一种涡流线扫描热成像检测系统及方法

文档序号:9287423阅读:669来源:国知局
一种涡流线扫描热成像检测系统及方法
【技术领域】
[0001]本发明属于装备无损检测、结构健康监测和产品质量控制等领域,特别涉及一种涡流线扫描热成像检测系统及方法。
【背景技术】
[0002]随着现代科学和工业技术的发展,无损检测技术已成为保证产品质量和设备运行安全的必要手段。大型构件的检测与质量控制正成为无损检测领域的一个难点,为了保证检测的可靠性,一般要求检测系统能够连续运行、成像显示,并尽可能降低成本。
[0003]目前具有代表性的无损检测技术主要有射线检测、超声检测、渗透检测、磁粉检测、涡流检测以及热成像检测等技术。
[0004]热成像检测技术采用热源对被检对象进行加热,采用热像仪观测和记录被检对象表面的温度变化信息,以对被检对象表面及内部的缺陷(裂纹、分层等)进行检测和评估。热成像检测技术具有非接触、非破坏、无需耦合、检测面积大、速度快等优点,已广泛应用于航空、航天、石油、化工、电力、核能等领域。
[0005]祸流加热,也叫做感应加热,是一种高效、节能、节材、环保和安全的新型加热技术。将导电材料置于高频交变电磁场中,根据法拉第电磁感应定律,导电材料中将产生涡流。根据焦耳定律,部分涡流将转化为热能,继而加热导电材料。
[0006]采用涡流加热方式的热成像检测技术叫做涡流热成像检测技术。涡流热成像检测技术具有非接触、非破坏、无需耦合、检测面积大、速度快等优点,可以检测导电类材料,如碳纤维复合材料、金属基复合材料、金属及其合金,也可以检测含有导电材料的工件,如涂覆在金属基底上的涂层系统。
[0007]现有涡流热成像检测系统中热源和热像仪的位置都是固定不变,通过对螺旋线圈施加高频交流电流,利用螺旋线圈对被检对象进行加热,利用热像仪进行成像。
[0008]因此,现有涡流热成像检测系统存在以下缺点:
第一,由于热源和热像仪的位置固定不变,固只能实施静态检测,不能实施动态检测,当检测大型构件时需要多次配置热源和热像仪的位置,从而降低了检测效率;
第二,由于常用的螺旋线圈本身结构的限制,导致对被检对象的加热不均匀,从而导致成像效果差、缺陷检测的精准度低;
第三,由于热源和热像仪的位置都是固定不变,必须采用二维热像仪才能在较大范围内进行温度采集,二维成像仪的成本高。

【发明内容】

[0009]现有涡流热成像检测系统检测效率低、成像效果差、检测精准度低、成本高。本发明的目的在于,针对现有技术的上述不足,提供一种涡流线扫描热成像检测系统及方法。
[0010]为解决上述技术问题,本发明所采用的技术方案是:
一种涡流线扫描热成像检测系统,包括具有至少两个输出端的触发器,所述触发器的一个输出端通过涡流加热模块与线圈相连,所述触发器的其它输出端分别与至少一个热成像采集装置相连,所述每个热成像采集装置均配置用以调节视场大小的镜头,所述每个热成像采集装置的输出端分别与计算机相连,还包括与计算机的输出端相连的扫描控制模块,所述扫描控制模块的输出端与运动装置相连,所述运动装置上具有夹持装置,所述夹持装置分别与线圈和每个热成像采集装置固连,或者所述夹持装置与被检对象固连。
[0011]利用计算机驱动扫描控制模块工作,扫描控制模块驱动运动装置进行移动,运动装置通过夹持装置带动线圈和热成像采集装置移动,或者运动装置通过夹持装置被检对象移动。从而实现了对被检对象的动态检测,当被检对象比较大时,无需重新配置检测系统的位置即可实现对被检对象的全面检查,使用方便,检测效率高。
[0012]作为一种优选方式,所述线圈为线性线圈,所述线性线圈对被检对象实施线性加热的一边与运动装置的移动方向相垂直。
[0013]利用线性线圈对被检对象均匀加热,成像效果好、缺陷检测的精准度高。
[0014]作为一种优选方式,所述每个热成像采集装置为一维热像仪,或者所述每个热成像采集装置为阵列红外传感器及采集系统。
[0015]热成像采集装置为一维热像仪,或者阵列红外传感器及采集系统,采集多个一维温度阵列并传输给计算机,计算机将采集到的多个一维温度阵列构成图像,同样可以达到检测效果,替代了原来的二维热像仪,降低了检测成本。
[0016]进一步地,当热成像采集装置的数目大于I时,每个热成像采集装置与线圈之间的距离分别不同。
[0017]通过设置热成像采集装置与线圈之间的距离不同,可以实现对被检对象不同深度的成像,提高了检测结果的可靠性。
[0018]作为一种优选方式,所述线圈和热成像采集装置分别位于被检对象的同侧或两侧。
[0019]当线圈和热成像采集装置位于被检对象的同侧时,检测系统采取的是反射检测方式;当线圈和热成像采集装置分别位于被检对象的两侧时,检测系统采取的是穿透检测方式,当被检对象尺寸较小,热量能够快速传递至线圈的另一侧时,可以采取穿透检测方式。该种结构提高了系统的可配置性。
[0020]基于同一个发明构思,本发明还提供了一种涡流线扫描热成像检测方法,使用所述的涡流线扫描热成像检测系统,
利用计算机驱动扫描控制模块工作,扫描控制模块驱动运动装置进行移动,运动装置通过夹持装置带动线圈和热成像采集装置同步移动,或者运动装置通过夹持装置带动被检对象移动;
利用触发器控制涡流加热模块把交变电流施加到线圈,线圈产生交变电磁场对被检对象进行感应加热;
利用触发器控制热成像采集装置采集被检对象表面的温度值,通过配置镜头来调节视场的大小,热成像采集装置将采集到的温度值传输给计算机;
计算机将采集到的温度值构成图像,通过判断图像上温度的异常分布来判断被检对象是否存在缺陷以及存在缺陷的具体位置。
[0021]根据被检对象性能及检测需求的不同,可以调节热成像采集装置至线圈的距离,距离越大,热量传递的时间越长,从而检测深度越大,但同时检测时间也相应增长。
[0022]同时还可以根据实际测试条件及需求设定扫描控制模块的扫描速度和扫描时间,设定涡流加热模块的功率、电流和频率,设定热成像采集装置的采样频率等。
[0023]作为一种优选方式,所述线圈为线性线圈,所述线性线圈对被检对象实施线性加热的一边与运动装置的移动方向相垂直,利用线性线圈与被检对象的相对运动,对被检对象进行均匀加热。
[0024]作为一种优选方式,所述每个热成像采集装置为一维热像仪,或者所述每个热成像采集装置为阵列红外传感器及采集系统,利用热成像采集装置采集被检对象表面的温度值,形成多个一维温度阵列并传输给计算机;计算机将采集到的多个一维温度阵列构成图像。
[0025]作为一种优选方式,当热成像采集装置的数目大于I时,调节每个热成像采集装置与线圈之间的距离,使每个热成像采集装置与线圈之间的距离分别不同,对被检对象不同深度部位进行检测或成像。
[0026]作为一种优选方式,使线圈和热成像采集装置分别位于被检对象的同侧或两侧。
[0027]与现有技术相比,本发明使用方便,检测效率高,成像效果好,缺陷检测的精准度高,检测成本低,检测结果可靠性高。
[0028]
【附图说明】
[0029]图1为本发明检测系统一实施例的结构示意图。
[0030]图2为本发明检测系统另一实施例的结构示意图。
[0031]图3为由m个一维温度阵列构成的新图像示意图。
[0032]其中,I为计算机,2为涡流加热模块,3为线性线圈,4为扫描控制模块,5为运动装置,6为触发器,7为一维热像仪,8为镜头,9为被检对象,10为夹持装置,11为一维温度阵列。
[0033]
【具体实施方式】
[0034]如图1所示,本发明检测系统的一实施例包括具有两个输出端的触发器6,所述触发器6的一个输出端通过涡流加热模块2与线性线圈3相连,所述触发器6的另一个输出端与一维热像仪7相连,所述一维热像仪7配置用以调节视场大小的镜头8,所述一维热像仪7的输出端与计算机I相连,还包括与计算机I的输出端相连的扫描控制模块4,所述扫描控制模块4的输出端与运动装置5相连,所述运动装置5上具有夹持装置10,所述夹持装置10分别与
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1