技术特征:
技术总结
基于SAE和显著性检测的高分辨SAR图像变化检测方法,从两幅配准后的同一地区、不同时相的SAR图像中提取不同大小的图像块作为第一训练数据集和第二训练数据集;分别将两个训练数据集归一化到[0,1]之间;分别构建两个三层堆栈自编码网络,确定网络每一层的特征数并随机初始化权重和偏置,将两个归一化训练数据集分别送入三层堆栈自编码网络,训练得到每一层的权重、偏置;将两幅图像分别送入训练好的网络,得到两幅图像的特征;在特征域得到两幅图像的差异性,并对差异性通过阈值法确定出阈值分割差异图,分别得到显著性区域;结合两个显著性区域得到最终显著性区域,通过聚类算法得到最终变化检测结果。本发明有效提高了检测精度。
技术研发人员:焦李成;屈嵘;孟繁荣;张丹;杨淑媛;侯彪;马文萍;刘芳;尚荣华;张向荣;唐旭;马晶晶
受保护的技术使用者:西安电子科技大学
技术研发日:2017.05.22
技术公布日:2017.10.17