基于背散射成像的检测系统的制作方法

文档序号:10978483阅读:278来源:国知局
基于背散射成像的检测系统的制作方法
【专利摘要】本实用新型公开了一种基于背散射成像的检测系统,涉及背散射技术领域。该基于背散射成像的检测系统包括射线源;多能背散射探测器;处理装置,分别与射线源与多能背散射探测器连接;其中,射线源向被检对象发送射线,多能背散射探测器接收经过被检对象散射的射线,并输出射线信号,处理装置接收来自多能背散射探测器的射线信号,处理射线信号以获得被检对象的图像射线源。基于被检对象的材料对不同能量的射线的物理效应不同,本实用新型能够更准确的识别出被检对象的密度、原子序数和图像,提高了检测系统的物质分辨能力。
【专利说明】
基于背散射成像的检测系统
技术领域
[0001] 本实用新型设及背散射技术领域,尤其设及一种基于背散射成像的检测系统。
【背景技术】
[0002] 近年来,随着国际社会对公共安全的重视,X射线背散射技术也获得长足的发展。X 射线透射技术可W透视被检查对象,但对低原子序数的材料分辨能力差,特别是少量轻薄 的有机物,如毒品、薄型炸药等不能很好地呈现。X射线背散射技术虽然穿透能力不如透射, 但对低原子序数的物质很敏感,能对炸药、毒品等危险品能突出显示。另外,高速公路上绿 色通道也用背散射技术智能查验农产品,避免了手检的费时费力。
[0003] 但是目前的背散射技术物质分辨能力十分有限,特别是很多非违禁的有机物和违 禁品毒品、炸药的原子序数差别甚小,现有背散射技术很难分辨,极大地限制了该技术的应 用。要促进背散射技术的发展,要促进对低原子序数物质的较好分辨,提高背散射技术的分 辨能力是个紧迫的需求。
[0004] 随着对查验系统智能化需求越来越高,没有物质分辨能力的系统智能化辨别的能 力太有限,误报率和漏报率太高。具有物质识别能力的背散射系统才能适应智能化的要求。 【实用新型内容】
[0005] 本实用新型要解决的一个技术问题是提供一种基于背散射成像的检测系统,提高 检测系统的物质分辨能力。
[0006] 根据本发明实用新型一方面,提出一种基于背散射成像的检测系统,包括:射线 源;多能背散射探测器;处理装置,分别与射线源与多能背散射探测器连接;其中,射线源向 被检对象发送射线,多能背散射探测器接收经过被检对象散射的射线,并输出射线信号,处 理装置接收来自多能背散射探测器的射线信号,处理射线信号W获得被检对象的图像。
[0007] 进一步地,多能背散射探测器为双能背散射探测器;双能背散射探测器包括低能 背散射探测器和高能背散射探测器。
[000引进一步地,还包括滤波装置;滤波装置位于低能背散射探测器和高能背散射探测 器之间。
[0009] 进一步地,高能背散射探测器包括多个高能背散射探测单元,多个高能背散射探 测单元W预定间隔排列。
[0010] 进一步地,多能背散射探测器包括多个处于不同位置和方向的背散射探测器模 块。
[0011] 进一步地,背散射探测器模块为圆环状或楠圆环状,其中各背散射探测器模块同 轴设置;或背散射探测器模块W矩形阵列排布。
[0012] 进一步地,射线源为多能射线源。
[0013] 进一步地,射线源为双能射线源。
[0014] 进一步地,多能背散射探测器为面阵探测器;和/或多能背散射探测器由闪烁体材 料组成。
[0015] 进一步地,闪烁体材料为有机闪烁晶体聚苯乙締。
[0016] 根据本实用新型的另一方面,还提供一种基于背散射成像的检测系统,包括:多能 射线源;背散射探测器;处理装置,分别与多能射线源与背散射探测器连接;其中,多能射线 源生成包含多种能量的射线,并向被检对象发送所述射线,背散射探测器接收经过被检对 象散射的射线,并输出射线信号,处理装置接收来自背散射探测器的射线信号,处理射线信 号W获得被检对象的图像。
[0017] 进一步地,多能射线源为双能射线源。
[0018] 根据本实用新型的另一方面,还提供一种基于多立体角背散射成像的检测系统, 包括:射线源;背散射探测器;处理装置,分别与射线源与背散射探测器连接;其中,射线源 向被检对象发送射线,背散射探测器接收经过被检对象散射的各个方向的射线,并输出射 线信号,处理装置接收来自背散射探测器的射线信号,处理射线信号W获得被检对象的图 像,其中背散射探测器包括多个处于不同位置和方向的背散射探测器模块。
[0019] 进一步地,背散射探测器模块为环状,其中各背散射探测器模块同轴设置;或背散 射探测器模块W矩形阵列排布。
[0020] 与现有技术相比,本实用新型基于背散射成像的检测系统包括射线源、多能背散 射探测器和处理装置,射线源向被检对象发送射线,多能背散射探测器接收经过被检对象 散射的射线,并输出射线信号,处理装置接收来自多能背散射探测器的射线信号,处理射线 信号W获得被检对象的图像。基于被检对象的材料对不同能量的射线的物理效应不同,本 实用新型能够更准确的识别出被检对象的密度和原子序数,提高了检测系统的物质分辨能 力。
[0021] 通过W下参照附图对本实用新型的示例性实施例的详细描述,本实用新型的其它 特征及其优点将会变得清楚。
【附图说明】
[0022] 构成说明书的一部分的附图描述了本实用新型的实施例,并且连同说明书一起用 于解释本实用新型的原理。
[0023] 参照附图,根据下面的详细描述,可W更加清楚地理解本实用新型,其中:
[0024] 图1为本实用新型基于背散射成像的检测系统的第一个实施例的结构示意图。
[0025] 图2为本实用新型基于背散射成像的检测系统的第二个实施例的结构示意图。
[0026] 图3为本实用新型基于背散射成像的检测系统的第Ξ个实施例的结构示意图。
[0027] 图4为本实用新型基于多立体角背散射成像的检测系统的第四个实施例的结构示 意图。
[0028] 图5为本实用新型基于多立体角背散射成像的检测系统的第五个实施例的结构示 意图。
[0029] 图6为本实用新型基于多立体角背散射成像的检测系统的第六个实施例的结构示 意图。
[0030] 图7为本实用新型基于背散射成像的检测系统的第屯个实施例的结构示意图。
[0031 ]图8为本实用新型基于背散射成像的检测系统的第八个实施例的结构示意图。
[0032] 图9为本实用新型基于背散射成像的检测系统的检测方法的一个实施例的流程示 意图。
[0033] 图10为本实用新型基于背散射成像的检测系统的检测方法的一个标定意图。
[0034] 图11为本实用新型基于背散射成像的检测系统的检测方法的另一个实施例的流 程示意图。
[0035] 图12为本实用新型基于背散射成像的检测系统的检测方法的另一个标定意图。
[0036] 图13为本实用新型基于背散射成像的检测系统的检测方法的再一个标定意图。
[0037] 图14为本实用新型基于背散射成像的检测系统的检测方法的再一个实施例的流 程示意图。
[0038] 图15为本实用新型基于多立体角背散射成像的检测系统的检测方法的一个实施 例的流程示意图。
[0039] 图16为本实用新型基于背散射成像的检测系统的一个具体应用的示意图。
[0040] 图17为本实用新型基于背散射成像的检测系统的另一个具体应用的示意图。
【具体实施方式】
[0041] 现在将参照附图来详细描述本实用新型的各种示例性实施例。应注意到:除非另 外具体说明,否则在运些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限 制本实用新型的范围。
[0042] 同时,应当明白,为了便于描述,附图中所示出的各个部分的尺寸并不是按照实际 的比例关系绘制的。
[0043] W下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本实用 新型及其应用或使用的任何限制。
[0044] 对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适 当情况下,所述技术、方法和设备应当被视为授权说明书的一部分。
[0045] 在运里示出和讨论的所有示例中,任何具体值应被解释为仅仅是示例性的,而不 是作为限制。因此,示例性实施例的其它示例可W具有不同的值。
[0046] 应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一 个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
[0047] 为使本实用新型的目的、技术方案和优点更加清楚明白,W下结合具体实施例,并 参照附图,对本实用新型进一步详细说明。
[0048] 图1为本实用新型基于背散射成像的检测系统的第一个实施例的结构示意图。该 基于背散射成像的检测系统包括射线源110、多能背散射探测器120和处理装置130。其中处 理装置130分别与射线源110与多能背散射探测器120连接,具体可W为电连接。
[0049] 射线源110向被检对象发送射线。其中,射线源110可W产生飞点X射线,其可W是 一般X射线源加特殊准直器,也可W是飞点X光机。
[0050] 多能背散射探测器120接收经过被检对象散射的射线,并输出射线信号。
[0051] 在一个实施例中,多能背散射探测器120可W是双能背散射探测器,例如,包含低 能背散射探测器和高能背散射探测器。本领域的技术人员应当理解,双能背散射探测器仅 是用于举例,多能背散射探测器可W根据需求设置多个能够接收不同能量射线的背散射探 测器。
[0052] 处理装置130接收来自多能背散射探测器120的射线信号,处理射线信号W获得被 检对象的图像。
[0053] 处理装置130可W为计算机系统,可W控制射线源发送射线,接收到多能背散射探 测器120输出的射线信号后,基于被检对象的材料对不同能量的射线背散射信号的物理效 应的差异,识别出被检对象的密度和原子序数。另外,还可W根据接收的射线信号生成被检 对象的灰度图,并利用多能背散射识别结果给图像赋予伪色彩,从而形成被检对象的图像。
[0054] 在该实施例中,射线源向被检对象发送射线,多能背散射探测器接收经过被检对 象散射的射线,并输出射线信号,处理装置接收来自多能背散射探测器的射线信号,处理射 线信号W获得被检对象的图像。基于被检对象的材料对不同能量的射线背散射信号的物理 效应的差异,本实用新型采取多能背散射探测器来接收经过被检对象散射的射线,能够更 准确的识别出被检对象,提高了检测系统的物质分辨能力。
[0055] 图2为本实用新型基于背散射成像的检测系统的第二个实施例的结构示意图。该 检测系统包括射线源210、双能背散射探测器220和处理装置230。
[0056] 射线源210向被检对象发送射线。该射线源可W只发送一种能量的射线,也可W发 送多种能量的射线。例如,同时或分时发送高能射线和低能射线。
[0057] 在一个实施例中,W只发送一种能量射线的射线源为例,为了提高检测效率,可W 在射线源的两侧设置两个双能背散射探测器220,也可W根据具体情况设置一个或多个双 能背散射探测器220。双能背散射探测器220可W由低能背散射探测器221和高能背散射探 测器222组成。低能背散射探测器221可W接收经过被检对象散射的低能射线;高能背散射 探测器222可W接收经过被检对象散射的高能射线。
[0058] 低能背散射探测器221和高能背散射探测器222可W由同一种闪烁体材料组成,例 如有机闪烁晶体聚苯乙締,也可W由不同闪烁体材料组成。
[0059] 在一个实施例中,低能背散射探测器221和高能背散射探测器222之间还可W设置 滤波装置223,具体可W为滤波片,构成Ξ明治结构的探测器。滤波片能够吸收一部分射线 能量,W有效拉开高低能背散射探测器的能量差距。滤波片的材料可W为侣、铁、铜、银或 金,或者是它们的合金材料。
[0060] 由于背散射信号相对透射要弱,因此探测方式和分析方法也有所不同,本实施例 中的Ξ明治结构的双能背散射探测器可W为面阵探测器,从角效应和能量效应探测总体信 号,因此能够更好的探测出被检对象散射的微弱射线。
[0061] 处理装置230接收双能背散射探测器输出的高能射线信号和低能射线信号,基于 材料对不同能量信号的物理效应的差异,分辨出被检对象的密度或原子序数。
[0062] 处理装置230还可W将不同能量的射线信号生成被检对象的灰度图像,用双能背 散射识别结果给图像赋予伪色彩。由于射线源发送的是一种能量的射线,因此不需要对生 成的图像进行配准。
[0063] 在识别被检对象的材料时,可W预先利用该实施例中的检测系统扫描已知材料, 例如毒品、爆炸物的样品或者模拟物、皮具、香烟、金属等,并记录下双能背散射探测器输出 的高能射线信号和低能射线信号,可W将已知材料与高能射线信号和低能射线信号的映射 关系保存在数据表中,也可W用坐标系的方式进行标定。例如,坐标系中每个像素点可W对 应相应的已知材料。当利用本实用新型背散射成像的检测系统检测未知材料的被检对象 时,获知双能背散射探测器输出的高能射线信号和低能射线信号并到坐标系中比对,就可 确定被检对象的材料。在该实施例中,也可W利用材料分类器识别被检对象的材料,此处不 再进行详细介绍。
[0064] 在该实施例中,通过设置双能背散射探测器检测到被检对象散射的不同能量的射 线信号,进而可W识别出被检对象的密度和原子序数,将该检测系统应用到安检系统,可W 有效识别毒品、爆炸物等,提高了检测的智能化程度,减少了安检员的工作强度。
[0065] 图3为本实用新型基于背散射成像的检测系统的第Ξ个实施例的结构示意图。射 线源310、低能背散射探测器320、滤波装置340和处理装置350分别与图2中的射线源210、低 能背散射探测器221、滤波装置223和处理装置230相同,并且已在上述实施例中进行介绍, 此处不再进一步展开描述。
[0066] 高能背散射探测器330可W包括多个高能背散射探测单元,高能背散射探测单元 可W为条状,并W预定间隔排列。例如,各高能背散射探测单元W横向、竖向或其他方式进 行排列。
[0067] 该实施例中的设计,可W降低成本,并且由低能背散射探测器获得信噪比高的灰 度图像,由高能背散射探测器获得性价比高的材料分辨率,并为图像赋予伪色彩,能够更准 确的识别出被检对象是否包含违禁物品。
[0068] 在另一个实施例中,如图4所示,基于多立体角背散射成像的检测系统400中的背 散射探测器410包括多个处于不同位置和方向的背散射探测器模块,例如,A1、A2、B、C位置 分别代表四个视角的背散射探测器模块。A1和A2靠近射线源420,B和C远离射线源420。在一 个实施例中,背散射探测器410可W多能背散射探测器,也可W为普通背散射探测器。下面 W普通背散射探测器为例进行说明。
[0069] 背散射效应与射线能量、散射角、反射角都有比较复杂的关系,比如,散射光子的 能量为:
[0070]
[0071] Er是入射光子能量,Er'是散射光子能量,Θ为散射角,可W看出散射信号与能量和 角度相关。
[0072] 该实施例中的基于多立体角背散射成像的检测系统借助不同物质对不同方向射 线的物理效应不同来识别物质材料。当射线源420向被检对象440发送射线后,射线经过被 检对象的散射,被背散射探测器410接收。背散射探测器模块A、背散射探测器模块B、背散射 探测器模块C和背散射探测器模块D分别将接收到的射线转换为射线信号输出至处理装置 430。处理装置430根据不同方向的射线信号的特性来识别被检对象的材料。处理装置430还 可W利用背散射信号得到被检对象的灰度图,利用材料分辨结果给图像添加伪色彩,实现 高分辨率和高性价比材料分辨的有效结合。
[0073] 例如,当检测系统扫描射线源正对区域即被检对象L1和L2之间的区域时,将背散 射探测器模块A1+A2接收的射线输出为一个方向的射线信号,将背散射探测器模块B或者C 接收的射线输出为另一个方向的射线信号。当扫描其他区域时,W背散射探测器模块B接收 的射线输出为一个方向的射线信号,W背散射探测器模块c接收的射线输出为另一个方向 的射线信号。依赖两个方向上探测到的射线信号的差异就可W识别出被检对象的材料。现 有技术中,多视角X射线技术主要解决单视角图像遮挡或堆叠问题,而本实用新型的基于多 立体角背散射成像的检测系统能够解决物质识别的问题,有很大的实用性。
[0074] 在一个实施例中,可W预先使用本实施例中的基于多立体角背散射成像的检测系 统扫描已知材料,进而记录已知材料散射的不同方向的射线信号,可W将已知材料与不同 方向的射线信号的映射关系保存在数据表中,也可W用坐标系的方式进行标定。例如,坐标 系中每个像素点可W对应相应的已知材料。当利用基于背散射成像的检测系统检测未知材 料的被检对象时,获知背散射探测器输出的各方向的射线信号并到坐标系中比对,就可确 定被检对象的材料。在一个实施例中,也可W利用材料分类器识别被检对象的材料,此处不 再进行详细介绍。
[0075] 本领域的技术人员应当理解,背散射探测器410可W根据实际情况设置包含为多 种不同位置、不用方向的背散射探测器模块。例如,如图5所示,不同的背散射器模块W矩形 阵列方式进行排布。例如背散射探测器410划分为A、B、C、D、E、F、G和H等8个视角的背散射探 测器模块。在识别被检物品的材料时,可W采用数学上8维度空间记录标定数据和测试数 据,从而进行对被测对象的材料的分辨。
[0076] 在本实用新型的另一个实施例中,利用几何对称的特点,背散射探测器模块可W 设置为环状,例如为圆环状或楠圆环状,如图6所示,620为第一背散射探测器模块,630为第 二背散射探测器模块,两个背散射探测器模块同轴设置。射线源610向被检对象发送射线, 射线经过被检对象散射后,分别被第一背散射探测器模块620和第二背散射探测器模块630 从两个角度接收,并将两个角度的射线信号输出至处理装置640,处理装置640依赖两个方 向上探测到的射线信号的差异可W识别出被检对象的材料。
[0077] 例如,在识别被检对象的材料时,可W预先利用该实施例中的检测系统扫描已知 材料,例如毒品、爆炸物的样品或者模拟物、皮具、香烟、金属等,并记录下第一背散射探测 器模块620输出的第一方向射线信号和第二背散射探测器模块630输出的第二方向射线信 号,可W将已知材料与两个方向射线信号的映射关系保存在数据表中,也可W用坐标系的 方式进行标定。例如,坐标系中每个像素点可W对应相应的已知材料。当利用本实施例中的 基于背散射成像的检测系统检测未知材料的被检对象时,获知第一背散射探测器模块620 输出的第一方向射线信号和第二背散射探测器模块630输出的第二方向射线信号并到坐标 系中比对,就可确定被检对象的材料。在一个实施例中,也可W利用材料分类器识别被检对 象的材料,此处不再进行详细介绍。
[0078] 本领域的技术人员应当理解,该实施例中包含的两个同轴设置的背散射探测器模 块仅用于举例,还可W根据需要设置多个背散射探测器模块。
[0079] 在具体应用中,也可W如图7所示,背散射探测器可W仅保留虚线框内的部分或仅 保留点线框内的部分。可W适应测试体的特点和设备安装的限制,降低对测试场地的要求, 同时节省了成本。
[0080] 在该实施例中,通过设置圆环状或楠圆环状的背散射探测器模块,利用几何对称 的特点,在后续的信号处理过程中更加简洁,例如,算法处理更简单、降低了数据处理的复 杂度,能够更准确的识别出被检对象的密度和原子序数。
[0081] 图8为本实用新型基于背散射成像的检测系统的第八个实施例的结构示意图。该 检测系统包括多能射线源810、背散射探测器820和处理装置830,其中处理装置830分别与 双能射线源810与背散射探测器820连接,具体可W为电连接。
[0082] 多能射线源810生成包含多种能量的射线,并向被检对象发送射线。在一个实施例 中,多能射线源为双能射线源,可W同时或分时向被检对象发送射线。本领域的技术人员应 当理解,双能射线源仅是用于举例,可W根据需求设置射线源发送多种能量的信号。
[0083] 背散射探测器820接收经过被检对象散射的射线,并输出射线信号。例如,当多能 射线源810为双能射线源时,背散射探测器820输出高能射线信号和低能射线信号。其中,背 散射探测器820可W为多能背散射探测器,也可W为普通背散射探测器。
[0084] 处理装置830接收来自背散射探测器820的射线信号,处理射线信号W获得被检对 象的图像。当多能射线源810分时发送不同能量射线时,需要对生成的图像进行配准,当多 能射线源810同时发送不同能量的射线时,不需要对生成的图像进行配准。
[0085] 处理装置830接收到不同能量的射线信号后,基于材料对不同能量的射线背散射 信号的物理效应的差异,能够分辨出被检对象的密度或原子序数,可W有效识别出被检对 象的材料。
[0086] 在该实施例中,采用多能射线源,基于材料对不同能量的射线背散射信号的物理 效应的差异,可W有效识别出被检对象的图像和材料,将该检测系统应用到安检系统,可W 有效识别毒品、爆炸物等,提高了检测的智能化程度,减少了安检员的工作强度。
[0087] 图9为本实用新型基于背散射成像的检测系统的检测方法的一个实施例的流程示 意图。该方法包括W下步骤:
[0088] 在步骤910,控制射线源向被检对象发送射线。
[0089] 其中,发送的射线可W是一种能量的射线,也可W包含多种能量的射线。
[0090] 在步骤920,获取多能背散射探测器接收的被检对象散射的不同能量的射线信号。
[0091] 在一个实施例中,多能背散射探测器为双能背散射探测器,例如,包含低能背散射 探测器和高能背散射探测器。低能背散射探测器接收的被检对象散射的低能射线信号,高 能背散射探测器接收的被检对象散射的高能射线信号。
[0092] 在步骤930,基于不同能量的射线信号生成被检对象的图像。
[0093] 可W基于被检对象的材料对不同能量的射线背散射信号的物理效应的差异,分辨 出被检对象的密度或原子序数。另外,还可W根据接收的射线信号生成被检对象的灰度图, 并利用多能背散射识别结果给图像赋予伪色彩,从而形成被检对象的图像。
[0094] 在一个实施例中,可W采用公式计算方法或用标定的方法识别出被检对象的材 料。例如,预先扫描已知材料,例如毒品、爆炸物的样品或者模拟物、皮具、香烟、金属等,并 记录下双能背散射探测器输出的高能射线信号和低能射线信号,可W将已知材料与高能射 线信号和低能射线信号的映射关系保存在数据表中,也可W用坐标系的方式进行标定。如 图10所示,W双能背散射探测器检测到的低能射线信号为横坐标,W检测到的高能射线信 号为纵坐标,坐标系中每个像素点(i,j)可W对应相应的已知材料。当利用检测系统检测未 知材料的被检对象时,获知双能背散射探测器输出的高能射线信号和低能射线信号并到坐 标系中比对,就可确定被检对象的材料。在另一个实施例中,也可W利用材料分类器识别被 检对象的材料,此处不再进行详细介绍。
[OOM]在该实施例中,通过多能背散射探测器检测到被检对象散射的不同能量的射线信 号,进而可W识别出被检对象的密度和原子序数,将该检测系统应用到安检系统,可W有效 识别毒品、爆炸物等,提高了检测的智能化程度,减少了安检员的工作强度。
[0096] 图11为本实用新型基于背散射成像的检测系统的检测方法的另一个实施例的流 程示意图。该方法还可W包括:
[0097] 在步骤1110,获取多能背散射探测器接收的通过被检对象散射的多个方向的射线 信号。
[0098] 可W如图4所示,背散射探测器包括多个处于不同位置和方向的背散射探测器模 块,41、42、8、(:位置分别代表四个视角的背散射探测器模块,各背散射探测器模块接收各个 方向散射的射线。也可W如图6所示,背散射探测器模块可W设置为圆环状或楠圆环状,第 一背散射探测器模块和第二背散射探测器模块分别接收被检对象从两个角度散射的射线。
[0099] 在步骤1120,基于不同方向的射线信号生成被检对象的图像。
[0100] 在一个实施例中,可W预先使用本实施例中的检测系统扫描已知材料,进而记录 已知材料散射的不同方向的射线信号,可W将已知材料与不同方向的射线信号的映射关系 保存在数据表中,也可W用坐标系的方式进行标定。如图12和图13所示,坐标系中每个像素 点可W对应相应的已知材料。当利用检测系统检测未知材料的被检对象时,获知背散射探 测器输出的各方向的射线信号并到坐标系中比对,就可确定被检对象的材料。在另一个实 施例中,也可W利用材料分类器识别被检对象的材料,此处不再进行详细介绍。
[0101] 图14为本实用新型基于背散射成像的检测系统的检测方法的再一个实施例的流 程示意图。
[0102] 在步骤1410,控制射线源向被检对象发送不同能量的射线。
[0103] 在一个实施例中,射线源为双能射线源,可W同时或分时向被检对象发送两种能 量的射线。
[0104] 在步骤1420,获取背散射探测器接收的被检对象散射的不同能量的射线信号。
[0105] 当射线源为双能射线源时,背散射探测器输出高能射线信号和低能射线信号。
[0106] 在步骤1430,基于不同能量的射线信号生成被检对象的图像。
[0107] 基于被检对象的材料对不同能量的射线背散射信号的物理效应的差异,分辨出被 检对象的密度或原子序数。另外,还可W将不同能量的射线信号生成被检对象的灰度图像, 用双能背散射识别结果给图像赋予伪色彩,从而形成被检对象的图像。
[0108] 在一个实施例中,可W采用公式计算方法或用标定的方法识别出被检对象的材 料。例如,预先扫描已知材料,例如毒品、爆炸物的样品或者模拟物、皮具、香烟、金属等,并 记录下背散射探测器输出的高能射线信号和低能射线信号,可W将已知材料与高能射线信 号和低能射线信号的映射关系保存在数据表中,也可W用坐标系的方式进行标定。如图10 所示,W双能背散射探测器检测到的低能射线信号为横坐标,W检测到的高能射线信号为 纵坐标,坐标系中每个像素点(i,j)可W对应相应的已知材料。当利用检测系统检测未知材 料的被检对象时,获知背散射探测器输出的高能射线信号和低能射线信号并到坐标系中比 对,就可确定被检对象的材料。在另一个实施例中,也可W利用材料分类器识别被检对象的 材料,此处不再进行详细介绍。
[0109] 在该实施例中,采用多能射线源,基于材料对不同能量的射线背散射信号的物理 效应的差异,可w有效识别出被检对象的图像和材料,将该检测系统应用到安检系统,可w 有效识别毒品、爆炸物等,提高了检测的智能化程度,减少了安检员的工作强度。
[0110] 图15为本实用新型基于多立体角背散射成像的检测系统的检测方法的一个实施 例的流程示意图。该方法还可W包括:
[0111] 在步骤1510,控制射线源向被检对象发送射线。
[0112] 在步骤1520,获取背散射探测器接收的通过被检对象散射的多个方向的射线信 号。其中,背散射探测器可W为普通背散射探测器。可W如图4所示,背散射探测器包括多个 处于不同位置和方向的背散射探测器模块,41、42、8、(:位置分别代表四个视角的背散射探 测器模块,各背散射探测器模块接收各个方向散射的射线。也可W如图5所示,不同的背散 射器模块W矩形阵列方式进行排布。也可W如图6所示,背散射探测器模块可W设置为圆环 状或楠圆环状,第一背散射探测器模块和第二背散射探测器模块分别接收被检对象从两个 角度散射的射线。
[0113] 在步骤1530,基于不同方向的射线信号生成被检对象的图像。
[0114] 在一个实施例中,可W预先使用本实施例中的检测系统扫描已知材料,进而记录 已知材料散射的不同方向的射线信号,可W将已知材料与不同方向的射线信号的映射关系 保存在数据表中,也可W用坐标系的方式进行标定。如图12和图13所示,坐标系中每个像素 点可W对应相应的已知材料。当利用检测系统检测未知材料的被检对象时,获知背散射探 测器输出的各方向的射线信号并到坐标系中比对,就可确定被检对象的材料。在另一个实 施例中,也可W利用材料分类器识别被检对象的材料,此处不再进行详细介绍。
[0115] 本实用新型的检测系统及其方法可W应用到扫描车辆、货物、行李、人等安检领 域,实现背散射成像和物质识别。
[0116] 例如,将基于背散射成像的检测系统扫描港口附近的小车或货物时,如图16所示, 在卡口检查站,射线源1610和双能探测器1630设置于卡口,处理装置未在图中标注。在移动 式检查系统,射线源1610和双能探测器1630可W安装在车载式检查系统的悬臂上或者安装 在车辆上。射线源1610向小车1620发射X射线,X射线经过小车1620的散射,被双能探测器 1630接收并输出射线信号,经过一定的处理,就可检测出小车中是否携带危险物品,W及危 险物品由什么材质构成。能够提高识别的准确性,降低吴报率。
[0117] 在另一个应用例中,该基于背散射成像的检测系统可W应用在背散射物品机系 统。如图17所示。传送带1710上传输箱包1720,为了提高检测效率,可W设置多套基于背散 射成像的检测系统,如在箱包的两侧(上下或左右)设置射线源1730和双能探测器1740,处 理装置未在附图中标出。射线源1730向通过的箱包1720发送X射线,X射线经过箱包1720的 散射,被双能探测器1740接收并输出射线信号,经过一定的处理,就可获知箱包中携带的物 品。与传统X射线物品机相比,本实用新型的检测系统能够更好的识别出箱包夹层中是否隐 藏有毒品或爆炸物。
[0118] 本实用新型非常适用于吞吐量大的安检环境,由于具有良好的物质分辨能力,智 能化程度更高,降低了安检员的操作难度,提高了检验的准确率,降低了误报率。
[0119] 至此,已经详细描述了本实用新型。为了避免遮蔽本实用新型的构思,没有描述本 领域所公知的一些细节。本领域技术人员根据上面的描述,完全可W明白如何实施运里公 开的技术方案。
[0120]虽然已经通过示例对本实用新型的一些特定实施例进行了详细说明,但是本领域 的技术人员应该理解,W上示例仅是为了进行说明,而不是为了限制本实用新型的范围。本 领域的技术人员应该理解,可在不脱离本实用新型的范围和精神的情况下,对W上实施例 进行修改。本实用新型的范围由所附权利要求来限定。
【主权项】
1. 一种基于背散射成像的检测系统,其特征在于,包括: 射线源; 多能背散射探测器; 处理装置,分别与所述射线源与所述多能背散射探测器连接; 其中,所述射线源向被检对象发送射线,所述多能背散射探测器接收经过所述被检对 象散射的射线,并输出射线信号,所述处理装置接收来自所述多能背散射探测器的射线信 号,处理所述射线信号以获得所述被检对象的图像。2. 根据权利要求1所述的系统,其特征在于,所述多能背散射探测器为双能背散射探测 器; 所述双能背散射探测器包括低能背散射探测器和高能背散射探测器。3. 根据权利要求2所述的系统,其特征在于,还包括滤波装置; 所述滤波装置位于所述低能背散射探测器和所述高能背散射探测器之间。4. 根据权利要求2或3所述的系统,其特征在于, 所述高能背散射探测器包括多个高能背散射探测单元,所述多个高能背散射探测单元 以预定间隔排列。5. 根据权利要求1所述的系统,其特征在于, 所述多能背散射探测器包括多个处于不同位置和方向的背散射探测器模块。6. 根据权利要求5所述的系统,其特征在于, 所述背散射探测器模块为环状,其中各背散射探测器模块同轴设置; 或 所述背散射探测器模块以矩形阵列排布。7. 根据权利要求1所述的系统,其特征在于, 所述射线源为多能射线源。8. 根据权利要求7所述的系统,其特征在于, 所述射线源为双能射线源。9. 根据权利要求1-3任一所述的系统,其特征在于, 所述多能背散射探测器为面阵探测器; 和/或 所述多能背散射探测器由闪烁体材料组成。10. 根据权利要求9所述的系统,其特征在于, 所述闪烁体材料为有机闪烁晶体聚苯乙烯。11. 一种基于背散射成像的检测系统,其特征在于,包括: 多能射线源; 背散射探测器; 处理装置,分别与所述多能射线源与所述背散射探测器连接; 其中,所述多能射线源生成包含多种能量的射线,并向被检对象发送所述射线,所述背 散射探测器接收经过所述被检对象散射的射线,并输出射线信号,所述处理装置接收来自 所述背散射探测器的射线信号,处理所述射线信号以获得所述被检对象的图像。12. 根据权利要求11所述的系统,其特征在于, 所述多能射线源为双能射线源。13. -种基于多立体角背散射成像的检测系统,其特征在于,包括: 射线源; 背散射探测器; 处理装置,分别与所述射线源与所述背散射探测器连接; 其中,所述射线源向被检对象发送射线,所述背散射探测器接收经过所述被检对象散 射的各个方向的射线,并输出射线信号,所述处理装置接收来自所述背散射探测器的射线 信号,处理所述射线信号以获得所述被检对象的图像,其中所述背散射探测器包括多个处 于不同位置和方向的背散射探测器模块。14. 根据权利要求13所述的系统,其特征在于, 所述背散射探测器模块为环状,其中各背散射探测器模块同轴设置; 或 所述背散射探测器模块以矩形阵列排布。
【文档编号】G01V5/00GK205670194SQ201620386682
【公开日】2016年11月2日
【申请日】2016年4月29日
【发明人】李元景, 李明亮, 李荐民, 陈旻雁
【申请人】同方威视技术股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1