触摸感测的主/从控制的制作方法

文档序号:11133346阅读:196来源:国知局
触摸感测的主/从控制的制造方法与工艺

相关申请的交叉引用

本申请要求享有2010年9月7日提交的美国专利申请12/877,056的权益,其中在这里出于所有目的引入了该申请的全部内容以便作为参考。

技术领域

本发明主要涉及的是使用主/从配置的触摸感测,尤其涉及的是主触摸控制器与一个或多个从触摸控制器的同步及协调操作。



背景技术:

现今,很多种输入设备可以用于在计算系统中执行操作,例如按钮或按键、鼠标、跟踪球、控制杆、触摸传感器面板、触摸屏等等。由于操作方便且功能很多,以及价格的降低,触摸屏尤其变得日益普及。触摸屏可以包括位于液晶显示器(LCD)之类的显示设备的前方的透明触摸传感器面板,或是将触摸感测电路部分或完全集成在显示器中的集成触摸屏等等。触摸屏可以允许用户用手指、触笔或其他对象接触显示设备显示的用户界面(UI)所指示的位置,以便执行各种功能。通常,触摸屏能够辨识触摸事件以及触摸事件在触摸传感器面板上的位置,计算系统于是能够根据发生触摸事件时的显示来解释触摸事件,此后可以基于触摸事件来执行一个或多个动作。

例如,驱动和感测线路矩阵可以形成互电容触摸传感器面板,其中所述线路由诸如氧化铟锡(ITO)之类的基本透明的导电材料制成,并且通常会在水平和垂直方向上以行和列的形式排列在基本透明的基底上。驱动信号可以经由驱动线路传送,所述驱动线路可以测量驱动线路与感测线路的交叉点以及相邻区域(感测像素)上的静态互电容。从感测信号中可以确定静态互电容以及触摸事件导致的静态互电容的任何变化,其中所述感测信号可以是在感测线路中由于驱动信号而产生的。

控制器可用于产生触摸传感器面板的驱动信号,并且还可以用于接收和处理来自触摸传感器面板的感测信号。控制器可以是在专用集成电路(ASIC)中实施的。然而,由于特定控制器ASIC设计只能提供数量有限的驱动信号,并且只能接收数量有限的感测信号,因此,随着更大或分辨率更高的触摸传感器面板上的驱动及感测线路数量的增多,单个控制器ASIC有可能不足以支持这些触摸传感器面板。



技术实现要素:

触摸感测可以通过使用共同操作以控制触摸感测表面的主触摸控制器以及一个或多个从触摸控制器来实现。主触摸控制器和从触摸控制器可以在触摸感测表面的不同驱动线路上传送驱动信号,所产生的感测信号可被主控制器和从控制器从不同感测线路接收。举例来说,由于每一个感测线路可以被来自主控制器的驱动信号以及来自从控制器的驱动信号所驱动,因此,每一个感测信号可以包括来自主控制器和从控制器的驱动信号的叠加。感测信号的处理可以基于主控制器和从控制器内的各种时钟信号。从控制器的时钟信号可以是用与主控制器的时钟信号同相的方式产生的,由此,从控制器中的感测信号处理与主控制器中的感测信号处理可以是同相的。

通过在主控制器与从控制器之间传送时钟信号,可以在主控制器与从控制器之间建立通信链路。作为示例,该时钟信号可以是高频时钟信号,例如48MHz时钟信号。包含序列信息的命令可被传送到从控制器,并且从控制器可以基于时钟信号和序列信息来启动通信序列。该序列信息可以向从控制器告知例如高频时钟信号中的哪一个时钟周期是通信序列的起始时钟周期,在每一个通信序列中包含了多少个时钟周期以及所述时钟周期包含于主控制器和从控制器的通信序列的哪些部分。一旦针对通信序列而对从控制器进行了训练,那么从控制器例如可以在通信序列的第一部分接收来自主控制器的通信,并且所述从控制器可以在通信序列的第二个部分中向主控制器传送通信。

在主控制器与从控制器之间可以通过从主控制器向从控制器传送包含相位对准信息的命令来同步触摸感测操作。在主控制器中可以使用各种主时钟信号来执行触摸感测操作,例如生成驱动信号以及滤波和解调感测信号,其中所述主时钟信号可以是在从控制器中以同相的方式产生的,由此,各种从时钟信号可以采用与主控制器同相的方式来执行触摸感测操作。

附图标记

图1示出的是根据不同实施例的例示触摸感测系统。

图2示出的是根据不同实施例的另一个例示触摸感测系统。

图3示出的是根据不同实施例的例示触摸感测处理。

图4示出的是在根据不同实施例的触摸感测处理中使用的例示时钟信号。

图5示出的是根据不同实施例的主触摸控制器与从触摸控制器之间的例示串行链路。

图6示出的是根据不同实施例来同步主与从触摸控制器的例示方法。

图7示出的是根据不同实施例的例示同步通信。

图8示出的是根据不同实施例的例示串行接口。

图9示出的是根据不同实施例的例示背靠背(back-to-back)传输。

图10示出的是根据不同实施例的例示累加器。

图11示出的是根据不同实施例的传送有效通道的结果数据的例示方法。

图12A-12C示出的是各自包含了根据不同实施例的例示主/从触摸控制器配置的例示移动电话、例示数字媒体播放器以及例示个人计算机。

具体实施方式

在以下关于实施例的描述中将会参考构成本发明的一部分的附图,其中所述附图以例示的方式示出了可以实施本发明的具体实施例。应该理解的是,在不脱离所公开的实施例的范围的情况下,其他实施例也是可以使用的,并且结构是可以改变的。

本发明主要涉及的是使用主/从配置的触摸检测,尤其涉及的是主触摸控制器与一个或多个从触摸控制器的同步及协调操作。所述协调操作可以包括对主控制器与一个或多个从控制器的各个时钟信号执行相位对准处理,从而能够实现协调操作。基于这些经过相位对准的时钟信号,可以执行各种操作,例如使用来自主和从触摸控制器的同相驱动信号来驱动触摸感测表面,使用同相的解调信号来解调主和从触摸控制器接收的感测信号,以及将感测信号应用于以与主和从触摸控制器同相的方式工作的抽选滤波器。

虽然在这里是依照互电容触摸感测表面来描述这里公开的实施例的,但是应该理解,这些实施例并不受此限制,而是例如可以应用于能够检测表面之上或是表面附近的单次和/或多次触摸的自电容、光学、电阻及其他触摸感测表面和技术。此外,虽然在这里是依照单主/单从系统来描述和例证实施例的,但是应该理解,一些实施例可以包括使用单主多从、多主多从以及其他配置的系统。

在一些例示实施例中,触摸感测表面可以包括触摸屏,例如具有触摸感测功能的LCD显示器,其中所述触摸屏在显示电路产生图像时是不活动的,并且在显示电路不活动的触摸感测阶段感测触摸,例如在显示消隐时段期间。在显示电路之类的设备其他电路不活动时感测触摸将有助于缓解其他电路引起的对触摸感测的噪声和/或干扰,此外还有助于减小允许用于每一个触摸感测处理的时间量。

作为示例,集成的触摸感测系统的一些实施例可以基于自电容,而一些实施例可以基于互电容。在基于自电容的触摸系统中,每一个触摸像素可以是由形成接地自电容的独立电极构成的。当物体接近触摸像素时,在所述物体与触摸像素之间可以形成一个附加的接地电容。这个附加的接地电容可能导致触摸像素看到的自电容净增长。自电容的这种增长可以被触摸感测系统检测和量度,以便.在多个对象接触触摸屏时确定所述多个对象的位置。在基于互电容的触摸系统中,触摸感测系统例如可以包括驱动区域和感测区域,例如驱动线路和感测线路。在一个例示情形中,驱动线路可以是按行形成的,而感测线路则可以是按列形成的(例如正交)。触摸像素可以是在行与列的交叉点提供的。在操作过程中,所述行可以用AC波形激励,并且在触摸像素的行与列之间可以形成互电容。当物体接近触摸像素时,在触摸像素的行与列之间耦合的一些电荷可以改为耦合在所述物体上。这种触摸像素上的电荷耦合的减小会导致行和列之间的互电容的净减小以及耦合在触摸像素上的AC波形的减小。电荷耦合的AC波形的减小可由触摸感测系统检测和量度,以便.在多个对象接触触摸屏时确定所述多个对象的位置。在一些实施例中,集成的触摸屏可以是多点触摸的、单点触摸的、投影扫描的、全成像多点触摸的或是任何电容性触摸的。

使用主/从系统来控制触摸感测将会提供优势。例如,在触摸控制器的一些集成电路(IC)实现中,主/从配置可使得DIE需要的连接数量减小,这样做可以允许使用更廉价和/或更小的DIE封装选项,例如允许使用晶圆级芯片尺寸封装来取代球栅阵列封装。由此,设备的成本、大小和/或厚度可被降低。

在一些情形中,与使用单个触摸控制器相比,如果所设计的触摸感测系统使用的是采用主/从配置的两个或更多触摸控制器,那么它有可能会更便宜。例如,与现有触摸控制器可以在单次扫描中处理的驱动线路和/或感测线路相比,诸如触摸板和触摸屏之类的更大和/或更高分辨率的触摸感测表面可被设计成包含更多的驱动线路和/或感测线路。在一些情况中,通过在首次扫描中扫描一些驱动/感测线路以及随后在二次扫描中扫描剩余的驱动/感测线路,可以使用单独的已有触摸控制器来控制新触摸感测表面的触摸感测(例如,双重扫描)。然而,与面板的双重扫描所需要的时间相比,一些应用有可能需要触摸数据在更短的时间内得到处理。在这种情况下,一个选项可以是设计出包含更多驱动通道和感测通道的新的触摸控制器,以此来处理更大的触摸感测表面。然而,设计新的触摸控制器的成本有可能很高。在一些情况中,如果使用采用主/从配置的两个或更多已有触摸控制器来控制新的触摸感测表面,而不是设计新的触摸控制器,那么将可以大幅节约成本。

然而,在一些触摸感测系统中,主/从配置有可能会很难实施。在一些触摸感测系统中,例如定时限制可能会阻碍触摸控制器的主/从配置的实现。在一些触摸感测系统中,各信号和事件等的同步对于触摸感测的精确操作而言有可能会很重要。

举例来说,一些触摸感测系统可以使用多个同时的驱动信号来激励多个驱动通道,从而产生一个或多个感测信号。每一个感测信号可以包括多个驱动信号产生的信号的叠加。可以通过多种方法来从所述一个或多个感测信号中提取触摸信息。作为示例,在一些互电容触摸感测系统中,感测信号由感测线路上的多个位置处的电荷注入所产生。电荷的注入与同时应用于多条驱动线路的驱动信号是对应的。所述感测信号可被解调,并且所提取的数据可以经由多个扫描步骤而被整合,以便获取触摸数据。精确解调会需要例如同步激励信号相位、解调信号相位、各处理操作的定时等等的高度同步。

图1是例示计算系统100的框图,该图示出的是根据本公开的实施例的例示触摸屏120的一个实现。作为示例,所述计算系统100可被包含在移动电话、数字媒体播放器、个人计算机或是含有触摸屏的其他设备中。计算系统100可以包含触摸感测系统,所述系统包括一个或多个触摸处理器102、外设104、主触摸控制器106、从触摸控制器166以及触摸感测电路(以下将会更详细地描述)。外设104可以包括但不局限于随机存取存储器(RAM)或其他类型的记忆体或存储器、看门狗定时器等等。主触摸控制器106可以包括但不局限于一个或多个感测通道108、通道扫描逻辑110、总线111(例如先进高性能总线(AHB))、串行接口113以及驱动器逻辑114。如下文中更详细描述的,通道扫描逻辑110可以通过控制驱动器逻辑114来产生处于不同频率和相位的激励信号116,并且所述激励信号可被有选择地应用于触摸屏120中与主触摸控制器106相连的驱动线路122。感测通道108可以从触摸屏120中与主触摸控制器106相连的感测线路123接收感测信号117。通道扫描逻辑110可以通过访问RAM 112来读取和写入数据。作为示例,在处理了感测信号之后(以下将会更详细描述),通道扫描逻辑110可以自主读取感测通道108产生的数据,并且可以通过将由此产生的数据写入RAM 112来累加所述数据。由此,RAM 112可以充当结果数据的累加器。此外,通道扫描逻辑110还可以提供对感测通道108的控制。

从触摸控制器166可以包括与主触摸控制器相同的部件,例如一个或多个感测通道168、通道扫描逻辑170、总线171(例如AHB)、串行接口173以及驱动器逻辑174。如以下更详细描述的,通道扫描逻辑170可以通过控制驱动器逻辑174来产生处于不同频率和相位的激励信号176,并且所述激励信号可被有选择地应用于触摸屏120中与从触摸控制器166相连的驱动线路122。感测通道168可以从触摸屏120中与从触摸控制器166相连的感测线路123接收感测信号177。通道扫描逻辑170可以通过访问RAM 172来读取和写入数据。在处理了感测信号之后,通道扫描逻辑170可以自主读取感测通道168产生的数据,并且可以通过将所产生的数据写入RAM 172来累加所述数据,由此,RAM 172可以充当结果数据的累加器。此外,通道扫描逻辑170还可以提供对感测通道168的控制。

在一些实施例中,触摸处理器及外设的功能既可以包含在主触摸控制器中,也可以包含在主触摸控制器以及一个或多个从触摸控制器中等等,由此,触摸处理器102和外设104不必是分开的部件。在一些实施例中,主触摸控制器和从触摸控制器各自可实现为单专用集成电路(ASIC)。在一些实施例中,主和从触摸控制器可以具有相等同的设计,即同一触摸控制器的两个实例,并且其中一个实例被配置成作为主控制器工作,另一个则被配置成作为从控制器工作;在这种情况下,例如时钟信号的生成以及可供从控制器独立执行的其他操作可被禁用,以使从控制器依赖于主控制器的时钟信号等等,从而提供更为同步的操作。作为示例,从控制器可被配置成接收来自主控制器的时钟信号,而不是自身产生时钟信号。同样,主控制器可被配置成将其产生的时钟信号传送至从控制器。此外,一些实施例还可以包括一个或多个主触摸控制器和/或一个或多个从触摸控制器。

计算系统100可以包括分别通过串行接口113以及串行接口173而与主触摸控制器106及从触摸控制器166相连的串行链路115。串行链路115可以包括两条线路,例如一条用于时钟信号,另一条则用于数据。如以下更详细描述的,主触摸控制器106的各元件可以通过串行链路115而与从触摸控制器166的部件进行通信。此外,计算系统100还可以包括用于接收来自触摸处理器102的输出以及基于所述输出来执行操作的主机处理器128。例如,主机处理器128可以连接到程序存储装置132以及诸如LCD驱动器134之类的显示控制器。该主机处理器128可以使用LCD驱动器134而在触摸屏120上产生图像,例如用户界面(UI)的图像,此外还可以使用触摸处理器102、主触摸控制器106以及从触摸控制器166来检测在触摸屏120上或其附近发生的触摸,例如显示的UI上的触摸输入。程序存储器132中存储的计算机程序可以使用触摸输入来执行操作,其中所述操作可以包括但不限于:移动光标或指针之类的对象,滚动或平移,调节控制设置,打开文件或文档,查看菜单,做出选择,执行指令,操作与主机设备相连的外设,应答电话呼叫,发起电话呼叫,终止电话呼叫,改变音量或音频设置,存储诸如地址、频繁拨打号码、已接来电、未接来电之类的与电话通信相关联的信息,登录计算机或计算机网络,许可已被授权的人员访问计算机或计算机网络的受限区域,加载与用户偏好的计算机桌面布置相关联的用户简档,许可访问web内容,启动特定程序,加密或解码消息等等。此外,主机处理器128还可以执行不与触摸处理相关的附加功能。

触摸屏120可以包括触摸感测电路,其中所述电路可以包括具有多条驱动线路122以及多条感测线路123的电容性感测介质。应该指出的是,正如本领域技术人员将会容易理解的,在这里有时会使用术语“线路”来仅仅指示导电通路,并且所述线路并不局限于严格线性的结构,而是包含了改变方向的通路,此外还包括具有不同尺寸、形状、材料等等的通路。主触摸控制器106可以使用来自驱动器逻辑114的激励信号116并通过主驱动接口124a来驱动一组驱动线路122,而从触摸控制器166则可以使用来自驱动器逻辑174的激励信号176以及通过从属驱动接口124b来驱动另一组驱动线路122。在其中一组感测线路123中产生的所得感测信号117可以通过感测接口125而被传送至主触摸控制器106中的感测通道108(也被称为事件检测和解调电路),而在另一个组感测线路123中产生的所得感测信号117则可以通过感测接口125传送至从触摸控制器166中的感测通道168。这样一来,驱动线路和感测线路可以交互以形成电容性感测节点,并且所述节点可被认为是触摸图片元素(触摸像素),例如触摸像素126和127。这种理解方式在将触摸屏120视为捕获触摸“图像”时会是非常有用的。换句话说,通过使用从感测信号117和171中提取的触摸数据,可以确定是否在触摸屏中的每个触摸像素上检测到触摸,而在发生触摸处的触摸屏中的触摸像素图案可被认为是触摸“图像”(例如手指接触触摸屏的图案)。受控于主和从触摸控制器的驱动及感测线路的特定组合可以取决于以下要素,例如能被主控制器和从控制器驱动的驱动线路的数量,能被主控制器和从控制器处理的感测线路的数量等等。

图2示出的是根据本公开实施例的由例示的主/从触摸控制器系统控制的驱动线路与感测线路的例示组合。图2示出了包含驱动线路203和感测线路205的触摸屏201。在这个例示实施例中,驱动线路203有四十条,感测线路205有三十条。在图2中,以20条为一组的驱动线路203被示出为受主控制器控制的驱动线路203a,并且这些驱动线路通过引出线207与主触摸控制器206相连,此外还有以20条为一组的驱动线路203(被示出为受从控制器控制的驱动线路203b)通过引出线211与从触摸控制器209相连。另外,在图2中,以15条为一组的感测线路205被示出为是受主控制器控制的感测线路205a,并且这些感测线路与主触摸控制器206相连,此外还有以15条为一组的感测线路205被示出为是受从控制器控制的感测线路205b,并且这些感测线路与从触摸控制器209相连。在本示例中,引出线207和引出线211充当主控制器和从控制器的驱动接口,例如图1的驱动接口124a和124b,而引出线213和引出线215则充当主控制器和从控制器的感测接口,例如图1的感测接口125。主和从触摸控制器分别包括允许主控制器和从控制器经由串行链路221进行通信的串行接口217和219,例如图1的串行接口113和173以及串行链路115。

图3示出的是根据本公开的实施例的例示触摸感测操作。触摸屏301可以包括驱动线路303和感测线路305。作为示例,主触摸控制器的驱动器逻辑307可以使用驱动发射机311基于8MHz时钟信号313发射的激励信号309来驱动一些驱动线路303。每一个激励信号309都可以与感测线路305进行交互。所述交互可以基于相应触摸像素314上的触摸量而改变,并且会在感测线路上产生包含了触摸量信息的信号。此外,作为示例,从触摸控制器的驱动器逻辑315可以使用驱动发射机319基于8MHz时钟信号321发射的激励信号317来驱动其他驱动线路303。每一个激励信号317都可以与感测线路305进行交互,并且所述交互可以基于相应触摸像素322上的触摸量而改变,从而在感测线路上产生包含触摸量信息的信号。激励信号309和317可被同时传送,由此,来自主和从触摸控制器的激励信号将会同时与感测线路305交互,从而产生感测信号323,其中所述感测信号323可以是每一个激励信号与感测线路的交互所产生的信号叠加。换句话说,感测信号323包含的触摸信息可以包括多个触摸像素314和322上的合成触摸量信息。所述感测信号323可以通过主(或从)触摸控制器的感测通道325而被接收。

感测通道323的放大器(AMP)327可以放大感测信号323,并且带通滤波器(BPF)329可以滤波经放大的信号。经滤波的信号可以由模数转换器(ADC)331转换成数字信号。作为示例,所述ADC 331可以是∑-△ADC,它可以通过操作来以高速过采样信号,从而通过以高于激励信号频率的速率执行采样来减小噪声量。在该示例中,ADC 331基于时钟信号333并以48MHz的速率采样信号。例如,ADC 331可以以48MHz的采样速率输出4比特数字信号。作为示例,抽该数字信号可由选滤波器(DCF)335基于12MHz的时钟信号337进行滤波,以便以4MHz采样速率来产生11比特的数字信号。然后,解调器(DEMOD)339可以基于4MHz的时钟信号341来解调所述信号,以便提取触摸信息。在一些实施例中,来自解调信号的触摸信息可经触摸屏301的多次扫描而被整合,例如通过在存储设备中累加某一时段上的触摸信息来将其整合,其中所述存储设备可以是图1所示的RAM 112(如果感测通道325位于从触摸控制器,则是RAM 172)中的累加器。在一些实施例中,触摸信息可能需要与其他触摸信息相结合,以便提取每一个单独触摸像素上的触摸量信息。例如,通过使用包括奇异值分解(SVD)在内的本征值分析这类处理方法,可以将该触摸信息与其他感测线路和/或其他扫描的触摸信息组合,从而确定与各独立触摸像素上的触摸量信息相对应的本征值。举个例子,在一些实施例中,该处理方法可以包括矩阵运算。

作为示例,如图3所示,在主触摸控制器的感测通道325中,关于感测信号323的处理可以基于主控制器的三个时钟信号,即时钟信号333(48MHz)、时钟信号337(12MHz)以及时钟信号341(4MHz)。在一些实施例中,对于通过感测通道325的处理而从感测信号323中提取的触摸信息来说,其精度例如可能会要求生成感测信号323的激励信号与时钟信号333、337和/或341处于相同相位,也就是与主控制器的48MHz、12MHz和/或4MHz时钟信号同相。作为示例,如果使用不与激励信号同相的解调信号来执行解调,那么有可能会导致表示为直流(DC)偏移的误差。在一些触摸感测系统中,触摸信息可以是解调信号中的DC部分的量度,由此,DC偏移误差可能导致触摸测量结果中的错误。在一些实施例中,所述误差可能会因为例如通过积分、解调等处理实施的触摸信息组合处理而被叠加。因此,在一些实施例中,可能要考虑各时钟信号的相位对准。

图4示出的是根据本公开的例示实施例的关于主触摸控制器的48MHz时钟信号333、12MHz时钟信号337、8MHz时钟信号313以及4MHz时钟信号341的例示方波时钟信号。如图4所示,在时间t=X,每一个时钟信号333、337、313以及341都会从低状态转到高状态。因此,在该示例中,时钟信号在时间X同相。此外,由于时钟信号333、337及313这些高频时钟信号中的每一个的频率都是最低频时钟信号的频率的整数倍,因此,本领域技术人员将会理解,每当时钟信号341从低状态转到高状态时,这四个时钟信号将是同相的。换句话说,每当时钟信号341从低状态转到高状态时,其他三个时钟信号中的每一个同样会从低电平状态转到高电平状态。如图4所示,主触摸控制器可以在内部生成时钟信号333、337、313以及341,以使其在时间X同相。由此,由主控制器的激励信号309导致感测信号323的部分能够与时钟信号333、337和341同相,其中所述时钟信号333、337以及341分别用于由主控制器的感测通道325中的ADC 331、DCF335以及解调器339处理。

然而,如上所述,感测信号323有可能是基于主控制器的激励信号309及从控制器的激励信号317的信号叠加。换句话说,主控制器的感测通道325所接收的感测信号323可能部分基于从触摸控制器的时钟信号,也就是激励信号317所基于的时钟信号321(8MHz)。因此,如果从触摸控制器的时钟信号321与主触摸控制器的时钟信号333、337及341同相,从而例如使得感测信号323中源于从控制器的激励信号317的部分处于针对主控制器感测通道325中的处理相适合的相位,那么将是非常理想的。

同样,从触摸控制器的感测通道有可能接收其他感测信号,并且关于这些感测信号的处理可以基于从控制器的三个相应的时钟信号(即48MHz时钟信号、12MHz时钟信号以及4MHz时钟信号,未示出)。从触摸控制器的感测通道对触摸信息所做出的精确确定取决于主控制器的8MHz时钟信号与从控制器的时钟信号、即与从控制器的48MHz、12MHz以及4MHz时钟信号的相位对准。总之,在这个通过使用主控制器和从控制器来处理可能含有基于彼此驱动信号的信号叠加的感测信号的示例中,从感测通道处理中提取的触摸信息的精确度取决于所有相关时钟的相位对准,例如主控制器和从控制器的48MHz、12MHz、8MHz时钟以及4MHz时钟信号。

现将参考图5-7来描述根据本公开实施例的用于同步主与从触摸控制器的例示方法,其中该同步是经由通信链路(诸如串行链路)并通过产生主和从触摸控制器的同相时钟信号实施的。在这个例示方法中,在主控制器与从控制器之间可以传送多个时钟信号中的一个时钟信号(例如48MHz时钟信号),而剩余时钟信号(例如12MHz、8MHz以及4MHz时钟信号)则是基于所传送的时钟信号以同相的方式产生的。应该指出的是,在这里首先描述的是如上所述的例示触摸感测操作,其中所述操作包括传送激励信号,接收感测信号以及通过处理感测信号来获取触摸信息,并且该描述的目的是为了阐明各时钟信号的相位对准在一些主/从触摸感测配置中可能会是有利的。然而,在大多数实施例中,上述触摸感测操作是在使用如下参考图5-7描述的一个或多个例示处理进行主与从时钟信号的相位对准之后执行的。

图5示出的是根据本公开实施例的例示主/从触摸控制器系统。主触摸控制器501可以用串行链路505连接到从触摸控制器503。主触摸控制器501的主串行接口507以及从触摸控制器503的从属串行接口509可以执行以下操作,例如建立公共时钟信号,在主与从触摸控制器之间建立串行通信、同步一个或多个低频时钟信号,对从触摸控制器进行编程,以及将结果数据传送至处理器以进行集中处理,其示例可以是将来自从触摸控制器的结果数据传送到位于主触摸控制器的处理器。在该例中,串行链路505包括时钟线路511和数据线路513。主和从触摸控制器则经数据线路513发送数据,例如命令、控制字符、触摸处理结果等等。

参考图5-6,主触摸控制器501包括生成(601)48MHz的主时钟信号515的时钟(未示出)。此外,在主触摸控制器501中还可以生成其他时钟信号,例如12MHz、8MHz以及4MHz的时钟信号(未示出)。主触摸控制器生成的时钟信号例如可以与图4所示的时钟信号333、337、313以及341相对应。在可以发生在系统首次启动之时、检测到先前通信中的错误之后以及诸如此类的情况下的初始化处理过程中,主触摸控制器501经由时钟线511而向从触摸控制器503传送(602)主时钟信号515。在一些实施例中,主触摸控制器可以用复位信号作为传输主时钟信号515的开端,作为示例,所述复位信号可以促使从触摸控制器返回初始状态,其中在所述状态,从控制器的某些操作将会停止,并且从控制器将会监视串行链路505。作为主控制器的48MHz时钟信号传送到从控制器的结果,主触摸控制器生成的48MHz时钟信号与从触摸控制器使用的48MHz时钟信号可以是实质相同的。因此,在计及时钟信号515归因于例如传输延迟、处理延迟等等如下所述的相移(如果有的话)之后,主和从触摸控制器的48MHz时钟信号可以是同相的。

主触摸控制器501可以训练(603)从触摸控制器503以建立跨串行链路505的数据线路513的通信序列。例如,主触摸控制器501可以经数据线路513传送命令,例如同步链路字符,以便启动与从触摸控制器503的通信序列。在一个例示的通信序列中,在数据线路513上可以建立双向通信,其中主控制器可以在前半个时段经数据线路进行传输,而从控制器则可以在后半个时段经数据线路进行传输。例如,在主控制器与从控制器之间可以共享一个具有24个时钟周期的时段(例如将其编号为时钟周期0-23),由此,主控制器将会控制通信序列中的第一部分,例如前12个时钟周期(即时钟周期0-11)作为主传输时段,从控制器则控制第二部分,例如另外的12个时钟周期(即时钟周期12-23)作为从传输时段。一些序列信息可以是预先确定的,例如每一个主/从传输时段中的时钟周期的数量以及每一个通信序列中用于主控制器和从控制器传输时段的部分。作为示例,在一些实施例中,同步链路字符可以是仅仅指示通信序列的起始时钟周期的命令,所述命令可以向从控制器指示何时开始在时钟周期0对48MHz的时钟周期进行计数,并且从控制器的存储器可以包括能被预先存储在从控制器本地的数据,通信序列的长度(例如0-23个时钟周期),用于主传输的时钟周期,以及用于从传输的时钟周期。从控制器可以从本地存储器中读取与主控制器传送的序列信息结合使用的预存储数据。

例如,同步链路字符可以训练从控制器以知晓哪一个48MHz时钟周期是主/从通信序列中的第一个时钟周期(例如时钟周期0),哪一个48MHz时钟周期是最后一个时钟周期(例如时钟周期23),通信序列中的哪些部分受主控制器控制,哪些部分受从控制器控制。对经数据线路513的通信的控制可以在主与从控制器之间持续交替。如下所述,当在主控制器与从控制器之间建立了通信之后,诸如12MHz、8MHz和4MHz时钟之类的从控制器的低频时钟可被设置成与主控制器的低频时钟同相,以使主控制器和从控制器可以同相地执行触摸感测操作。

图7例示了根据本公开的实施例的例示时钟信号设置处理。图7示出了在图6的训练建立了主与从触摸控制器之间的串行通信之后经数据线路513的主传输及从传输。图7示出了主/从控制器的48MHz时钟信号,即时钟信号333、主控制器的4MHz时钟信号341及从控制器的4MHz时钟信号701。在第一时段703中的前12个48MHz时钟周期期间,主触摸控制器控制经数据线路513的传输,而从触摸控制器则在所述第一时段的另外的12个时钟周期期间控制传输。第一时段703例如可以是紧跟在通过图6的训练建立主从控制器之间的通信的处理之后的时段,或者第一时段703可以是后续的时段。在本示例中,由于高频时钟信号48MHz与低频时钟信号4MHz相差12倍,并且由此可以允许内部处理非常便利地在4MHz的频率上运行,因此,为每一个主/从控制器传输使用12个时钟周期是有意义的。

主和从触摸控制器可以经数据线路513传送分组数据,例如分组705和707。每一个分组例如可以是12比特分组,这其中包括10比特字符、一辅助比特以及一周转比特。所述10比特字符例如可以是8b/10b编码数据。

如上所述,由于主触摸控制器向从控制器传送48MHz时钟信号,因此,主和从触摸控制器的48MHz时钟信号(高频时钟信号)是相同的时钟信号(在图7中示出为一个时钟信号333)并且由此是同相的。串行通信协议可以是基于时钟信号333建立的。在一些实施例中,从触摸控制器可以基于从主控制器接收的高频时钟信号生成其他时钟信号。最初,从控制器中的其他时钟信号可能不与主控制器中的相应时钟信号同相。在这个例示实施例中,在第一时段703期间,主控制器和从控制器的低频时钟信号分别是4MHz时钟信号341和701,并且这些时钟信号并不是同相的。在该例中,时钟信号341会在第一时段703的第一个48MHz时钟周期中从低电平转成高电平,并且时钟信号701会在第四个48MHz时钟周期中从低电平转成高电平。

参考图6,在通过训练(603)建立主从触摸控制器之间的串行通信之后,主控制器可以发送8b/10b控制字符,并且从控制器可以接收控制字符和应答主控制器。例如,主触摸控制器可以向从触摸控制器传送(604)设置时钟命令。该设置时钟命令可以允许从控制器将一个或多个其他时钟信号设置成与主控制器中的相应时钟信号同相。从触摸控制器可以接收设置时钟命令,并且可以基于设置时钟命令中的相位对准信息来设置(605)其一个或多个时钟信号。例如,所述相位对准信息可以指示主触摸控制器的一个或多个时钟信号将从低状态转到高状态的时间。图7示出了一个例示的时钟设置过程,其中主触摸控制器可以在第一时段703期间将设置时钟命令709作为分组705的10比特控制字符传送。设置时钟命令709可以指示从触摸控制器例如在后续时段的第一个48MHz时钟周期上将其低频时钟信号设置成从低转到高,其中所述后续时段例如比从控制器接收到设置时钟命令的时段再往后两个时段。如图7所示,从触摸控制器可以接收在第一时段703中传送的设置时钟命令709,并且该从控制器可以在第三个时段711的第一个48MHz时钟周期上将时钟信号701设置成从低转到高,其中所述第三时段711比第一时段再往后两个时段。

在这个例示实施例中,如果将从控制器的低频时钟信号设置成在该时段的第一个48MHz时钟周期上从低转到高,则从属和主时钟信号同相。在一些实施例中,由于例如系统中的延迟(例如通信延迟、面板延迟等),从控制器和主控制器时钟信号可能会在一个不同的48MHz时钟周期上同相。例如,在一些实施例中,触摸感测表面的驱动及感测线路的配置有可能致使主控制器在从控制器之前接收到感测信号。在这种情况下,在从控制器接收感测信号的过程中出现的延迟有可能需要在从控制器的低频时钟信号中具有相应的延迟。因此,在一些实施例中,设置时钟命令例如可以使得从控制器将低频时钟信号设置成在第三个48MHz时钟周期上从低转到高。换句话说,从控制器的低频时钟信号可以基于48MHz时钟信息以及相位对准信息,诸如触摸感测系统延迟的已知差别,例如相差三个48MHz时钟周期。从控制器的时钟信号可以是在与主控制器时钟信号具有已知相位关系的情况下生成的,由此,主控制器和从控制器的时钟信号相对于在主控制器和从控制器中执行的触摸感测操作而言是同相的。

在一些实施例中,在接收到来自主控制器的设置时钟命令之前,从触摸控制器可不生成其他时钟。在这种情况下,在从控制器接收到来自主控制器的命令之后,所述从控制器只在恰当时间开始生成一个或多个其他时钟信号,以使其与主控制器的时钟信号同相。

如上所述,一旦主和从触摸控制器的时钟信号同相,则触摸感测操作(诸如参考图1-4如上描述的)可以是在主触摸控制器的控制下例如使用串行链路执行的,用以将命令传递至从控制器,对从控制器进行编程,接收来自从控制器的数据等。所述串行接口(诸如主和从触摸控制器的串行接口113和173)可以提供经由串行链路来进行通信的功能。

图8示出的是根据本公开实施例的例示串行接口801,其中所述接口可以在串行链路803与通过AHB之类的总线相连的触摸控制器的各部件之间提供接口。串行接口801可被实现为例如图1的串行接口113和/或串行接口173。串行接口801可以包括能够提供与串行链路803对接的低级接口的物理链路部分807,以及能够提供与触摸控制器的各部件及连接至总线805的其他系统部件对接的高级接口的分组解码和生成部分809,其中所述系统部件例如可以是处理器811、包括累加器815的存储器813以及面板扫描控制817。

经串行链路803的传输可以是例如依照8b/10b协议编码的数据分组。物理链路部分807可以包括能接收并执行数据分组的字节对准的对准模块819,以及8b/10b解码器821,其中所述解码器能将编码分组转换成8比特数据,提供差错检查,以及将数据发送至分组解码和生成部分809以供进一步的处理。物理链路部分807还可以包括8b/10编码器823,其中所述编码器可以将输出的8比特分组转换成10比特分组,并且可以将其发送到串行化器825,后者能够串行化分组,并且可以在串行链路803上传送这些分组。物理链路部分807还可以包括一个训练模块827,后者可以执行训练操作,例如图6中的训练(603),以便跨串行链路803的数据线路建立与其他触摸控制器的串行通信。

分组解码和生成部分809可以包括串行接收(RX)部分829,该部分可以包括解码来自8b/10b解码器821的8比特分组数据并且确定诸如分组目的地的分组解码器831。串行RX部分829可以将分组发送到其在分组解码和生成部分809内部的目的地,如果目的地处于分组解码和生成部分以外,那么它也可以将分组转发到总线接口833,以便在总线805上传输。串行发送(TX)部分835可以包括对经串行链路803送出的请求划分优先级的请求选择器837。该请求选择器837例如可以是调度器,例如循环复用调度器。串行TX部分835还可以包括将要经串行链路803送出的数据进行分组的分组生成器839。

总线接口833可以包括能够允许总线接口801经由总线805与触摸控制器的其他部件进行通信的总线主接口841以及总线从接口843。总线主接口841可以与串行接口801的其他部件通信,例如用以转发读取/写入注册请求等。总线从接口843可以允许其他部件与总线805上的总线主接口通信,以便与串行接口801通信。

通过总线接口833,串行接口801可以为连接至总线805的触摸控制器部件提供接口,以便通过其他触摸控制器的串行接口来与其他触摸控制器的部件通信。以下将依照主触摸控制器部件与从触摸控制器部件之间的通信而对各种的例示通信进行描述。虽然该例示通信仅仅是使用图8中例示的单个串行接口801描述的,但是应该理解,主和从触摸控制器中的每一个都包括串行接口,例如串行接口801,并且除了“总线主接口”以及“总线从接口”之外,针对特定部件位置的“主”或“从”的引用分别指的是主触摸控制器以及从触摸控制器。

在一个例示通信中,主控制器的处理器811可以写入从控制器的存储器寄存器。主控制器的处理器可以向总线传送请求,并且主控制器的总线从接口将会拾取该请求,并将该请求编码成12比特的传输序列,随后将跨串行链路803发送该传输序列至从控制器,在那里,所述传输序列将被解码。当在从控制器上解码之后,该请求将被转发到从控制器的总线主接口,所述接口将会获取该请求,并且会在从控制器的总线上传送所述请求,以完成所请求对从控制器的存储器的写入。

串行接口801还可包括能为特定类型的通信提供支持的专用接口。例如,面板扫描控制接口844可以为面板扫描控制器817提供专用接口。该面板扫描控制器817可以是用于激励、解调及针对触摸感测的其他信号处理的主控制器。由此,主从面板扫描控制器的同步操作是合乎需要的。主控制器的面板扫描控制器可以通过主控制器的面板扫描控制接口844跨串行链路803传送控制字符,以便控制从控制器的面板扫描控制器的操作,并对从控制器的操作与主控制器的操作进行协调。在一些情况中,面板扫描控制接口844可以传送特殊的控制字符。例如,当面板扫描控制器需要发送紧急数据时,该面板扫描控制接口可以包括带有该数据的背靠背传输命令。

图9示出的是串行序列901-905的示例,其中包括主控制器的背靠背传输。主传输时段901及从传输时段802分别代表期间主控制器传送分组907及从控制器传送分组909正常传输的时段。在主传输时段803中,主控制器将会传送包括有背靠背传输命令917的分组911。背靠背传输命令917例如可以在主传输时段期间被传送至从控制器的分组的辅助比特中传送,以便指示由于主控制器将会在下一个从传输时段期间进行传输,因此从控制器不进行传输。换句话说,主控制器会通过“劫持”某一从传输时段而在两个连续传输时段中进行传输。当触摸控制器需要传送时间敏感信息时,以及当信息量不是特别大时,背靠背传输将会是非常有用的。例如,面板扫描控制器所传递的控制分组的长度可以仅长2字节,例如该分组中的第一个字节是关于控制分组开端的指示,并且该分组中的第二个字节是实际控制分组。在这种情况下,单个的背靠背传输足以传送整个分组,并且所述背靠背传输所占带宽是可以接受的。当从控制器解码分组并识别出该背靠背传输命令时,从控制器不会在下一个从属传输时段中进行传输,而是将会侦听来自主控制器的传输。由此,图9将下一个传输时段示出为供主控制器传送分组913的主传输时段904。在接下来的传输时段即从传输时段905中,从控制器可以传送分组915,并且正常的通信序列可以使用交替的主/从传输时段来恢复。应该指出的是,在一些环境中,从控制器也可以使用背靠背传输,也就是说,所述背靠背传输并不局限于主控制器传输。

现将参考图8来描述例示面板扫描控制器传输的更多细节。面板扫描控制817可以向串行接口801发送指示该面板扫描控制要跨串行链路803发送控制分组的请求。可以在串行接口801与面板扫描控制817之间执行握手处理,以使串行接口901向面板扫描控制器817告知何时发送请求。以此方式,例如由于系统知道从控制器作用于请求所要耗费的时间的固定延迟,因此面板扫描控制817可以知道从控制器何时会对该请求执行操作。主控制器和从控制器的操作例如可以基于已知的等待时间以及已知的命令传输时间而被协调的。由此,通过使用根据本公开的实施例的触摸控制器的主/从配置,可以执行各种触摸感测处理,例如以上参考图1-4描述的处理。

如上所述,在触摸感测表面的触摸感测扫描期间,主从触摸控制器的每一个感测通道都会收集触摸信息。每一个感测通道的触摸信息可被累加在例如累加器815的累加器中。图10示出了主触摸控制器中的例示累加器1001。累加器1001例如可以包括与如图2所示触摸屏201之类的触摸感测表面的30条感测线路相对应的30列,并且由此包含了用于主控制器的感测通道所收集的主控制器结果数据1003的15个列,以及用于从控制器的感测通道所收集的从控制器结果数据1005的15个列。在触摸感测表面的扫描结束时,也就是在主和从触摸控制器的相应感测通道收集了来自所有感测线路的触摸信息之时,主控制器的结果数据1003被存储在累加器1001的列0-14中,而列15-29则由于从控制器的结果数据被存储在从控制器的相应累加器中而为空。由此,触摸信息可以由主和从触摸控制器生成并存储。在一些实施例中,可以在主控制器中处理主触摸控制器中存储的结果数据,例如触摸信息,以便获取诸如触摸位置、速度、邻近度等的触摸信息,同样,在从控制器中也可以对从触摸控制器中存储的结果数据进行处理。然而,在一些实施例中,存储在主控制器及一个或多个从控制器中的结果数据可以在单个触摸控制器中处理。例如,存储在从触摸控制器中的结果数据可被传送到主触摸控制器,并且可以与主控制器的结果数据合并,以便进行处理。就此而论,一旦从控制器的累加器累积了预定数量的数据(列),从控制器的累加器就能发送将从控制器的结果数据发送到主控制器的请求。

例如,从控制器的累加器可以通过从控制器的总线805来与从控制器的累加器接口845通信,以向累加器接口指示所述数据可用于传输(例如,扫描结束)。该累加器接口可以生成对从控制器的串行TX部分835的请求,所述串行TX部分则可生成结果分组并且可跨串行链路来发送该结果分组。主控制器的分组解码器831可以对结果分组进行解码,并且主控制器的累加器接口845可以通过主控制器的总线从接口将该分组写入主触摸控制器的累加器。

如上所述,为处理每一次扫描的触摸信息所提供的时间有可能是有限的。图11示出了根据本公开的实施例的例示结果数据传送过程,其中包括确定感测通道的有效性以及从结果数据传输中排除无效通道。当从触摸控制器已向主触摸控制器传送结果数据时,该从控制器的累加器接口可以从通道获取(1101)信息,并且可以确定(1102)该通道是否有效。例如,所述通道信息可以是由从触摸控制器的面板扫描控制所执行的频谱分析功能确定的噪声信息。如果确定该通道中噪声过大,那么从控制器的累加器接口可以确定该通道无效,并且可以从针对主控制器的传输中排除(1103)所述通道。另一方面,如果确定该通道有效,那么累加器接口可以将通道数据写入(1104)传输分组。此外,通道标识同样可被写入所述分组。例如,在分组报头中可以写入一个或多个有效通道的标识,以使报头信息标识分组中包括的有效通道数据。然后,该处理可以确定(1105)该通道是不是最后一个通道。如果该通道是最后一个通道,那么可以将结果数据传送(1106)到主触摸控制器。否则,累加器接口可以获取(1101)下一个通道的信息,并且该处理将被重复。

在一些实施例中,通道的有效与否可被动态确定,即,在触摸感测操作期间被实时确定。例如,可以为每一次扫描确定每一个通道的噪声电平,由此,关于通道有效性的确定可以随着每次扫描而改变。在其他实施例中,通道的有效性可以是预先确定的。例如,并不是所有从控制器(或主控制器)的感测通道都是可以使用的;换言之,这其中的一些感测通道有可能是不活动的。例如,图2示出了一个例示配置,其中触摸屏201包括30条感测线路,并且两个触摸控制器中的每一个都包括15个感测通道;由此,主控制器和从控制器的所有感测通道都被使用,即,所有通道都是有效的。然而,在另一个例示实施例中,触摸屏有可能包括25条感测线路,例如其中15条感测线路可以与主控制器的15个感测通道相连,而剩余的10条感测线路则可以与10个从控制器的感测通道相连。在该例中,有五个从控制器的感测通道可被预先确定成是无效的。

在一些动态确定通道有效性的实施例中,所述确定可以基于噪声,由此有可能确定嘈杂通道的结果数据无效,并且由此不会将其传送到主控制器。在一些实施例中,所述确定可以基于检测到的感测通道的干扰,例如感测通道与感测通道附近的其他电路之间的干扰,所述其他电路例如可以是在显示屏上显示图像的显示电路。在其他实施例中,从控制器的累加器接口可以确定通道的结果数据指示的是触摸还是无触摸。如果结果数据表明没有触摸,那么累加器接口可以确定该通道无效,并且可以从针对主控制器的传输中排除所述通道的结果数据。换句话说,所传送的仅仅是指示触摸的结果数据。在其他实施例中,举例来说,一些通道有可能专门用于仅仅指示在触摸屏的特定位置上发生触摸/未发生触摸。

应该指出的是,以上描述的一个或多个功能可以由存储在存储器中并由一个或多个处理器执行的软件和/或固件来实施。所述固件还可以在可供指令执行系统、装置或设备使用或是与之结合使用的任何计算机可读存储介质中存储和/或传输,其中所述指令执行系统、装置或设备可以是基于计算机的系统,包含处理器的系统或是可以从指令执行系统、装置或设备中取回指令并且运行所述执行的其他系统。在本文的语境中,“计算机可读存储介质”可以是可供指令执行系统、装置或设备使用或与之结合使用且能够包含或存储指令的任何介质。所述计算机可读存储介质可以包括但不局限于电子、磁性、光学、电磁、红外或半导体系统、装置或设备,便携式计算机磁盘(磁性),随机存取存储器(RAM)(磁性),只读存储器(ROM)(磁性),可擦写可编程只读存储器(EPROM)(磁性),诸如CD、CD-R、CD-RW、DVD、DVD-R或DVD-RW之类的便携式光盘,或是闪速存储器,例如紧凑型闪存卡、安全数字卡、USB存储器设备、记忆棒等等。

所述固件还可以在可供指令执行系统、装置或设备使用或与之结合使用的任何传输介质中传播,其中举例来说,所述指令执行系统、装置或设备可以是基于计算机的系统,包含处理器的系统或是可以从指令执行系统、装置或设备中取回指令并且运行所述执行的其他系统。在本文的语境中,“传输介质”可以是可供指令执行系统、装置或设备使用或与之结合使用且能够传递、传播或传输程序的任何介质。所述传输可读介质可以包括但不局限于电磁、磁性、光学、电磁或红外的有线或无线传播介质。

本公开的各个实施例的一些潜在优点对于便携设备而言有可能会非常有益,例如尺寸变薄和/或变小,但是本公开的实施例并不局限于在便携设备中使用。图12A-12C示出了根据本公开的实施例且可以在触摸屏中实施主/从配置的例示系统。图12A示出的是具有可以包含根据各实施例的主/从触摸感测处理的触摸屏1224的例示移动电话1236。图12B示出的是具有可以包含根据各实施例的主/从触摸感测处理的触摸屏1226的例示数字媒体播放器1240。图12C示出的是具有触摸屏1228和跟踪板1230的例示个人计算机1244,其中所述触摸屏和轨迹板中的每一个都可以包含根据各实施例的主/从触摸感测处理。

虽然在这里参考附图而对所公开的实施例进行了全面描述,然而应该指出的是,对本领域技术人员来说,不同的变化和修改都是显而易见的。例如,虽在以上的例示实施例中,用以产生/传送驱动信号以及处理感测信号的处理可以包括诸如基于8MHz时钟信号的生成/传输处理,基于48MHz时钟信号的模数转换处理,基于12MHz时钟信号的抽选处理,以及基于4MHz时钟信号的解调处理,但是一些实施例可以使用其他操作和/或基于其他频率的时钟信号来生成/传输驱动信号以及处理感测信号,这其中的一些或全部信号的相位可以根据上述方法而被对准。此类变化和修改应被理解成包含在附加权利要求所定义的所公开的实施例的范围以内。

根据如上,本公开的某些示例涉及同步主控制器与从控制器的触摸感测操作以联合操作触摸感测表面的方法。该方法包括:从主控制器向从控制器传送第一时钟信号;从主控制器向从控制器传送第一命令,所述第一命令包括相位对准信息;在从控制器中基于第一时钟信号以及相位对准信息生成从时钟信号,其中从时钟信号被生成为与主控制器的主时钟信号具有已知的相位关系;以及基于主时钟信号和从时钟信号执行触摸感测,以检测触摸感测表面上或附近的触摸,其中主控制器操作触摸感测表面的第一部分,而从控制器操作触摸感测表面的第二部分。作为以上公开的一个或多个示例的附加或者替换,在某些示例中,触摸感测表面的第一部分包括一组第一驱动线路以及一组第一感测线路,而触摸感测表面的第二部分包括一组第二驱动线路以及一组第二感测线路,以及执行触摸感测包括主控制器将一个或多个驱动信号施加至一个或多个第一驱动线路并接收来自第一感测线路的一个或多个感测信号,以及从控制器将一个或多个驱动信号施加至一个或多个第二驱动线路,并接收来自第二感测线路的一个或多个感测信号。作为以上公开的一个或多个示例的附加或者替换,在某些示例中,主控制器施加的一个或多个驱动信号基于主时钟信号,而从控制器施加的一个或多个驱动信号则基于从时钟信号。作为以上公开的一个或多个示例的附加或者替换,在某些示例中,执行触摸感测还包括:基于主时钟信号使用一个或多个解调信号解调由主控制器从一个或多个第一感测线路接收的感测信号,以及基于从时钟信号使用一个或多个解调信号解调由从控制器从一个或多个第二感测线路接收的感测信号。作为以上公开的一个或多个示例的附加或者替换,在某些示例中,驱动信号是由主控制器和从控制器所施加,由此,驱动信号在第一时段期间在一个或多个第一驱动线路以及一个或多个第二驱动线路上同时出现。

作为以上公开的一个或多个示例的附加或者替换,在某些示例中,其中通信链路是串行链路。作为以上公开的一个或多个示例的附加或者替换,在某些示例中,主控制器与从控制器之间的通信包括主控制器与从控制器的交替传输时段。作为以上公开的一个或多个示例的附加或者替换,在某些示例中,主控制器与从控制器之间的通信包括第二命令的传输,由此导致用于主控制器与从控制器之一的两个连续传输时段。作为以上公开的一个或多个示例的附加或者替换,在某些示例中,相位对准信息包括第一时钟信号的时钟周期的标识,由此,从控制器基于标识的时钟周期来设置从时钟信号的相位。作为以上公开的一个或多个示例的附加或者替换,在某些示例中,执行触摸感测包括如下之一:基于主时钟信号和从时钟信号的相位关系,用主控制器和从控制器的同相驱动信号来激励触摸感测表面,基于主时钟信号和从时钟信号的相位关系,用主控制器和从控制器的同相解调信号解调接收自触摸感测表面的感测信号,以及基于主时钟信号和从时钟信号的相位关系,将接收自触摸感测表面的感测信号施加至以同相方式操作的主控制器和从控制器的抽选滤波器。

本公开的其他一些示例涉及训练主控制器与从控制器之间的通信以联合操作触摸感测表面的方法。所述方法包括:从主控制器向从控制器传送第一时钟信号;从主控制器向从控制器传送第一命令,所述第一命令包括序列信息;以及在从控制器中启动通信序列,该通信序列基于所述第一时钟信号及所述序列信息,其中在所述通信序列的第一部分期间从控制器接收来自主控制器的通信,而在所述通信序列中的第二部分期间从控制器向主控制器传送通信。作为以上公开的一个或多个示例的附加或者替换,在某些示例中,该序列信息包括关于如下之一的信息:通信序列的起始时钟周期,通信序列的长度,通信序列的第一部分,以及通信序列的第二部分。作为以上公开的一个或多个示例的附加或者替换,在某些示例中,预定序列信息被预先存储在从控制器的本地存储器中,并且所述方法还包括:从本地存储器中读取该预定序列信息,其中启动通信序列包括基于该预定信息启动所述通信序列。作为以上公开的一个或多个示例的附加或者替换,在某些示例中,所述预定序列信息包括如下之一:通信序列的长度,通信序列的第一部分,以及通信序列的第二部分。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1