特高压直流避雷器泄露电流检测中的双霍尔元件电路的制作方法_4

文档序号:10192734阅读:来源:国知局
块72经由电路并联连接按照并联电容的等效电路合成后,两所述霍尔电路模块7 2产生的电压信号的输出值为两霍尔电路模块7 2输出值的算术平均值,双霍尔元件720产生的电压信号经运算放大器80的放大作用来完成对输入电源83的放电控制,使得输入电源83的正接口 830向第二线圈绕组711上输出反向补偿电流,补偿电流产生的磁通与避雷器漏电电流所产生的磁通方向相反,通过运算放大器80对反向补偿电流的控制,使磁芯71中的磁通密度始终为定值,此时第二线圈绕组711上补偿电流再经过测量电阻R1的后输入到地面,通过电流表A对测量电阻R1内流通的电流数值,并根据该电流数值进行比例运算即得出避雷器泄露电流的直流信号值,从而进入下一个步骤。
[0051 ] c、将采集的信号进行处理后形成电流值数据输出。
[0052]d、将获得的电流数据通过无线传输至中央监控装置内进行汇总,数据处理单元11经过数据运算处理之后,通过公网信号发射单元5将含有避雷器泄露电流的直流信号值、测量时间或避雷器安装位置信息的编码以短信息形式发送到公网信号接收单元6。
[0053]e、中央监控装置显示该电流数据同时将该电流数据分配发送到对应避雷器管理者的移动终端3,具体为后台处理器40接收到编码形式的短信息后,进行信息转换,将编码信息转换成中文信息发送到相关管理人员或维修人员的移动终端3上,并在储存器41中永久保存上述信息。
[0054]另外,贯穿整个在线检测过程,均有对所述磁芯71上加载有交流信号,在磁芯71上加载上交流信号之后,磁芯71的磁通密度将在正向和反向来回充磁和退磁,在这个过程会打断外部电磁场对磁性材料的磁极化过程。
[0055]另外,本实施例试验中使用纳米非晶材料由中国科学院磁性材料与器件重点实验室提供。同样经过本申请人多次测试,其他类型的纳米非晶材料制得的磁芯也能够完成本项申请的目的。
[0056]实施例二
[0057]参照图6。本实施例与实施例一的实施方式大体相同,其不同之处在于:所述数据发送装置包括呈依次连接的射频信号发射单元50、调频转发单元51以及双模通信单元52,所述数据接收装置为与该双模通信单元52的输出端连接的公网信号接收单元6。
[0058]采用上述设置可以使得本实施例既可以在有公网覆盖的范围内将电路检测数值传输到中央监控装置,也可以在没有公网信号的区域中通过所述射频信号发射单元与调频转发单元的配合,先将雷击信息发到有设置在公网覆盖范围内的双模通信单元,之后再传输到中央监控装置,这样可以大大拓宽本实用新型的适用场合,使得设在一些深山或者密林中的直流避雷器也可以实时在线侦测其泄露电流的信息。
[0059]本实施例通过射频信号发射单元与调频转发单元的配合,可以自动地选择频段中传播距离最远的频点来对采集到的电流数据进行发射,可以克服单一频点传播距离过短的缺陷,使得本实用新型的适用场合更加宽广。
[0060]另外,由于本实施例针对数据发送装置与实施例一有所区别,因而本实施例对特高压直流避雷器泄露电路的在线侦测方法也有所不同,其不同之处在于:
[0061 ] 一方面,步骤d包括数据处理单元经过数据运算处理之后,将含有避雷器泄露电流的直流信号值、测量时间或避雷器安装位置信息的编码通过射频信号发射单元以及调频转发单元的配合,在保证通讯通道的畅通的情况下,以专网自动跳频的方式将编码信息经过一级转发到有移动公网信号覆盖区域的双模通讯单元上,然后再由双模通讯单元以短信息形式发送到公网信号接收单元。
[0062]另一方面,步骤e包括后台处理器接收到编码形式的短信息后,进行信息转换,将编码信息转换成中文信息发送到相关管理人员或维修人员的移动终端上,并在储存器中永久保存上述信息。
[0063]上述仅为本实用新型的【具体实施方式】,但本实用新型的设计构思并不局限于此,凡利用此构思对本实用新型进行非实质性的改动,均应属于侵犯本实用新型保护范围的行为。
【主权项】
1.特高压直流避雷器泄露电流检测中的双霍尔元件电路,其特征在于:包括一呈C形布置的磁芯以及两霍尔电路模块,各所述霍尔电路模块均包括一霍尔元件以及与该霍尔元件相串联的一调整电阻,所述霍尔电路模块的控制电流端并联接入于一直流恒流电源1+和1-,并且两所述霍尔电路模块的输出端也并联为VH+和VH-的数据接点。2.如权利要求1所述特高压直流避雷器泄露电流检测中的双霍尔元件电路,其特征在于:所述磁芯和两霍尔电路模块均安装于一环形壳体上,该环形壳体内设置有一容置空间,所述磁芯上分别绕设有一第一线圈绕组以及一第二线圈绕组,并且该磁芯安装于所述容置空间内,两所述霍尔电路模块装设于所述容置空间内并且其两端与所述磁芯的两端邻接,两所述霍尔电路模块之间连接有一电桥,所述第二线圈绕组所产生的磁通密度方向与所述第一线圈绕组的磁通密度方向相反。3.如权利要求2所述特高压直流避雷器泄露电流检测中的双霍尔元件电路,其特征在于:所述电桥包括两并联设置的电阻对,该两电阻对的一侧的接点连接于一霍尔电路模块中霍尔元件与调整电阻中间的接线处,该两电阻对的另一侧的接点连接于另一霍尔电路模块中霍尔元件与调整电阻中间的接线处,两并联设置的电阻对中每个电阻对各包括两个串联设置的电阻,并且其中一电阻对中两串联设置的电阻接线的中间与另一电阻对中两串联设置的电阻接线的中间电连接。4.如权利要求3所述特高压直流避雷器泄露电流检测中的双霍尔元件电路,其特征在于:所述环形壳体包括一屏蔽壳体以及设置于该屏蔽壳体外侧的绝缘壳体,所述磁芯包括两个对称设置的弧形芯块以及一固定管,两弧形芯块各以一端相互抵接,并且在该抵接位置的两侧套上所述固定管。5.如权利要求4所述特高压直流避雷器泄露电流检测中的双霍尔元件电路,其特征在于:所述弧形芯块为纳米非晶材料制成的弧形芯块,所述固定管为纳米非晶材料固定管。6.如权利要求4所述特高压直流避雷器泄露电流检测中的双霍尔元件电路,其特征在于:所述弧形芯块为非晶软磁材料制成的弧形芯块,所述固定管为非晶软磁固定管。7.如权利要求5或6所述特高压直流避雷器泄露电流检测中的双霍尔元件电路,其特征在于:所述磁芯的开口处形成有一气隙,两所述霍尔电路模块平行间隔布置于该气隙内,所述固定管所占据的体积为所述容置空间体积的四分之一,位于所述固定管一侧的弧形芯块中未套上固定管的部分所占据的体积为所述容置空间体积的三分之一,位于所述固定管另一侧的弧形芯块中未套上固定管的部分所占据的体积为所述容置空间体积的三分之一,所述第二线圈绕组包括上第二线圈绕部以及下第二线圈绕部,所述上第二线圈绕部绕设于位于所述固定管一侧的弧形芯块中未套上固定管的部分,所述下第二线圈绕部绕设于位于所述固定管另一侧的弧形芯块中未套上固定管的部分,所述上第二线圈绕部和下第二线圈绕部相互电连接,所述第一线圈绕组绕设于所述固定管的外侧。8.如权利要求7所述特高压直流避雷器泄露电流检测中的双霍尔元件电路,其特征在于:所述环形壳体套设在避雷器的地线上并且其包括可相互拆卸的左半壳体以及右半壳体。
【专利摘要】特高压直流避雷器泄露电流检测中的双霍尔元件电路,包括一呈C形布置的磁芯以及两霍尔电路模块,各所述霍尔电路模块均包括一霍尔元件以及与该霍尔元件相串联的一调整电阻,所述霍尔电路模块的控制电流端并联接入于一直流恒流电源I+和I-,并且两所述霍尔电路模块的输出端也并联为VH+和VH-的数据接点。本实用新型采用双霍尔电路模块对避雷器漏电流进行采集,其能大幅度降低了传感器的非线性度和位置误差,提高了传感器的抗干扰能力与量程范围。
【IPC分类】G01R19/00, G01R15/20
【公开号】CN205103295
【申请号】CN201520740871
【发明人】袁愿, 邓敏, 陈耀高, 方育阳, 吴菲, 洪晓燕
【申请人】厦门红相电力设备股份有限公司
【公开日】2016年3月23日
【申请日】2015年9月23日
当前第4页1 2 3 4 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1