b。信号开关304a和304b通过分别将前置放大器302或者耦合到通道0音频放大器310和低通滤波电容器306、或者耦合到通道1音频放大器312和低通滤波电容器308,从而在时间上将来自前置放大器302的信号解复用。
分别与来自PM ASIC120的开关定时控制线322和324的成对信号开关304a和304b耦合在一起的成对开关定时控制信号CH0DM402和CH1DM404确定前置放大器302的输出耦合到通道1低通滤波电容器306和308中的哪一个,以及这种耦合的时序。图4是显示了开关定时控制信号CH0DM402、CH1DM404和频率控制电压信号406之间的时间关系的时序图,其中频率控制电压信号由PM ASIC120耦合到振荡器的频率控制电压信号线。在本发明优选实施方案中,频率控制电压信号406以51.2
s的间隔在相对高压和相对低压之间切换。频率控制电压信号406的一个周期等于102.4
s,或者频率近似为9.7656kHz。因此,发射振荡器的输出频率以51.2
s的间隔、随着频率控制电压F1/F2 406的变化而在相对低频(f1,通道0发射频率)和相对高频(f2,通道1发射频率)切换。
现同时参考图3和图4,处于高状态的通道0选择信号CH0DM 402使得前置放大器302的输出通过信号开关304a耦合到低通滤波电容器306。处于高状态的通道1选择信号CH1DM404使得前置放大器302的输出通过信号开关304b耦合到低通滤波电容器308。因为PM ASIC120控制频率控制电压信号(F1/F2)406和通道选择信号(CH0DM402和CH1DM404),所以信号开关304a和304b与频率控制电压信号F1/F2是时间同步的。因此,信号开关304a将前置放大器302连接到通道0低通滤波电容器306的时间稍稍长于1/3周期(38.4
s),与发射信号处于通道0频率f1的时间同步(因为频率控制电压信号406在这段时间内是高电平)。与此类似,信号开关304b将前置放大器302连接到通道1低通滤波电容器308的时间稍稍长于1/3周期(38.4
s),与发射信号处于通道1频率f2的时间同步(因为频率控制电压信号406在这段时间内是低电平)。因此,信号开关304a和304b在时间上将下转换的通道0和通道1差异信号解复用。通道0和通道1选择信号402和404的脉冲或长一些、或短一些的其它实施方案也属于本发明范围。
图4的时序图示出通道0选择信号402脉冲和通道1选择信号404脉冲偏离频率控制信号406的各个边缘,以便使发射信号定时稳定,确保在通道0和通道1选择信号402和404有效时接收信号和发射信号处于同一载波频率(机接收和发射信号或者处于通道0频率或者处于通道1频率)。然而,应当理解的是,在本发明的其它实施方案中,这些信号402和404可以出现在任何位置,例如频率控制电压信号406的上升沿或下降沿、或在其中间。
低通滤波器306和308如同包络检测器一样保持信号开关304a和304b的输出。通道0低通滤波器306保持(或“平滑”)时间解复用的下转换通道0差异信号,通道1低通滤波器308保持(或“平滑”)时间解复用的下转换通道1差异信号。每个滤波器306和308的输出是频率分量等于发射信号和接收信号之间的频率差的平滑信号,其中发射信号与连接到滤波器的通道对应,接收信号是在通道进行发射的时间内接收的。例如,通道0低通滤波器306输出频率等于通道0发射频率和数个目标反射回来的通道0接收频率之差的平滑信号,如同通道0发射频率是以连续波的形式发射的一样。
采样电路300的输出连接到双A/D转换器118(图1)。A/D转换器118包括两个分别与采样电路300在输出信号线328和330上输出的通道0和通道1信号相对应的独立通道。A/D转换器118的每个通道将来自相应下转换频率通道的模拟输入信号转换为数字化数据字流。在优选实施方案中,A/D转换器118包括由Crystal Logic公司得到的器件编号为CS5330A的sigma-delta A/D转换器。A/D转换器118优选地输出一系列18比特的数据字。头16个比特表示在特定时间间隔内的模拟信号幅度(即16比特的分辨率)。
因此,潜在目标反射回来、并由天线102接收的信号经过采样、时间解复用和数字化处理之后成为数字化数据流。数字化数据流表示随着发射信号的时间解复用函数而变化的接收信号。数字化数据耦合到PM ASIC120。PM ASIC120提供定时信息,采集A/D转换器118产生的数字化数据流,并调整数据,使其可以由DSP 122处理。具体地讲,PM ASIC120由A/D转换器118读取数据,并将数据写入与适当通道相连的、RAM124中的存储区域(即,通道0数据写入与通道0差异信号相关的存储区,通道1数据写入与通道1差异信号相关的存储区)。在优选实施方案中,写入RAM124的每个数据样本都是16比特宽的(利用硬件由18比特的A/D转换器118截取)。通道0数据和通道1数据(分别对应于f1和f2发射频率)优选地分别存储在RAM124中的两个圆形缓冲器中,每个缓冲器可以存储1024个数据字。每个缓冲器又分为四个分别由256个字构成的区。利用这种存储方案,512个样本点的区可以由连续填充的两个数据区形成(包括256个来自通道0的样本点和256个来自通道1的样本点)。
DSP122耦合到PM ASIC120、RAM124和快闪RAM126。DSP122利用存储在RAM124中的数据计算检测目标的距离。DSP122利用类似于美国专利5,302,956中描述的技术完成这一计算。因为天线102发射的信号功率值是恒定的,所以A/D转换器118产生的信号的功率变化可以归因于接收信号的功率变化。如果信号功率在通道0和通道1的信号中的同一多普勒频率上超过预定功率值,那么就假定存在目标。DSP122还确定通道0和通道1信号之间的精确相位关系。DSP122根据两个信号之间的相位差确定目标的距离。利用DSP122还可以计算相对于天线102的运动。DSP122利用由目标反射回来的信号中的多普勒频移计算相对于天线102的运动。在一个实施方案中,DSP122可以识别和跟踪多个目标。目标由它们的频率区分(即多普勒频移量)。
在对存储在RAM124中的512个样本点进行加窗和快速复立叶(FFT)变换操作之前,优选地调整最大样本点值与存储表示容量的标度,使FFT运算的定点精度最大。然后,将512点的“Blackman”窗函数作用在标度调整后的数据缓冲器上。当RAM124中存在足够的数据时,DSP122就执行512点的复FFT运算,从而将时分接收信号的数字化表示由时域映射到频域。这样,DSP122对存储在RAM124中的数据进行谱分析,并确定频率、相位关系和每个频率上的相对功率。利用数字化信号处理器,例如本发明优选实施方案中使用的TMS320C203 DSP进行FFT运算在本领域是众知的。因此,FFT运算的结果是一系列频率值和与每个频率值对应的功率值。当特定频率上的功率高于选定的阈值Pth时,DSP122可就确定存在目标。
在频谱数据产生之后,需要考虑的只是谱的正频率部分。对8个宽度可变、且覆盖正频率谱中大多数数据点的条带计算噪声估计值。DSP122(在给定的噪声带范围内)扫描频谱,搜索独立的最高频率峰。如果该峰值对于给定的噪声带超过计算出的“检测阈值”,那么该峰值就认为是潜在的目标。在本发明的一个优选实施方案中,DSP122检测是否只存在一个目标(即,不需要扫描多个峰值)。然而,在其它实施方案中,需要检测多个峰。通过计算其功率超过选定阈值Pth的频率峰的个数,DSP122可以确定存在多少个目标(即存在多少个以不同的速度相对于天线102运动的目标)。以同样的相对速度运动的目标反射的信号具有相同的频率。
DSP122还确定通道0信号数据与通道1信号数据的相位关系。根据这种信息,DSP可以计算目标的距离和相对速度。通过将频率和相位差乘以一个固定因子就可以直接确定距离和相对速度,这是因为根据公式R=C×(~1-~2)/)(4
(f1-f2))可以得出相位与目标距离的线性比例关系,根据公式fd=72(赫兹小时/英里)×V(英里/小时)可以得出频率与目标相对速度的线性比例关系。在距离公式中,R是以英尺为单位的到目标的距离,C是以英尺/秒为单位的光速,f1是发射通道0信号的频率,f2是发射通道1信号的频率。在相对速度公式中,fd是多普勒现象产生的频移,V是目标相对收发机的相对速度。然而,在其它实施方案中,可以使用其它将频率映射为相对速度、将相位关系映射为距离的方法。例如,可以利用表来交叉查找分别与频率和相位对应的速度和距离。
如果数据在选定的预定范围之外,那么就认为该数据是无效的,并舍弃它。如果数据处于预定范围之内,DSP122就利用跟踪软件模块产生目标距离和相对速度信息的滤波时间轨迹或记录。DSP122将新的目标距离和相对速度与以前记录的记录和相对速度进行比较。如果目标距离和相对速度与先前记录的距离和相对速度一致(即,如果新目标距离和速度与先前记录的目标距离和速度之间的差异在预定范围之内),那么DSP122就利用新接收的距离和相对速度替换先前记录的距离和相对速度。如果新目标与已有的目标不相符,那么就存储该距离和相对速度,由此定义了一个新目标。当DSP122没有接收到与先前记录的目标十分匹配的数据时,那么就假定先前记录的目标已经离开检测区域,并将其距离和相对速度从记录中去除。因此,在另一种实施方案中,系统可以同时识别和跟踪多个目标。
DSP122在每次处理循环结束时产生警报。本雷达系统产生的报警信号包括“无目标”(没有跟踪的目标);“目标处于检测区”202(图2);“系统故障”(在加电或在线测试过程中检测到硬件失效);和“存在无法工作的条件”(例如,使噪声值超过特定阈值的大雨,覆盖天线102的冰或泥巴,信噪比过低,或在超过预定阈值的时间周期内没有检测到峰)。DSP122产生的报警信号通过输出传输线130产生。
图5是DSP122确定是否存在目标所采用的方法的高级流程图。开始,DSP122在对存储在RAM124中的数据(通道0数据的256个样本点和通道1数据的256个样本点)进行512点的FFT运算之后进入步骤500。根据优选实施方案,对于每256个新样本点进行新FFT,由此在新的和先前计算的样本点上产生50%叠盖FFT。方法进行到步骤502确定在天线102的前方(图1)是否存在潜在的目标。如上所述,因为发射信号的功率是恒定的,可以利用反射信号的功率变化检测是否存在目标。在步骤502,其方法是确定A/D转换器118的输出信号功率值(“Pwr”)是否超过预定阈值(Pth)。如果超过,该方法就执行到步骤504,以确定目标距天线102的距离。如果没有,该方法执行到步骤512,以获得进行后续FFT运算的下一组256样本点。
在步骤504,DSP122确定目标处于天线102前方的时间是否超过预定周期。如上所述,为了使DSP122确定存在目标,目标在天线102前方存在的时间至少要等于TH1秒。在优选实施方案中,TH1大约是0.3秒。在其它实施方案中,根据系统参数确定的灵敏性,TH1可以具有不同的值。如图5所示,如果目标在天线102前方存在的时间至少为TH1秒,那么该方法就执行到步骤506,以确定目标是否处于检测区之内。否则,该方法进行到步骤512。
如上面参考图2进行的描述,本发明侧视多普勒雷达系统100在且只有在目标在预定检测区之内保留预定时间周期的条件下报告目标的存在。根据本发明方法和装置,侧视多普勒雷达系统100抑制所有处于天线102的最小距离之内的目标。在一个实施方案中,最小距离大约为2英尺。因为雨天产生的大多数误警是由距天线2英尺之内的雨滴杂波产生的,所以本方法在步骤506中抑制距天线2英尺之内的任何目标。通过抑制天线102的特定距离“最小距离”之内的所有目标,本发明的检测方法可以显著地降低雨滴杂波产生的误警。另外,通过抑制天线102的特定距离“最大距离”之外的目标,本检测方法可以降低由潮湿树叶和其它环绕天线102的潮湿环境引起的杂波造成的误警。如图5所示,如果目标处于检测区之外,那么该方法就执行到步骤512,采集下一组样本点。然而,如果目标处于最小距离和最大距离之间(即处于检测区之内),那么该方法就执行到步骤508。
在步骤508,本目标检测方法确定目标的接近速度是否超过预定值。如上所述,本发明不会指示目标的存在,除非它们的移动速度超过相对于天线102的最小接近速度阈值(最小接近速度)。在优选实施方案中,不会指示目标的存在,除非它们相对天线102的移动速度至少为0.07mph。在其它实施方案中,这种速度分辨率可以随着系统的需求而改变。如果目标速度小于最小接近速度,那么该方法执行到步骤512,以采集下一组样本点。然而,如果目标的移动速度超过最小接近速度,那么本方法将在步骤510中产生警告,即目标处于检测区。
图5所示的目标检测方法优选地包括PM104中的DSP122运行的软件。另外,本发明的方法和装置可以用任何适宜的或期望的程序化设备实现,例如状态机、本状态独立逻辑电路、或字段可编程门阵列器件。图5所示的目标检测方法可以在硬件中实现(即“硬接线的”),或者利用其它类型的可编程器件实现。天线外形和天线波束宽度对降低雨滴杂波产生的误警的影响发明人通过实验观察到雨滴误警的主要根源是环绕在天线102四周的潮湿树叶和其它潮湿的“非道路”环境。潮湿环境使正常的良性杂波“变强”,从而使现有技术的雷达系统失效。参照图1-5描述的测距方法和装置可以抑制系统100在雨天使用时产生的大多数杂波。然而,发明人已经观察到通过压缩天线波束宽度和优化天线外形可以进一步提高雨滴杂波抑制能力。压缩天线波束宽度减少了潮湿道路表面和潮湿非道路表面产生的反射。根据天线尺寸和检测区的覆盖需求,天线波束宽度应当尽可能地窄。例如,在优选实施方案中,天线波束宽度在垂直向和水平向都为+/-7.5度。
制作窄波束宽度天线和降低天线辐射信号的旁瓣的有效途径是利用斜对道路表面安装的方形盖板天线阵列(即,使用菱形天线阵列)。图6示出天线102的一个实施方案,其中天线具有菱形配置的天线盖板单元(例如单元606和608),以降低雨滴杂波的影响。图6所示的天线102包括相对于对角轴线602倾斜放置的6×6矩形单元阵列。天线102安装在主车辆上,使方形阵列的另一条对角轴线604平行于道路表面。注意,对角轴线602即是方形阵列的“对角”轴线,并且在天线102安装到主车辆上之后又是“垂直”轴线。类似,对角轴线604即是方形阵列的“对角”轴线,并且在天线102安装到主车辆上之后又是“水平”轴线。因此,天线的主平面相对于垂直和水平轴线旋转45度角。
天线102的这种对角取向不会对雷达系统100的目标检测能力产生负面影响。然而,对角取向确实有助于降低潮湿道路和非道路环境产生的误警。对角取向能够有效地在垂直平面内产生自然的线性幅度衰减,因为在水平行中的盖板单元数目(例如单元606和608)随着沿垂直轴线602方向由天线阵列中心向外的偏离而线性地降低。在图6所示的实例中,因为沿水平轴线604的盖板单元数目沿着垂直轴线602由六个(在阵列的中心)减少到一个(在阵列的底部),所以天线102辐射信号的旁瓣也相应地降低。在一个实例中,第一旁瓣与方形天线辐射图(即没有相对于道路表面倾斜45度角的天线)的第一旁瓣相比大约降低了13dB。所有其它旁瓣也降低到相当低的幅度。降低旁瓣有助于本雷达系统100抑制由潮湿道路和其它潮湿环境反射回天线的能量。
除了降低辐射信号的旁瓣,对角取向还产生交叉极化的回波信号。通过将天线102倾斜到图6所示的方位,潮湿道路表面反射的回波电场矢量与天线102发射的电场矢量正交。回波矢量的正交性可以十分有效地抑制潮湿道路环境产生的雨滴杂波。
几种其它类型的天线结构也是可行的。例如,不需要转向就可以产生对角极化效应的天线单元。盖板单元可以以任意期望的方式相对于垂直轴602转动。整个阵列的轮廓决定了旁瓣的降低效果(即,在按照图6所示进行配置时盖板单元的轮廓可以产生自然幅度衰减,然而,各盖板单元自身的取向没有任何影响)。在其它实施方案中,天线阵列包括配置成菱形结构的16行×16列的盖板单元,以降低雨滴杂波。这种结构的几种变形也属于本发明范围。
总之,本发明方法和装置包括精确、可靠地检测主车辆驾驶员盲区中的物体的装置。本发明方法和装置优选地使用安装在主车辆侧面的多普勒雷达系统。根据本发明,天线收发机发射RF信号,接收潜在目标反射的信号。利用数字信号处理技术,雷达系统可以确定是否存在潜在目标以及其距离和接近速度。本方法确定检测到的目标是否在预定检测区内存在的时间达到预定周期。只将那些处于检测区内的目标报告给驾驶员。有利的是,本方法抑制所有处于天线特定距离之内的目标,由此降低了雨滴杂波引起的误警。本发明利用距离信息抑制距天线的距离大于一条车道的目标,由此降低潮湿树叶引起的误警。转动天线使之呈菱形结构可以进一步降低潮湿道路环境引起的杂波。
已经讨论了本发明的多个实施方案。然而,应当理解的是,在不偏离发明宗旨和范围的条件下可以进行各种修改。例如,通道0发射信号和通道1发射信号之间的关系可以是这样的,它们的频差可以大于或小于2.5MHz。此外,频率控制电压406(图4)的持续时间可以长于或短于102.4
s,占空比可以大于或小于50%。作为另一个实例,频率调制方案可以是FSK之外的其它方案。同样,本发明不受限于使用512样本点的FFT运算。实际上可以使用任何长度的FFT实现本发明。另外,发射信号的中心频率可以高于或低于24.725GHz。例如,在一个实施方案中,正在考虑的发射信号中心频率大约为76.5GHz。此外,如参照图6描述的,本发明可以使用几种其它类型的盖板阵列天线。
相应地,应当理解的是,本发明不受限于具体说明的实施方案,而受限于附属权利要求的范围。
权利要求
1.一种检测在安装了雷达系统的主车辆盲区中是否存在物体的侧视雷达系统,包括a)发射雷达信号、并检测发射雷达信号由物体反射回来的反射信号的雷达收发机;b)处理器模块,连接到收发机以控制收发机发射信号的定时和处理收发机接收的反射信号,其中处理器模块确定产生反射信号的物体是否存在及其距离和接近速度,处理器模块还确定物体是否处于预定检测区;c)连接到处理器模块的指示器,接收处理器模块发出的物体处于检测区的指示信号,其中指示器警告主车辆驾驶员物体处于检测区之内。
2.权利要求1的侧视雷达系统,其中雷达收发机包括a)天线;b)天线驱动器,耦接到天线以控制天线的发射;和c)天线接收器,耦接到天线以处理反射信号,其中天线接收器将反射信号下转换为基带信号,以便处理器模块进一步处理。
3.权利要求1的侧视雷达系统,其中处理器模块包括a)耦接到雷达收发机的模-数(A/D)转换器,能够将雷达收发机接收的反射信号转换为数字化数据流;b)处理器模块专用集成电路(PM ASIC),耦接到A/D转换器和雷达收发机,能够向收发机提供定时信息,其中PM ASIC调整数字化数据流以产生样本点;c)随机存取存储器(RAM),耦接到PM ASIC,用于存储来自PM ASIC的样本点;和d)数字信号处理器(DSP),耦接到PM ASIC和RAM,用于对存储在RAM中的样本点进行数字信号处理操作。
4.权利要求3的侧视雷达系统,其中A/D转换器包括18比特双通道A/D转换器集成电路。
5.权利要求3的侧视雷达系统,其中PM ASIC调制发射的雷达信号,使其发射频率分别为f1和f2。
6.权利要求3的侧视雷达系统,其中PM ASIC通过将第一样本点段与发射雷达信号频率f1联系在一起来调整数字化数据流,PM ASIC将第二样本点段与发射雷达信号频率f2联系在一起。
7.权利要求6的侧视雷达系统,其中PM ASIC在RAM的第一环形缓冲器中存储第一样本点段,PM ASIC在RAM的第二环形缓冲器中存储第二样本点段。
8.权利要求7的侧视雷达系统,其中DSP对存储在RAM中的第一和第二样本点段进行快速傅立叶变换(FFT)运算,由此将样本点数据由时域转换到频移。
9.一种检测在安装了侧视雷达系统的主车辆盲区中是否存在物体的侧视雷达系统,包括a)多普勒雷达电路用于1)发射具有第一和第二发射频率的调制雷达信号;2)接收发射雷达信号由主车辆附近物体反射回的反射信号;3)检测出现在发射雷达信号和反射雷达信号之间的多普勒频移;和4)确定接收得到反射波的每个多普勒频率上的功率值;和b)耦接到多普勒雷达电路的控制器,用于1)确定使反射波发射回来的物体是否处于主车辆附近的预定检测区;2)只有在物体处于检测区之内时才向主车辆驾驶员报警。
10.权利要求9的侧视雷达系统,其中控制器通过测量物体的距离来确定物体是否处于检测区,并确定物体是否处于距主车辆的最小预定距离和最大预定距离之间。
11.一种确定侧视雷达系统检测到的物体是否处在安装了雷达系统的主车辆盲区中的预定检测区内的方法,包括a)发射具有第一和第二发射频率的调制雷达信号;b)接收发射雷达信号由主车辆附近物体反射回来的反射信号;c)根据步骤b中接收到的反射雷达信号的频率特性确定物体的距离;d)确定物体是否处于主车辆附近的预定检测区;和e)只有在物体处于检测区时才向主车辆驾驶员报警。
12.权利要求11的方法,其中确定物体是否处于检测区的步骤(d)包括a)确定反射信号在选定频率上的功率值是否超过预定功率阈值;b)确定检测到物体的持续时间是否超过预定时间周期;c)确定物体是否处于距主车辆的最小预定距离和最大预定距离之间;和d)确定物体相对于主车辆的运动速度是否超过预定的最小接近速度。
13.在通用计算设备上运行的计算程序,其中程序能够确定侧视雷达系统检测到的物体是否处在安装了本雷达系统的主车辆盲区中的预定检测区之内,包括a)发射具有第一和第二发射频率的调制雷达信号的第一组指令;b)接收发射雷达信号由主车辆附近物体反射回来的反射信号的第二组指令;c)根据反射雷达信号的频率特性确定目标距离的第三组指令;d)确定物体是否处于主车辆附近的预定检测区之内的第四组指令;e)只有在物体处于检测区之内时才向主车辆驾驶员报警的第五组指令。
全文摘要
检测处理驾驶员盲区中是否存在物体的方法和装置。装置包括侧视多普勒雷达系统,该系统利用了源自频率调制切换技术的、具有调频(FM)操作的连续波(CW)发射。雷达系统确定检测目标是否存在及其距离和接近速度。雷达系统检测即使工作在恶劣天气条件下也能检测目标,并不会因潮湿道路和其它潮湿环境产生的雨滴杂波而产生误警。在一种实施方案中,雷达系统使用取向为菱形结构的盖板阵列天线,以有效地产生有助于抑制潮湿道路表面引起的杂波的自然线性幅度衰减。
文档编号G01S13/34GK1259675SQ9911064
公开日2000年7月12日 申请日期1999年7月23日 优先权日1998年7月23日
发明者J·C·麦达德, R·E·斯通, E·P·波莱, R·J·施利希蒂格 申请人:易通-沃拉德技术有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1