一种利用磁光光纤研究偏振光在衰荡腔中传播特性的方法

文档序号:9469822阅读:125来源:国知局
一种利用磁光光纤研究偏振光在衰荡腔中传播特性的方法
【技术领域】
[0001] 本发明属于偏振光在衰荡腔中传播装置技术领域,具体涉及一种利用磁光光纤研 究偏振光在衰荡腔中传播特性的方法。
【背景技术】
[0002] 随着现代激光、光电子和光通信技术的迅速发展,磁光材料和磁光器件的研究也 有了很大发展。由于磁光器件所具有的一系列良好特性,磁光器件在光通信、光信息处理和 信号测量等技术领域有着广泛的应用。磁光光纤在智能光纤传感、可调梳状滤波、磁性非线 性开关和非线性脉冲整形等光信息处理领域具有很大应用前景。由于磁光光纤既具有双折 射性质又具有法拉第效应,因此研究偏振光在磁光光纤中的传播就比较复杂。

【发明内容】

[0003] 本发明解决的技术问题是提供了一种利用磁光光纤研究偏振光在衰荡腔中传播 特性的方法,该方法通过分析调制电流大小和衰荡输出曲线变化,最终得到磁旋光光纤旋 光角的变化规律。
[0004] 本发明为解决上述技术问题采用如下技术方案,一种利用磁光光纤研究偏振光在 衰荡腔中传播特性的方法,其特征在于:沿光线传输方向依次设有通过光纤相连的调幅激 光器、起偏器、衰荡腔、检偏器和光电探测器,其中衰荡腔由第一光纤親合器、第二光纤親合 器、磁光光纤和保偏光纤构成,第一光纤耦合器的一端与第二光纤耦合器的一端通过磁光 光纤相连,第一光纤耦合器的另一端与第二光纤耦合器的另一端通过保偏光纤相连,磁光 光纤上通过法拉第线圈产生的磁场,调幅激光器通过线路与调制信号源相连,光电探测器 与数字信号处理器相连,起偏器与检偏器相互平行,首先调幅激光器发出的光先经过起偏 器,然后通过第一光纤親合器将线偏振光加到磁光光纤上,由于磁光光纤在外加磁场下的 双折射性和磁可调性,使偏振光产生旋光角,此光信号再经过第二光纤耦合器一部分输出, 另一部分反馈到第一光纤耦合器重新作用,循环往复,输出光强产生变化,直到衰减为零, 输出的光信号经过检偏器和光电探测器将信号输入到数字信号处理器; 在法拉第磁光效应作用下偏振光所旋转的角度跟其通过旋光晶体的长度A和磁感应 强度龙的关系表示为: (1) 为直流电流控制法拉第线圈所产生的磁旋光角,比例系数r与介质性质及使用的 光的频率有关,偏振光所旋转方向跟晶体中的磁场强度有关,其磁感应强度B与法拉第电 磁线圈匝数n和线圈上通的电流强度I的关系为: (2) 上式中所表示的是真空下的磁导率,由(1)和(2)式可得光的波动面所旋转角度, 经过磁光效应所产生的逆偏光角与电流的关系为:
式(3)中:_#为常数,因此迨与丨是所成的比例关系为线性。
[0005] 偏振的光信号从耦合器进入衰荡腔,两偏振片保持平行时,光电探测器探测到的 光强最强,记录此时刻为初始时刻。脉冲光经耦合器耦合入光纤环形腔,沿着环可以绕行很 多圈,每绕一圈,因磁光光纤熔接处、耦合器和光纤等的光损耗以及磁光光纤使偏振光产生 偏振角,由光电探测器探测光的强度随着时间不断减小,通过实验和理论分析可知光在光 纤环形腔中传输时,输出光强分布规律为:
式(4)中||为初始时刻光电探测器探测探测到的光强的99倍,幼-||f时光电探测器探测到的光强理论值,减为磁光光纤产生的旋光角。式(5)中陶:为光在光纤 中的传输速度,L为光纤环长度。A为光在光纤环中传输时的损耗值:
式(7)中餐为保偏光纤的吸收系数,L为光纤环长度,P为磁光光纤的吸收系数,1为磁 光光纤长度,C为两个耦合器的插入损耗,Y为保偏光纤的散色损耗,Y'为磁光光纤的散色损 耗,最终得到输出光强i「与电流/关系的表达式为:
本发明与现有技术相比具有以下优点: (1) 研究了一种基于法拉第效应的偏振光在磁旋光光纤衰荡腔结构中传播特性的方 法,同时实现对旋光物质旋光特性的研究; (2) 系统结构简单、体积小巧,尤其是灵敏度高,可以实现任意能够产生电流或者磁场 变化的非电物理量(压力、温度等)变化的测量; (3) 测量过程简化,方便迅速,有效的克服了传统测量方法中存在的繁琐流程; (4) 使用光纤耦合器实现电路间的电气隔离和滤除噪音和干扰,而且起到很好的安全 保障作用; (5) 系统响应延迟时间只有10ys左右,适用于对响应速度要求很高的场合。
【附图说明】
[0006] 图1是发明的光路原理图。
[0007] 图面说明:1、调制信号源,2、调幅激光器,3、起偏器,4、第一光纤耦合器,5、磁光光 纤,6、电磁线圈,7、第二光纤耦合器,8、检偏器,9、光电探测器,10、数字信号处理器,11、保 偏光纤。
【具体实施方式】
[0008] 结合附图详细描述本发明的具体内容。一种利用磁光光纤研究偏振光在衰荡腔中 传播特性的方法,沿光线传输方向依次设有通过光纤相连的调幅激光器2、起偏器3、衰荡 腔、检偏器8和光电探测器9,其中衰荡腔由第一光纤親合器5、第二光纤親合器7、磁光光纤 5和保偏光纤11构成,第一光纤耦合器4的一端与第二光纤耦合器7的一端通过磁光光纤 5相连,第一光纤耦合器5的另一端与第二光纤耦合器7的另一端通过保偏光纤11相连,磁 光光纤5上通过电磁线圈6加有磁场,调幅激光器2通过线路与调制信号源1相连,光电探 测器9通过线路与数字信号处理器10相连。
[0009] (1)磁光光纤特性测试 由调幅激光器、起偏器、光纤耦合器、磁光光纤、检偏器、光电探测器和数字信号处理模 块构成磁光光纤旋光特性测试平台。
[0010] (2)光纤親合器 起偏器与检偏器相互平行,在没有外加磁场的条件下有最大输出光强,加上外加磁场 时,光信号在磁光光纤内一部分经親合器输出,另一部分继续返回磁光光纤,循环往复,输 出光强产生变化,直到衰减为零。
[0011] (3)调幅激光器 实验平台采用具有高功率宽谱ASE光源和可调激光光源。台式ASE光源是专为光纤传 感、光无源器件测试、光谱分析设计的放大自发辐射光源。其输出波段为C波段,最大输出 功率为17dBm。在1550nm附近平坦度较好,可用于磁光光纤参数特性测试和分析。
[0012] 本发明通过衰荡腔结构,偏振的光信号经过磁光光纤产生偏转,然后通过分析不 同电流强度大小下相应的调制输出激光幅值,来研究旋光光纤磁旋光角、外加调制电流分 别与衰荡曲线的对应关系,从而确定旋光参数。衰荡腔结构分辨率高,性能稳定,灵敏度高。
[0013] 以上显示和描述了本发明的基本原理、主要特征和优点,在不脱离本发明精神和 范围的前提下,本发明还有各种变化和改进,这些变化和改进都落入要求保护的本发明的 范围。
【主权项】
1. 一种利用磁光光纤研究偏振光在衰荡腔中传播特性的方法,其特征在于:沿光线传 输方向依次设有通过光纤相连的调幅激光器、起偏器、衰荡腔、检偏器和光电探测器,其中 衰荡腔由第一光纤耦合器、第二光纤耦合器、磁光光纤和保偏光纤构成,第一光纤耦合器的 一端与第二光纤耦合器的一端通过磁光光纤相连,第一光纤耦合器的另一端与第二光纤耦 合器的另一端通过保偏光纤相连,磁光光纤通过法拉第线圈产生磁场,调幅激光器通过线 路与调制信号源相连,光电探测器与数字信号处理器相连,起偏器与检偏器相互平行,首先 调幅激光器发出的光先经过起偏器,然后通过第一光纤耦合器将线偏振光加到磁光光纤 上,由于磁光光纤在外加磁场下的双折射性和磁可调性,使偏振光产生旋光角,此光信号再 经过第二光纤耦合器一部分输出,另一部分反馈到第一光纤耦合器重新作用,循环往复,输 出光强产生变化,直到衰减为零,输出的光信号经过检偏器和光电探测器将信号输入到数 字信号处理器,振的光信号从耦合器进入衰荡腔,两偏振片保持平行时,光电探测器探测到 的光强最强,记录此时刻为初始时刻,脉冲光经耦合器耦合入光纤环形腔,沿着环可以绕行 很多圈,每绕一圈,因磁光光纤熔接处、耦合器和光纤等的光损耗以及磁光光纤使偏振光产 生偏振角,由光电探测器探测光的强度随着时间不断减小,通过实验和理论分析可知光在 光纤环形腔中传输时,输出光强分布规律为:输出光强方与电流/关系的表达式为:
【专利摘要】本发明公开了一种利用磁光光纤研究偏振光在衰荡腔中传播特性的方法,属于偏振光在衰荡腔中传播装置技术领域。本发明的技术方案要点为:首先调幅激光器发出的光先经过起偏器,然后通过第一光纤耦合器将线偏振光加到磁光光纤上,由于磁光光纤的双折射性和磁可调性,使偏振光产生旋光角,此光信号再经过第二光纤耦合器反馈到第一光纤耦合器重新作用,最后经过检偏器和光电探测器将信号输入到数字信号处理器。本发明可实现任意能够产生电流或者磁场变化的非电物理量(压力、温度等)变化的测量,同时使用光纤耦合器还实现电路间的电气隔离和滤除噪音干扰,起到很好的安全保障作用。该方法响应延迟时间只有10μs左右,适于对响应速度要求很高的场合。
【IPC分类】G01J4/00
【公开号】CN105222896
【申请号】CN201510555257
【发明人】王芳, 杨琳琳, 王旭, 郭彩霞, 宋艳, 刘玉芳
【申请人】河南师范大学
【公开日】2016年1月6日
【申请日】2015年9月2日
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1