一种视频图像偏色检测方法及装置制造方法

文档序号:6506513阅读:322来源:国知局
一种视频图像偏色检测方法及装置制造方法
【专利摘要】本发明公开了一种视频图像偏色检测方法及装置,包括:获取包括色卡的待检测视频图像;通过对所述待检测视频图像进行边缘检测,确定所述待检测视频图像中所述色卡的多个颜色模块包括的像素点;针对所述色卡的每个颜色模块,根据该颜色模块包括的像素点的像素值,和该颜色模块对应的标准像素值,确定所述待检测视频图像的该颜色模块对应颜色的偏色幅度。采用本发明提供的方法及装置,相比现有技术,自动检测视频图像的偏色幅度,整个检测过程检测效率高,数据客观准确,检测速度快。
【专利说明】一种视频图像偏色检测方法及装置

【技术领域】
[0001] 本发明涉及视频图像处理【技术领域】,尤其涉及一种视频图像偏色检测方法及装 置。

【背景技术】
[0002] 视频图像的颜色是视频图像的重要特征之一,可以在一方面反应视频图像质量的 优劣,因此要对视频图像进行偏色检测,确定视频图像的偏色程度。
[0003]目前,现有的基于色卡的视频图像偏色标准化检测方法是采用人工检测的方式, 首先对色卡进行拍摄,得到包括色卡的视频图像,然后针对视频图像中色卡的多个颜色模 块,人工定位这些颜色模块的位置,并采用现有的工具取出每个颜色模块的像素值,再将取 出的每个颜色模块的像素值与每个颜色模块的标准像素值进行比较,根据比较结果可以直 接结合人眼感官,判断每个颜色模块偏色的幅度,也可以通过预设算法计算每个颜色模块 的偏色幅度,最终得到整个视频图像的偏色程度。
[0004] 上述现有的基于色卡的视频图像偏色检测方法,需要人工确定色卡的每个颜色模 块的位置,以及人工取出每个颜色模块的像素值,整个检测过程加入了人为主观因素的影 响,从而降低了视频图像偏色检测的准确度和检测效率。


【发明内容】

[0005] 本发明实施例提供一种视频图像偏色检测方法及装置,用以解决现有技术中存在 的对视频图像进行偏色检测的准确度低和检测效率低的问题。
[0006] 本发明实施例提供一种视频图像偏色检测方法,包括:
[0007] 获取包括色卡的待检测视频图像;
[0008] 通过对所述待检测视频图像进行边缘检测,确定所述待检测视频图像中所述色卡 的多个颜色模块包括的像素点;
[0009] 针对所述色卡的每个颜色模块,根据该颜色模块包括的像素点的像素值,和该颜 色模块对应的标准像素值,确定所述待检测视频图像的该颜色模块对应颜色的偏色幅度。
[0010] 本发明实施例还提供一种视频图像偏色检测装置,包括:
[0011] 获取单元,用于获取包括色卡的待检测视频图像;
[0012] 像素点确定单元,用于通过对所述待检测视频图像进行边缘检测,确定所述待检 测视频图像中所述色卡的多个颜色模块包括的像素点;
[0013] 偏色确定单元,用于针对所述色卡的每个颜色模块,根据该颜色模块包括的像素 点的像素值,和该颜色模块对应的标准像素值,确定所述待检测视频图像的该颜色模块对 应颜色的偏色幅度。
[0014] 本发明有益效果包括:
[0015] 本发明实施例提供的方法中,在对视频图像进行偏色检测时,获取包括色卡的待 检测视频图像,通过对该待检测视频图像进行边缘检测,确定该待检测视频图像中色卡的 多个颜色模块包括的像素点,针对色卡的每个颜色模块,根据该颜色模块包括的像素点的 像素值,和该颜色模块对应的标准像素值,确定该待检测视频图像的该颜色模块对应颜色 的偏色幅度。在上述视频图像偏色检测过程中,是自动确定待检测视频图像中色卡的每个 颜色模块的位置,并自动分析各颜色模块的颜色成分,与每个颜色模块对应的标准像素值 进行比较,得到每个颜色模块对应颜色的偏色幅度,整个过程不需要人工确定每个颜色模 块的位置,也不需要人工确定每个颜色模块的偏色程度,减少了人为主观因素的影响,使得 整个检测过程检测效率高,数据客观准确,检测速度快。
[0016] 本申请的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变 得显而易见,或者通过实施本申请而了解。本申请的目的和其他优点可通过在所写的说明 书、权利要求书、以及附图中所特别指出的结构来实现和获得。

【专利附图】

【附图说明】
[0017] 附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明实施 例一起用于解释本发明,并不构成对本发明的限制。在附图中:
[0018] 图1为本发明实施例提供的视频图像偏色检测方法的流程图;
[0019]图2为本发明实施例1中提供的确定待检测视频图像中色卡的多个颜色模块包括 的像素点的处理流程的流程图;
[0020] 图3为本发明实施例2中提供的确定待检测视频图像中每个颜色模块对应的标准 像素值的处理流程的流程图;
[0021]图4为本发明实施例3中提供的确定该待检测视频图像的一个颜色模块对应颜色 的偏色幅度的处理流程的流程图;
[0022] 图5为本发明实施例4中提供的确定该待检测视频图像的整体偏色幅度的处理流 程的流程图;
[0023] 图6为本发明实施例5提供的视频图像偏色检测装置的结构示意图。

【具体实施方式】
[0024] 为了给出提高视频图像偏色检测的准确度和检测效率的实现方案,本发明实施例 提供了一种视频图像偏色检测方法及装置,以下结合说明书附图对本发明的优选实施例进 行说明,应当理解,此处所描述的优选实施例仅用于说明和解释本发明,并不用于限定本发 明。并且在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
[0025] 本发明实施例提供一种视频图像偏色检测方法,如图1所示,包括:
[0026] 步骤101、获取包括色卡的待检测视频图像。
[0027] 步骤102、通过对该待检测视频图像进行边缘检测,确定该待检测视频图像中色卡 的多个颜色模块包括的像素点。
[0028] 步骤103、针对色卡的每个颜色模块,根据该颜色模块包括的像素点的像素值,和 该颜色模块对应的标准像素值,确定该待检测视频图像的该颜色模块对应颜色的偏色幅 度。
[0029] 其中,色卡可以是包括多个颜色模块的卡片,例如,可以选择标准的包括24个颜 色模块的色卡。
[0030] 在获取包括色卡的待检测视频图像时,可以获取色卡拍摄得到原始视频图像,并 将该原始视频图像直接作为待检测视频图像。为了减少后续进行偏色检测时检测遍历的区 域面积,以便有效控制后续进行偏色检测的整体计算量,在对色卡进行拍摄时,可以使得到 的原始视频图像中,色卡覆盖区域的面积大于该原始视频图像面积的预设百分比,预设百 分比可以根据实际需要进行灵活设置,例如,预设百分比可以设为60%。
[0031] 本发明实施例中,还可以通过以下几种方式生成包括色卡的待检测视频图像;
[0032] 第一种方式:
[0033] 获取对色卡拍摄得到的原始视频图像;对该原始视频图像进行截取处理,得到包 括色卡的待检测视频图像,其中,该待检测视频图像中色卡覆盖区域的面积大于该待检测 视频图像面积的预设百分比。
[0034] 第二种方式:
[0035] 获取对色卡拍摄得到的原始视频图像;对该原始视频图像进行图像压缩处理,得 到标准化图像格式(CIF,Common Intermediate Format)的图像,作为待检测图像。
[0036] 第三种方式:
[0037] 获取对色卡拍摄得到的原始视频图像;对该原始视频图像进行截取处理,得到包 括色卡的截取处理后视频图像,其中,该截取处理后视频图像中色卡覆盖区域的面积大于 该截取处理后视频图像面积的预设百分比;以及对该截取处理后视频图像进行图像压缩处 理,得到标准化图像格式CIF的图像,作为待检测图像。
[0038] 下面结合附图,用具体实施例对本发明提供的上述方法的一些处理流程进行详细 描述。
[0039] 实施例1 :
[0040] 在获取包括色卡的待检测视频图像后,针对上述步骤102通过对该待检测视频图 像进行边缘检测,确定该待检测视频图像中色卡的多个颜色模块包括的像素点,本发明实 施例1中提供如下具体处理流程,如图2所示,具体包括如下处理步骤:
[0041] 步骤201、对该待检测视频图像进行边缘检测,得到二值化的边缘图像。
[0042] 具体可以采用现有技术中的边缘检测算法,例如采用Sobel算子、Prewitt算子、 Robert算子、Canny算子等的边缘检测算法来得到二值化的边缘图像,在此不再进行详细 描述。
[0043] 步骤202、对该边缘图像进行膨胀处理,得到膨胀图像。
[0044] 其中,膨胀系数可以根据实际经验和需要进行灵活设置,例如,根据实际项目经 验,膨胀系数可以选择7*7的膨胀因子。
[0045] 步骤203、针对该膨胀图像中的像素点进行x轴和y轴投影统计,即针对该膨胀 图像中的每个坐标值X,确定X坐标为该坐标值X的像素点中像素值为1的像素点的数量 p x (X),以及针对该膨胀图像中的每个坐标值y,确定y坐标为该坐标值y的像素点中像素值 为1的像素点的数量Py(y),以及确定该膨胀图像中像素值为1的像素点的总数S。
[0046] 步骤204、确定满足如下公式所表示条件的I个x坐标区间:
[0047] I (x) i={x | xlow<Px (x)<xhigh, x G[0,width]}
[0048] xhigh=S/width [0049]xlow=xhigh/a
[0050]其中,I(x)i为第i个x坐标区间,xhigh为x轴高阈值,xlOT为x轴低阈值,width为 该膨胀图像的宽度,a为预设常数,a>l,例如:a = 2。
[0051] 步骤205、确定满足如下公式所表示条件的J个y坐标区间:
[0052] J (y)j ={y | ylow<Py (y)<yhigh,y G [0, height]};
[0053] yhigh= S/height ;
[0054] Yi〇w= yhigh/b ;
[0055]其中,J(y)」为第j个y坐标区间,yhigh为y轴高阈值,ylOTt为y轴低阈值,height 为该膨胀图像的高度,b为预设常数,b>l,例如:b = 2。
[0056] 上述步骤204和步骤205之间没有严格的先后顺序。
[0057] 步骤206、根据I个x坐标区间和J个y坐标区间,确定M个预选模块区域,具体可 以采用如下两种方式:
[0058] 第一种方式:确定由I个x坐标区间和J个y坐标区间两两组合表示的M个矩形 区域B(i,j) m,作为M个预选模块区域,其中,M等于IXJ,B(i,j)m表示由I(x)i中的最小x 坐标值和最大x坐标值,以及J (y)」中的最小y坐标值和最大y坐标值,两两组合得到的四 个像素点作为顶点的矩形区域。
[0059] 第二种方式:确定由I个x坐标区间和J个y坐标区间两两组合表示的M个矩形 区域B (i,j) m,其中,M等于I X J,B (i,j) m表示由I (x) i中的最小x坐标值和最大x坐标值, 以及J(y)j中的最小y坐标值和最大y坐标值,两两组合得到的四个像素点作为顶点的矩 形区域;
[0060] 分别针对M个矩形区域中的每个矩形区域进行区域扩充,直至到达像素值为1的 像素点为止,得到M个扩充后矩形区域;
[0061] 分别确定M个扩充后矩形区域中的最大内嵌矩形区域,作为M个预选模块区域。
[0062] 步骤207、在确定M个预选模块区域后,根据该色卡的多个颜色模块的形状和相互 位置关系,从M个预选模块区域中选择与该多个颜色模块一一对应的多个预选模块区域。[0063] 当色卡的多个颜色模块为按照固定行列数进行排列时,本步骤中选择的多个预选 模块区域也需要时按照该固定行列数进行排列的。
[0064] 并且,对于每个预选模块区域,还需要满足预设形状条件,例如,预选模块区域的 长度在预设长度范围内,预选模块区域的宽度在预设宽度范围内,预选模块区域的长宽比 在预设长宽比范围内。
[0065] 步骤208、将该待检测视频图像中与该多个预选模块区域中像素点的位置相同的 像素点,确定为该色卡的多个颜色模块包括的像素点。
[0066] 即先确定在膨胀图像中该多个预选模块区域中像素点的位置,再将该待检测视频 图像中与这些位置相同的像素点,确定为该色卡的多个颜色模块包括的像素点。其中,一个 预选模块区域中像素点对应一个颜色模块包括的像素点。
[0067] 实施例2:
[0068] 采用本发明实施例1中如图2所示的处理流程,实现了通过对待检测视频图像进 行边缘检测,确定待检测视频图像中色卡的多个颜色模块包括的像素点,接下来即可以针 对每个颜色模块确定对应颜色的偏色幅度,此时,需要获知每个颜色模块对应的标准像素 值。
[0069] 当在拍摄色卡时,色卡的摆放方向是固定,例如,可以固定正向放置,也可以固定 倒向放置,也可以固定左向放置,也可以固定右向放置,则此时该待检测视频图像中色卡的 多个颜色模块的排列方式,与在拍摄时色卡固定摆放时多个颜色模块的排列方式相同,即 是已知的,所以可以预先确定该待检测视频图像中每个位置的颜色模块对应的标准像素 值,此时直接获取即可用于后续确定偏色幅度的处理流程中。例如,针对标准的包括24个 颜色模块的色卡,在拍摄时色卡固定正向摆放,该24个颜色模块是4行6列的排列方式,针 对其中每个位置的颜色模块分别预先设置对应的标准像素值,则该待检测视频图像中多个 颜色模块的排列方式也是4行6列,并针对其中每个位置的颜色模块获取预先设置的该位 置对应的标准像素值即可。
[0070] 当在拍摄色卡时,色卡的摆放方向是未知的,例如,即可能是正向放置,也可能是 倒向放置,也可能是左向放置,也可能是右向放置,此时由于摆放方向未知,无法直接确定 该待检测视频图像中每个位置的颜色模块对应的标准像素值,针对这一情况,本发明实施 例2提出一种确定待检测视频图像中每个颜色模块对应的标准像素值的处理流程,如图3 所示,具体包括如下处理步骤:
[0071] 步骤301、按照与预设行列数对应的排序方式,对多个颜色模块进行排序,得到与 预设顺序相同或相反的排列顺序。
[0072] 例如,针对标准的包括24个颜色模块的色卡,且色卡正向摆放时,该24个颜色模 块是4行6列的排列方式,此时预设顺序可以为色卡正向摆放时,按照从左到右从上到下排 列的顺序。并且,多个颜色模块在该待检测视频图像中是4行6列时,对应的排序方式可以 为从左到右从上到下,多个颜色模块在该待检测视频图像中是6行4列时,对应的排序方式 可以为从左到右从下到上,则本步骤中在对多个颜色模块进行排序后,得到的排列顺序要 么与预设顺序相同,要么与预设顺序相反,后续仅需要通过判断得到的排列顺序是与预设 顺序相同还是相反,即可以确定每个颜色模块对应的标准像素值。
[0073] 步骤302、将按照该预设顺序的多个颜色模块对应的标准像素值,分别确定为按照 该排列顺序的多个颜色模块对应的标准像素值;并根据按照该排列顺序的多个颜色模块对 应的标准像素值,确定该待检测视频图像的多个颜色模块的指定颜色分量的总体偏差,作 为指定颜色分量的正向总体颜色偏差。
[0074] 本步骤实质为假设该排列顺序与预设顺序相同,并根据该假设确定每个颜色模块 对应的标准像素值,然后确定该待检测视频图像的多个颜色模块的指定颜色分量的总体偏 差,例如,该指定颜色分量为HSI颜色空间中的I分量,具体可以采用如下公式确定:

【权利要求】
1. 一种视频图像偏色检测方法,其特征在于,包括: 获取包括色卡的待检测视频图像; 通过对所述待检测视频图像进行边缘检测,确定所述待检测视频图像中所述色卡的多 个颜色模块包括的像素点; 针对所述色卡的每个颜色模块,根据该颜色模块包括的像素点的像素值,和该颜色模 块对应的标准像素值,确定所述待检测视频图像的该颜色模块对应颜色的偏色幅度。
2. 如权利要求1所述的方法,其特征在于,在获取包括色卡的待检测视频图像之前,还 包括: 获取对色卡拍摄得到的原始视频图像;对所述原始视频图像进行截取处理,得到包括 所述色卡的待检测视频图像,其中,所述待检测视频图像中所述色卡覆盖区域的面积大于 所述待检测视频图像面积的预设百分比;或者 获取对色卡拍摄得到的原始视频图像;对所述原始视频图像进行图像压缩处理,得到 标准化图像格式CIF的图像,作为待检测图像;或者 获取对色卡拍摄得到的原始视频图像;对所述原始视频图像进行截取处理,得到包括 所述色卡的截取处理后视频图像,其中,所述截取处理后视频图像中所述色卡覆盖区域的 面积大于所述截取处理后视频图像面积的预设百分比;以及对所述截取处理后视频图像进 行图像压缩处理,得到标准化图像格式CIF的图像,作为待检测图像。
3. 如权利要求1所述的方法,其特征在于,通过对所述待检测视频图像进行边缘检测, 确定所述待检测视频图像中所述色卡的多个颜色模块包括的像素点,具体包括; 对所述待检测视频图像进行边缘检测,得到二值化的边缘图像; 对所述边缘图像进行边缘膨胀处理,得到膨胀图像; 针对所述膨胀图像中的每个坐标值x,确定x坐标为该坐标值x的像素点中像素值为1 的像素点的数量Px(x),以及针对所述膨胀图像中的每个坐标值y,确定y坐标为该坐标值 y的像素点中像素值为1的像素点的数量Py(y),以及所述膨胀图像中像素值为1的像素点 的总数S ; 确定满足如下公式所表示条件的I个x坐标区间: I(x)i= {x I xlow < Px(x) < xhigh, x G [0, width]}; Xhigh = S/width ; Xlow 一 Xhigh/a ; 其中,I (X) i为第i个X坐标区间,xhigh为X轴高阈值,xlOT为X轴低阈值,Width为所 述膨胀图像的宽度,a为预设常数,a>l ; 确定满足如下公式所表示条件的J个y坐标区间: J(y)j= {y|yi〇w<Py(y) <yhigh,yG [〇, height]}; Yhigh = S/height ; Yiow = Yhigh/b ; 其中,J(y\为第j个y坐标区间,yhigh为y轴高阈值,ylOTt为y轴低阈值,height为所 述膨胀图像的高度,b为预设常数,b>l; 确定由I个X坐标区间和J个y坐标区间两两组合表示的M个矩形区域B (i,j)m,作为 M个预选模块区域,其中,M等于I X J,B (i,j)m表示由I (x) i中的最小x坐标值和最大x坐 标值,以及J(y)j中的最小y坐标值和最大y坐标值,两两组合得到的四个像素点作为顶点 的矩形区域; 根据所述色卡的多个颜色模块的形状和相互位置关系,从M个预选模块区域中选择与 所述多个颜色模块一一对应的多个预选模块区域; 将所述待检测视频图像中与所述多个预选模块区域中像素点的位置相同的像素点,确 定为所述色卡的所述多个颜色模块包括的像素点。
4. 如权利要求1所述的方法,其特征在于,通过对所述待检测视频图像进行边缘检测, 确定所述待检测视频图像中所述色卡的多个颜色模块包括的像素点,具体包括; 对所述待检测视频图像进行边缘检测,得到二值化的边缘图像; 对所述边缘图像进行边缘膨胀处理,得到膨胀图像; 针对所述膨胀图像中的每个坐标值X,确定x坐标为该坐标值x的像素点中像素值为1 的像素点的数量Px (x),以及针对所述膨胀图像中的每个坐标值y,确定y坐标为该坐标值 y的像素点中像素值为1的像素点的数量Py(y),以及所述膨胀图像中像素值为1的像素点 的总数S ; 确定满足如下公式所表示条件的I个x坐标区间: I (x) i = {x I xlow < Px (x) < xhigh, x G [0, width]}; Xhigh = S/width ; Xlow 一 Xhigh/a ; 其中,I (X) i为第i个X坐标区间,xhigh为X轴高阈值,xlOT为X轴低阈值,Width为所 述膨胀图像的宽度,a为预设常数,a>l ; 确定满足如下公式所表示条件的J个y坐标区间: J(y)j= {y|yi〇w<Py(y) <yhigh,yG [〇, height]}; Yhigh = S/height ; Yiow = Yhigh/b ; 其中,J(y\为第j个y坐标区间,yhigh为y轴高阈值,ylOTt为y轴低阈值,height为所 述膨胀图像的高度,b为预设常数,b>l; 确定由I个X坐标区间和J个y坐标区间两两组合表示的M个矩形区域B(i,j)m,其 中,M等于IX J,B(i, j)m表示由I (x)i中的最小x坐标值和最大x坐标值,以及J(y) j中的 最小y坐标值和最大y坐标值,两两组合得到的四个像素点作为顶点的矩形区域; 分别针对M个矩形区域中的每个矩形区域进行区域扩充,直至到达像素值为1的像素 点为止,得到M个扩充后矩形区域; 分别确定M个扩充后矩形区域中的最大内嵌矩形区域,作为M个预选模块区域; 根据所述色卡的多个颜色模块的形状和相互位置关系,从M个预选模块区域中选择与 所述多个颜色模块一一对应的多个预选模块区域; 将所述待检测视频图像中与所述多个预选模块区域中像素点的位置相同的像素点,确 定为所述色卡的所述多个颜色模块包括的像素点。
5. 如权利要求1所述的方法,其特征在于,在通过对所述待检测视频图像进行边缘检 测,确定所述待检测视频图像中所述色卡的多个颜色模块包括的像素点之后,还包括: 按照与预设行列数对应的排序方式,对多个颜色模块进行排序,得到与预设顺序相同 或相反的排列顺序; 将按照所述预设顺序的多个颜色模块对应的标准像素值,分别确定为按照所述排列顺 序的多个颜色模块对应的标准像素值;并根据按照所述排列顺序的多个颜色模块对应的标 准像素值,确定所述待检测视频图像的多个颜色模块的指定颜色分量的总体偏差,作为指 定颜色分量的正向总体颜色偏差; 将按照与所述预设顺序相反的顺序的多个颜色模块对应的标准像素值,分别确定为按 照所述排列顺序的多个颜色模块对应的标准像素值;并根据按照所述排列顺序的多个颜色 模块对应的标准像素值,确定所述待检测视频图像的多个颜色模块的指定颜色分量的总体 偏差,作为指定颜色分量的反向总体颜色偏差; 当所述正向总体颜色偏差大于所述反向总体颜色偏差时,确定所述排列顺序为反向, 否则,确定所述排列顺序为正向,其中所述正向与所述预设顺序相同,所述反向与所述预设 顺序相反; 当所述排列顺序为正向时,将按照所述预设顺序的多个颜色模块对应的标准像素值, 分别确定为按照所述排列顺序的多个颜色模块实际对应的标准像素值; 当所述排列顺序为反向时,将按照与所述预设顺序相反的顺序的多个颜色模块对应的 标准像素值,分别确定为按照所述排列顺序的多个颜色模块实际对应的标准像素值。
6. 如权利要求1所述的方法,其特征在于,根据该颜色模块包括的像素点的像素值,和 该颜色模块对应的标准像素值,确定所述待检测视频图像的该颜色模块对应颜色的偏色幅 度,具体包括: 确定该颜色模块包括的各像素点在色调饱和度强度HSI颜色空间中的S分量值的平均 值,作为该颜色模块的S分量平均值,以及该颜色模块包括的各像素点在HSI颜色空间中的 H分量值的平均值,作为该颜色模块的H分量平均值; 根据该颜色模块的S分量平均值和该颜色模块对应的标准S分量值,分别与预设S分 量阈值的大小关系,确定所述颜色模块的偏色类型; 基于该颜色模块的H分量平均值和该颜色模块对应的标准H分量值,按照与所述颜色 模块的偏色类型对应的偏色幅度确定方式,确定所述待检测视频图像的该颜色模块对应的 颜色的偏色幅度。
7. 如权利要求6所述的方法,其特征在于,确定该颜色模块包括的各像素点在HSI颜色 空间中的S分量值的平均值,作为该颜色模块的S分量平均值,以及该颜色模块包括的各像 素点在HSI颜色空间中的H分量值的平均值,作为该颜色模块的H分量平均值,具体包括: 将该颜色模块包括的各像素点在亮度色度YUV颜色空间中的Y分量值、U分量值和V分 量值,转换为该颜色模块包括的各像素点在红绿蓝RGB颜色空间中的R分量值、G分量值和 B分量值;确定该颜色模块包括的各像素点在RGB颜色空间中的R分量值的平均值、G分量 值的平均值和B分量值的平均值;将该颜色模块的R分量值的平均值、G分量值的平均值和 B分量值的平均值,转换为在HSI颜色空间中的S分量值和H分量值,分别作为该颜色模块 的S分量平均值和该颜色模块的H分量平均值;或者 将该颜色模块包括的各像素点在YUV颜色空间中的Y分量值、U分量值和V分量值,转 换为该颜色模块包括的各像素点在RGB颜色空间中的R分量值、G分量值和B分量值;将该 颜色模块包括的各像素点的R分量值、G分量值和B分量值,转换为该颜色模块包括的各像 素点在HSI颜色空间中的S分量值和H分量值;分别根据该颜色模块包括的各像素点的S 分量值和H分量值,确定该颜色模块包括的各像素点的S分量值的平均值和H分量值的平 均值,分别作为该颜色模块的S分量平均值和该颜色模块的H分量平均值。
8. 如权利要求6所述的方法,其特征在于,根据该颜色模块的S分量平均值和该颜色 模块对应的标准S分量值,分别与预设S分量阈值的大小关系,确定所述颜色模块的偏色类 型,具体包括: 采用如下公式确定该颜色模块的偏色类型:
其中,s(k)为第k个颜色模块的S分量平均值,std_S(k)为第k个颜色模块对应的标 准S分量值,type (k)表示第k个颜色模块的偏色类型,为第一种偏色类型时,type (k)=0, 为第二种偏色类型时,type (k)=l,为第三种偏色类型时,type (k) =2。
9. 如权利要求8所述的方法,其特征在于,基于该颜色模块的H分量平均值和该颜色模 块对应的标准H分量值,按照与所述颜色模块的偏色类型对应的偏色幅度确定方式,确定 所述待检测视频图像的该颜色模块对应的颜色的偏色幅度,具体包括: 当该颜色模块的偏色类型为第三种偏色类型时,所述待检测视频图像的该颜色模块对 应的颜色的偏色幅度通过如下公式确定: angle (k) = abs (H(k)-std_H(k))
err (k) = angle (k)+10 X abs(S(k)-std_S(k)) 其中,H(k)为第k个颜色模块的H分量平均值,std_H(k)为第k个颜色模块对应的标 准H分量值,abs ()为对()内的值取绝对值,err (k)为第k个颜色模块对应的颜色的偏色 幅度; 当该颜色模块的偏色类型为第一种偏色类型或第二种偏色类型时,所述待检测视频图 像的该颜色模块对应的颜色的偏色幅度通过如下公式确定: err(k) = 20 X abs (S (k)-std_S (k)) / (2-type (k)) 其中,S(k)为第k个颜色模块的S分量平均值,std_S(k)为第k个颜色模块对应的标 准S分量值,abs ()为对()内的值取绝对值,err (k)为第k个颜色模块对应的颜色的偏色 幅度。
10. 如权利要求1所述的方法,其特征在于,还包括: 根据所述待检测视频图像的多个颜色模块分别对应颜色的偏色幅度,确定所述待检测 视频图像的整体偏色幅度。
11. 如权利要求10所述的方法,其特征在于,根据所述待检测视频图像的多个颜色模 块分别对应颜色的偏色幅度,确定所述待检测视频图像的整体偏色幅度,具体包括: 分别确定所述多个颜色模块包括的各像素点在HSI颜色空间中的I分量值的平均值, 对应作为所述多个颜色模块的I分量平均值; 根据所述多个颜色模块的I分量平均值和所述多个颜色模块各自对应的标准I分量 值,通过如下公式确定所述待检测视频图像的多个颜色模块的强度的总体偏差:
其中,I (k)为第k个颜色模块的I分量平均值,Std_I (k)为第k个颜色模块对应的标 准I分量值,N为色卡包含的颜色模块的个数,e为所述待检测视频图像的多个颜色模块的 强度的平均偏差,err_Sum为所述待检测视频图像的多个颜色模块的强度的总体偏差; 根据所述待检测视频图像的多个颜色模块分别对应颜色的偏色幅度,以及所述待检测 视频图像的多个颜色模块的强度的总体偏差,通过如下公式确定所述待检测视频图像的整 体偏色幅度:
其中,err (k)为第k个颜色模块对应的颜色的偏色幅度,color_err为所述待检测视频 图像的整体偏色幅度。
12. -种视频图像偏色检测装置,其特征在于,包括: 获取单元,用于获取包括色卡的待检测视频图像; 像素点确定单元,用于通过对所述待检测视频图像进行边缘检测,确定所述待检测视 频图像中所述色卡的多个颜色模块包括的像素点; 偏色确定单元,用于针对所述色卡的每个颜色模块,根据该颜色模块包括的像素点的 像素值,和该颜色模块对应的标准像素值,确定所述待检测视频图像的该颜色模块对应颜 色的偏色幅度。
13. 如权利要求12所述的装置,其特征在于,还包括: 图像生成单元,用于获取对色卡拍摄得到的原始视频图像;对所述原始视频图像进行 截取处理,得到包括所述色卡的待检测视频图像,其中,所述待检测视频图像中所述色卡覆 盖区域的面积大于所述待检测视频图像面积的预设百分比;或者 获取对色卡拍摄得到的原始视频图像;对所述原始视频图像进行图像压缩处理,得到 标准化图像格式CIF的图像,作为待检测图像;或者 获取对色卡拍摄得到的原始视频图像;对所述原始视频图像进行截取处理,得到包括 所述色卡的截取处理后视频图像,其中,所述截取处理后视频图像中所述色卡覆盖区域的 面积大于所述截取处理后视频图像面积的预设百分比;以及对所述截取处理后视频图像进 行图像压缩处理,得到标准化图像格式CIF的图像,作为待检测图像。
14. 如权利要求12所述的装置,其特征在于,所述像素点确定单元,具体用于对所述待 检测视频图像进行边缘检测,得到二值化的边缘图像;并对所述边缘图像进行边缘膨胀处 理,得到膨胀图像;并针对所述膨胀图像中的每个坐标值X,确定x坐标为该坐标值x的像 素点中像素值为1的像素点的数量Px(x),以及针对所述膨胀图像中的每个坐标值y,确定 y坐标为该坐标值y的像素点中像素值为1的像素点的数量Py(y),以及所述膨胀图像中像 素值为1的像素点的总数s ;并确定满足如下公式所表示条件的I个X坐标区间: I (x) i = {x I xlow < Px (x) < xhigh, x G [0, width]}; Xhigh = S/width ; Xlow 一 Xhigh/a ; 其中,I (X) i为第i个X坐标区间,xhigh为X轴高阈值,xlOT为X轴低阈值,Width为所 述膨胀图像的宽度,a为预设常数,a>l ;以及 确定满足如下公式所表示条件的J个y坐标区间: J(y)j= {y|yi〇w<Py(y) <yhigh,yG [〇, height]}; Yhigh = S/height ; Yiow = Yhigh/b ; 其中,J(y\为第j个y坐标区间,yhigh为y轴高阈值,ylOTt为y轴低阈值,height为所 述膨胀图像的高度,b为预设常数,b>l;以及 确定由I个X坐标区间和J个y坐标区间两两组合表示的M个矩形区域B (i,j)m,作为 M个预选模块区域,其中,M等于I X J,B (i,j)m表示由I (x) i中的最小x坐标值和最大x坐 标值,以及J(y)j中的最小y坐标值和最大y坐标值,两两组合得到的四个像素点作为顶点 的矩形区域;并根据所述色卡的多个颜色模块的形状和相互位置关系,从M个预选模块区 域中选择与所述多个颜色模块一一对应的多个预选模块区域;以及将所述待检测视频图像 中与所述多个预选模块区域中像素点的位置相同的像素点,确定为所述色卡的所述多个颜 色模块包括的像素点。
15.如权利要求12所述的装置,其特征在于,所述像素点确定单元,具体用于对所述待 检测视频图像进行边缘检测,得到二值化的边缘图像;并对所述边缘图像进行边缘膨胀处 理,得到膨胀图像;并针对所述膨胀图像中的每个坐标值X,确定x坐标为该坐标值x的像 素点中像素值为1的像素点的数量Px(x),以及针对所述膨胀图像中的每个坐标值y,确定 y坐标为该坐标值y的像素点中像素值为1的像素点的数量Py(y),以及所述膨胀图像中像 素值为1的像素点的总数S ;并确定满足如下公式所表示条件的I个x坐标区间: I (x) i = {x I xlow < Px (x) < xhigh, x G [0, width]}; Xhigh = S/width ; Xlow 一 Xhigh/a ; 其中,I (X) i为第i个X坐标区间,xhigh为X轴高阈值,xlOT为X轴低阈值,Width为所 述膨胀图像的宽度,a为预设常数,a>l ;以及 确定满足如下公式所表示条件的J个y坐标区间: J(y)j= {y|yi〇w<Py(y) <yhigh,yG [〇, height]}; Yhigh = S/height ; Yiow = Yhigh/b ; 其中,J(y\为第j个y坐标区间,yhigh为y轴高阈值,ylOTt为y轴低阈值,height为所 述膨胀图像的高度,b为预设常数,b>l;以及 确定由I个X坐标区间和J个y坐标区间两两组合表示的M个矩形区域B(i,j)m,其 中,M等于IX J,B(i, j)m表示由I (x)i中的最小x坐标值和最大x坐标值,以及J(y) j中的 最小y坐标值和最大y坐标值,两两组合得到的四个像素点作为顶点的矩形区域;并分别针 对M个矩形区域中的每个矩形区域进行区域扩充,直至到达像素值为1的像素点为止,得到 M个扩充后矩形区域;并分别确定M个扩充后矩形区域中的最大内嵌矩形区域,作为M个预 选模块区域;并根据所述色卡的多个颜色模块的形状和相互位置关系,从M个预选模块区 域中选择与所述多个颜色模块一一对应的多个预选模块区域;以及将所述待检测视频图像 中与所述多个预选模块区域中像素点的位置相同的像素点,确定为所述色卡的所述多个颜 色模块包括的像素点。
16. 如权利要求12所述的装置,其特征在于,还包括: 标准像素值确定单元,用于按照与预设行列数对应的排序方式,对多个颜色模块进行 排序,得到与预设顺序相同或相反的排列顺序;并将按照所述预设顺序的多个颜色模块对 应的标准像素值,分别确定为按照所述排列顺序的多个颜色模块对应的标准像素值;并根 据按照所述排列顺序的多个颜色模块对应的标准像素值,确定所述待检测视频图像的多个 颜色模块的指定颜色分量的总体偏差,作为指定颜色分量的正向总体颜色偏差;并将按照 与所述预设顺序相反的顺序的多个颜色模块对应的标准像素值,分别确定为按照所述排列 顺序的多个颜色模块对应的标准像素值;并根据按照所述排列顺序的多个颜色模块对应的 标准像素值,确定所述待检测视频图像的多个颜色模块的指定颜色分量的总体偏差,作为 指定颜色分量的反向总体颜色偏差;并当所述正向总体颜色偏差大于所述反向总体颜色偏 差时,确定所述排列顺序为反向,否则,确定所述排列顺序为正向,其中所述正向与所述预 设顺序相同,所述反向与所述预设顺序相反;并当所述排列顺序为正向时,将按照所述预设 顺序的多个颜色模块对应的标准像素值,分别确定为按照所述排列顺序的多个颜色模块实 际对应的标准像素值;以及当所述排列顺序为反向时,将按照与所述预设顺序相反的顺序 的多个颜色模块对应的标准像素值,分别确定为按照所述排列顺序的多个颜色模块实际对 应的标准像素值。
17. 如权利要求12所述的装置,其特征在于,所述偏色确定单元,具体用于确定该颜色 模块包括的各像素点在色调饱和度强度HSI颜色空间中的S分量值的平均值,作为该颜色 模块的S分量平均值,以及该颜色模块包括的各像素点在HSI颜色空间中的H分量值的平 均值,作为该颜色模块的H分量平均值;并根据该颜色模块的S分量平均值和该颜色模块对 应的标准S分量值,分别与预设S分量阈值的大小关系,确定所述颜色模块的偏色类型;以 及基于该颜色模块的H分量平均值和该颜色模块对应的标准H分量值,按照与所述颜色模 块的偏色类型对应的偏色幅度确定方式,确定所述待检测视频图像的该颜色模块对应的颜 色的偏色幅度。
18. 如权利要求17所述的装置,其特征在于,所述偏色确定单元,具体用于将该颜色模 块包括的各像素点在亮度色度YUV颜色空间中的Y分量值、U分量值和V分量值,转换为该 颜色模块包括的各像素点在红绿蓝RGB颜色空间中的R分量值、G分量值和B分量值;确定 该颜色模块包括的各像素点在RGB颜色空间中的R分量值的平均值、G分量值的平均值和 B分量值的平均值;将该颜色模块的R分量值的平均值、G分量值的平均值和B分量值的平 均值,转换为在HSI颜色空间中的S分量值和H分量值,分别作为该颜色模块的S分量平均 值和该颜色模块的H分量平均值;或者 将该颜色模块包括的各像素点在YUV颜色空间中的Y分量值、U分量值和V分量值,转 换为该颜色模块包括的各像素点在RGB颜色空间中的R分量值、G分量值和B分量值;将该 颜色模块包括的各像素点的R分量值、G分量值和B分量值,转换为该颜色模块包括的各像 素点在HSI颜色空间中的S分量值和H分量值;分别根据该颜色模块包括的各像素点的S 分量值和H分量值,确定该颜色模块包括的各像素点的S分量值的平均值和H分量值的平 均值,分别作为该颜色模块的S分量平均值和该颜色模块的H分量平均值。
19. 如权利要求17所述的装置,其特征在于,所述偏色确定单元,具体用于采用如下公 式确定该颜色模块的偏色类型:
其中,S(k)为第k个颜色模块的S分量平均值,std_S(k)为第k个颜色模块对应的标 准S分量值,type (k)表示第k个颜色模块的偏色类型,为第一种偏色类型时,type (k)=0, 为第二种偏色类型时,type (k)=l,为第三种偏色类型时,type (k) =2。
20. 如权利要求19所述的装置,其特征在于,所述偏色确定单元,具体用于当该颜色模 块的偏色类型为第三种偏色类型时,所述待检测视频图像的该颜色模块对应的颜色的偏色 幅度通过如下公式确定:
err (k) = angle (k)+10 X abs(S(k)-std_S(k)) 其中,H(k)为第k个颜色模块的H分量平均值,std_H(k)为第k个颜色模块对应的标 准H分量值,abs ()为对()内的值取绝对值,err (k)为第k个颜色模块对应的颜色的偏色 幅度; 当该颜色模块的偏色类型为第一种偏色类型或第二种偏色类型时,所述待检测视频图 像的该颜色模块对应的颜色的偏色幅度通过如下公式确定: err(k) = 20 X abs (S (k)-std_S (k)) / (2-type (k)) 其中,S(k)为第k个颜色模块的S分量平均值,std_S(k)为第k个颜色模块对应的标 准S分量值,abs ()为对()内的值取绝对值,err (k)为第k个颜色模块对应的颜色的偏色 幅度。
21. 如权利要求12所述的装置,其特征在于,所述偏色确定单元,还用于根据所述待检 测视频图像的多个颜色模块分别对应颜色的偏色幅度,确定所述待检测视频图像的整体偏 色幅度。
22. 如权利要求21所述的装置,其特征在于,所述偏色确定单元,具体用于分别确定所 述多个颜色模块包括的各像素点在HSI颜色空间中的I分量值的平均值,对应作为所述多 个颜色模块的I分量平均值;并根据所述多个颜色模块的I分量平均值和所述多个颜色模 块各自对应的标准I分量值进行正向对比和反向对比,通过如下公式确定所述待检测视频 图像的多个颜色模块的强度的总体偏差:
其中,I (k)为第k个颜色模块的I分量平均值,Std_I (k)为第k个颜色模块对应的标 准I分量值,N为色卡包含的颜色模块的个数,e为所述待检测视频图像的多个颜色模块的 强度的平均偏差,err_sum为所述待检测视频图像的多个颜色模块的强度的总体偏差;以 及 根据所述待检测视频图像的多个颜色模块分别对应颜色的偏色幅度,以及所述待检测 视频图像的多个颜色模块的强度的总体偏差,通过如下公式确定所述待检测视频图像的整 体偏色幅度:
其中,err (k)为第k个颜色模块对应的颜色的偏色幅度,color_err为所述待检测视频 图像的整体偏色幅度。
【文档编号】G06T7/40GK104346817SQ201310320283
【公开日】2015年2月11日 申请日期:2013年7月25日 优先权日:2013年7月25日
【发明者】潘晖, 潘石柱, 张兴明, 傅利泉, 朱江明, 吴军, 吴坚 申请人:浙江大华技术股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1