浮点缩放处理器、方法、系统和指令与流程

文档序号:15636095发布日期:2018-10-12 21:29阅读:323来源:国知局
本申请的实施例涉及处理器。具体地,实施例涉及响应于浮点缩放指令对浮点数进行缩放的处理器。
背景技术
:浮点数通常用在处理器、计算机系统和其它电子设备中。浮点数的一个优点是它们允许以相对紧凑的数值格式和/或位数表示宽范围的数值。现有技术中已知若干不同的浮点格式。浮点格式通常将用于表示浮点数的位分配成若干连续字段,称为浮点数的符号、有效位和指数。在本领域中已知用于处理浮点数的各种机器指令。例如,本领域中已知用于在浮点和整数值之间转换的机器指令。附图说明可通过参考以下描述以及用于示出实施例的附图最佳地理解本发明。在附图中:图1是具有含一个或多个浮点缩放指令的指令集的处理器的实施例的框图。图2是具有操作用于执行浮点缩放指令的实施例的浮点执行单元的指令处理装置的实施例的框图。图3是示出可响应于浮点缩放指令的实施例而执行的浮点缩放操作的实施例的框图。图4a-e是示出适当的浮点格式的示例实施例的框图。图5是处理浮点缩放指令的实施例的方法的实施例的流程框图。图6a-c是示出可对打包32位单精度浮点数据执行的浮点缩放操作的实施例的框图。图7a-b是示出可对打包64位双精度浮点数据执行的浮点缩放操作的实施例的框图。图8是示出可对标量32位单精度浮点数据执行的浮点缩放操作的实施例的框图。图9是示出可对标量64位双精度浮点数据执行的浮点缩放操作的实施例的框图。图10是具有数据元素广播的浮点缩放操作的实施例的框图。图11是示出经掩码的浮点缩放操作的实施例的框图。图12是示出打包数据操作掩码寄存器的实施例的框图。图13是示出带加法的浮点缩放操作的实施例的框图。图14是浮点缩放指令的指令格式的实施例的框图。图15是打包数据寄存器的实施例的框图。图16是包括存储浮点缩放指令的机器可读存储介质的制品的框图。图17a是示出根据本发明的实施例的通用向量友好指令格式及其a类指令模板的框图。图17b是示出根据本发明的实施例的通用向量友好指令格式及其b类指令模板的框图。图18是示出根据本发明的实施例的示例性专用向量友好指令格式的框图。图18b是示出根据本发明的一个实施例的构成完整操作码字段的具有专用向量友好指令格式的字段的框图。图18c是示出根据本发明的一个实施例的构成寄存器索引字段的具有专用向量友好指令格式的字段的框图。图18d是示出根据本发明的一个实施例的构成扩充操作字段的具有专用向量友好指令格式的字段的框图。图19是根据本发明的一个实施例的寄存器架构的框图。图20a是示出根据本发明的实施例的示例性有序流水线以及示例性寄存器重命名的无序发布/执行流水线两者的框图。图20b示出处理器核,该处理器核包括耦合到执行引擎单元的前端单元,并且两者耦合到存储器单元。图21a是根据本发明的实施例的连接到管芯上互联网络且具有第二级(l2)高速缓存的本地子集2104的单处理器核的框图。图21b是根据本发明的各实施例的图21a中的处理器核的一部分的展开图。图22是根据本发明的实施例的可具有一个以上的核、可具有集成存储器控制器、并且可具有集成图形器件的处理器的框图。图23所示为根据本发明的一个实施例的系统的框图。图24所示为根据本发明的实施例的更具体的第一示例性系统的框图。图25所示为根据本发明的一实施例的更具体的第二示例性系统的框图。图26所示为根据本发明的实施例的soc的框图。图27是根据本发明的各实施例的对照使用软件指令转换器将源指令集中的二进制指令转换成目标指令集中的二进制指令的框图。具体实施方式本文公开了浮点缩放指令,用于执行浮点缩放指令的处理器,在处理或执行浮点缩放指令时处理器执行的方法,以及合并了一个或多个处理器以处理或执行浮点缩放指令的系统。本文中公开的各种处理器和系统中的任一者是合适的。在以下描述中,阐述众多特定细节(例如,特定处理器配置、操作序列、指令格式、浮点格式、微架构细节等)。然而,在没有这些具体细节的情况下,可实践实施例。在其他实例中,未详细示出公知电路、结构和技术,以避免混淆对本描述的理解。对浮点数进行缩放常常是有用的。对浮点数进行缩放是指将浮点数乘以基数的另一数字次幂。具体地,通过将每个浮点数乘以基数的整数次幂来缩放浮点数常常是有用的。通常,整数次幂是从另一浮点数导出的。这种对浮点数的缩放的一个示例性用途是在从分开的指数和有效位对重构浮点数时。作为示例,浮点数的指数和有效位可从彼此提取出或彼此分开,并且随后分开的指数和有效位可分开地通过一系列计算被处理。随后,在这种分开的处理之后,可通过组合其被分开处理的指数和有效位来重新组装或重构浮点数。对浮点数的缩放还可用于其他目的(例如,作为对浮点数的一般操作,结合处理指数、平方根、对数、三角函数、以及其他超越函数等)。图1是具有含一个或多个浮点缩放指令103的指令集102的处理器100的实施例的框图。该处理器可以是各种复杂指令集计算(cisc)处理器、各种精简指令集计算(risc)处理器、各种超长指令字(vliw)处理器、其各种混合、或完全其他类型的处理器中的任何处理器。在一些实施例中,处理器可以是通用处理器(例如,具有在台式、膝上型、以及类似计算机中使用的类型的通用微处理器)。替换地,处理器可以是专用处理器。合适的专用处理器的示例包括但不限于,网络处理器、通信处理器、加密处理器、图形处理器、协处理器、嵌入式处理器、数字信号处理器(dsp)、浮点协处理器以及控制器(例如,微控制器),仅列举数例。处理器具有指令集架构(isa)101。isa表示处理器的架构中涉及编程的那部分。isa通常包括原生指令、架构寄存器、数据类型、寻址模式、存储器架构、中断和异常处理以及处理器的外部输入和输出(i/o)。isa与微架构不同,微架构通常表示被选择用于实现isa的特定处理器设计技术。带有不同的微架构的处理器可以共享共同的isa。isa包括处理器支持的指令集102。指令集的这些指令表示宏指令(例如,提供给处理器以供执行的指令),与微指令或微操作(例如,处理器的解码器解码宏指令得到的微指令或微操作)不同。指令集包括一个或多个浮点缩放指令103。以下将进一步公开浮点缩放指令的各不同实施例。处理器还包括浮点执行逻辑108,该逻辑操作用于执行或处理浮点缩放指令103。isa还包括架构可视的寄存器(例如,架构寄存器组)104。架构寄存器通常表示管芯上的处理器存储位置。架构寄存器此处也可以被简称为寄存器。短语架构寄存器、寄存器组、以及寄存器在本申请中用于表示对软件和/或编程者可见(例如,软件可见的)的寄存器和/或由通用宏指令指定用来标识操作数的寄存器,除非另外指定或清楚地明显可知。这些寄存器与给定微架构中的其他非架构的或非在架构上可见的寄存器(例如,指令所使用的临时寄存器、重新排序缓冲器、引退寄存器等等)不同。所示出的架构寄存器包括打包数据寄存器105。每个打包数据寄存器可操作用于存储打包数据、向量数据或者simd数据。在一些实施例中,打包数据寄存器可用于存储与浮点缩放指令103相关联的打包浮点数据。在一些实施例中,打包数据寄存器还能够存储整数数据,但这不是必须的。在一些实施例中,打包数据寄存器可用于存储与浮点缩放指令相关联的标量浮点数据。或者,架构寄存器可包括单独的标量浮点寄存器集合,以分别存储用于浮点缩放指令的标量浮点数据。在一些实施例中,寄存器还可任选地包括掩码寄存器106,然而这不是必须的。掩码寄存器可存储打包数据操作掩码,以对打包数据操作(例如与浮点缩放指令相关联的打包数据操作)进行掩码或断言。以下将进一步讨论掩码寄存器和掩码操作。寄存器还包括控制和/或状态寄存器107。在一些方面,控制和/或状态寄存器中的一个或多个可包括与浮点缩放指令的执行相关联的状态和/或控制信息(例如,它们可包括浮点缩放指令将使用的默认舍入模式,除非存在超驰)。图2是具有操作用于执行包括浮点缩放指令203的实施例的指令的浮点执行单元208的指令处理装置200的实施例的框图。在一些实施例中,指令处理装置可以是处理器和/或可被包括在处理器中。例如,在一些实施例中,指令处理装置可以是或可被包括于图1的处理器100或类似设备。替换地,指令处理装置可被包括在不同的处理器或电子系统中。在一些实施例中,指令处理装置可被包括在增加的或单独的浮点处理器或单元中,以引入或补充相关联的处理器的浮点处理能力。指令处理装置200可接收浮点缩放指令203。例如,可从指令获取单元、指令队列或存储器接收该指令。浮点缩放指令可表示由指令处理装置识别并控制该装置执行特定操作的机器指令、宏指令或控制信号。浮点缩放指令可显式指定(例如,通过位或者一个或多个字段)或以其他方式指示(例如,隐式指示)第一源216,可指定或以其他方式指示第二源218,并且可指定或以其他方式指示将存储根据该指令的结果222的目的地(例如,目的地存储位置)220。第一源包括一个或多个浮点数据元素217,第二源包括一个或多个相应的浮点数据元素219。相应的数据元素可对应于源内的相同相对位置。浮点数包括符号、有效位、基数和指数,它们如式1中所示地相关:a=(-1)符号*有效位*基数指数式1表达式“(-1)符号”表示负一的符号次幂。该表达式评价浮点数是正(+)或负(-)。例如,当符号是整数0时,浮点数是正,或者当符号是整数1时,浮点数是负。有效位包括某一长度的数字串,该长度在很大程度上确定浮点数的精度。有效位有时也被称为有效数字、系数、分数或尾数。通常隐含地假设小数点(例如,十进制格式的十进制小数点)位于固定位置(例如,刚好在最左或最高有效数字的右侧)。表达式“基数指数”表示基数的指数次幂。这也可表述为基数的指数幂、基数的指数次方、或简称为基数的指数次。基数通常是基数2(对于二进制),基数10(对于十进制)或基数16(对于十六进制)。基数有时被称为底数(radix)。指数也可被称为首数(characteristic)或比例(scale)。使基数增大指数次幂实际上将小数点(从隐含的或假设的开始位置)移动指数数值。如果指数为正,则小数点向右移动,或者如果指数为负,则小数点向左移动。再次参照图2,在一些实施例中,第一源216、第二源218和目的地220可各自在指令处理装置的一组打包数据寄存器205内,尽管这不是必须的。打包数据寄存器可各自表示管芯上(例如,在具有执行单元的管芯上)的存储位置。打包数据寄存器可表示架构寄存器。每个打包数据寄存器都可操作用于存储打包或向量浮点数据。在一些实施例中,打包数据寄存器还可操作用于存储标量浮点数据。打包数据寄存器可使用公知技术在不同的微架构中以不同的方式实现,并且不限于任何特定类型的电路。各种不同类型的寄存器是可适用的,只要它们能够存储并提供在本文中描述的数据。合适类型的寄存器的示例包括但不限于专用物理寄存器、使用寄存器重命名的动态分配的物理寄存器、及其组合。替换地,在其它实施例中,第一源、第二源、目的地、或其某种组合中的一个或多个可被存储在除打包数据寄存器外的其它存储位置中(例如,在标量浮点寄存器、存储器位置中等)。所示的指令处理装置包括指令解码单元或解码器214。解码器可接收和解码高级机器指令或宏指令,并且输出一个或多个较低级的微操作、微代码入口点、微指令或者反映和/或源自于原始较高级指令的其他较低级的指令或控制信号。一个或多个较低级指令或控制信号可通过一个或多个较低级(例如,电路级或硬件级)操作来实现较高级指令的操作。解码器可以使用各种不同的机制来实现,包括但不限于,微代码只读存储器(rom)、查找表、硬件实现、可编程逻辑阵列(pla)和本领域已知的用于实现解码器的其他机制。在其他实施例中,取代具有解码器214,可使用指令仿真器、翻译器、变形器(morpher)、解释器、或者其他指令转换逻辑。各种不同类型的指令转换逻辑在本领域中是已知的,并且可在软件、硬件、固件、或者其组合中实现。指令转换逻辑可接收指令,并且仿真、翻译、变形、解释、或者以其他方式将接收的指令转换成一个或多个对应的导出指令或控制信号。在其他实施例中,可使用指令转换逻辑和解码器两者。例如,该装置可具有用于将接收到的指令转换成一个或多个中间指令的指令转换逻辑、以及用于将一个或多个中间指令解码成可由该指令处理装置的原生硬件执行的一个或多个较低级指令或控制信号的解码器。指令转换逻辑中的一些或全部可位于指令处理装置的其余部分的管芯外,诸如在单独的管芯上或在管芯外的存储器中。再次参考图2,浮点执行单元208与解码器214耦合。执行单元可从解码器接收一个或多个微操作、微代码进入点、微指令、其他指令或其他控制信号,它们反映或者源自于浮点缩放指令303。执行单元还与第一源216、第二源218和目的地220耦合。浮点执行单元包括设计成对浮点数进行操作(例如,算术运算、缩放操作等)的逻辑(例如,通常为至少一些电路)。响应于浮点缩放指令203和/或作为浮点缩放指令203的结果,浮点执行单元208操作用于将结果222存储在目的地中,其中该浮点缩放指令203指定或以其它方式指示包括一个或多个浮点数据元素217的第一源216,指定或以其它方式指示包括一个或多个相应浮点数据元素219的第二源218,并且指定或以其它方式指示目的地220。结果包括一个或多个相应的结果经缩放浮点数据元素。在一些实施例中,这一个或多个结果经缩放浮点数据元素中的每一个包括第二源的相应浮点数据元素乘以基数的代表第一源的相应浮点数据元素的整数次幂。该基数与第一源的一个或多个浮点数据元素的基数相同(例如,通常为基数2,但也可为基数10、基数16等)。浮点执行单元和/或指令处理装置可包括特定或具体的逻辑(例如,典型的是潜在能与软件和/或固件组合的电路或其它硬件),其操作用于执行和/或处理浮点缩放指令,并响应于该指令(例如,响应于从该指令导出的一个或多个微指令或其它控制信号)而存储结果。在一些实施例中,浮点执行单元可包括集成电路、数字电路、专用集成电路、模拟电路、编程逻辑设备、包括指令的存储设备、或其组合。在一些实施例中,浮点执行单元可包括至少一些电路或硬件(例如,由晶体管、门和/或其它集成电路组件配置的专用电路)。为了避免混淆本描述,已示出和描述了相对简单的指令处理装置。在其他实施例中,指令处理装置可任选地包括其他公知组件,诸如举例而言,指令获取单元、指令调度单元、分支预测单元、指令和数据的高速缓存、指令和数据转换后备缓冲器(translationlookasidebuffer)、预取缓冲器、微指令队列、微指令定序器、总线接口单元、第二或更高级高速缓存、引退单元、寄存器重命名单元、处理器中包含的其他组件、以及上述的各种组合。实施例可具有多个核、逻辑处理器或执行引擎。可用于执行本文中公开的指令实施例的执行单元可被包含在核、逻辑处理器或执行引擎中的至少一个、至少两个、大多数或全部中。实际上在处理器中存在组件的多种不同的组合和配置,并且各实施例不限于任何特定组合或配置。图3是示出可响应于浮点缩放指令的实施例而执行的浮点缩放操作324的实施例的框图。该指令指定或以其它方式指示包括一个或多个浮点数据元素的第一源317、以及包括一个或多个相应浮点数据元素的第二源318。在一些实施例中,第一源包括单个标量浮点数据元素a0,且第二源包括单个标量浮点数据元素b0。在其他实施例中,第一源包括多个(n个)打包浮点数据元素a0-an,且第二源包括相应的多个(n个)打包浮点数据元素b0-bn,其中n为2或更大。通常,打包浮点数据元素的数量n可以等于打包数据以位计的的大小除以浮点数据元素以位计的的大小。浮点缩放指令还指定或以其它方式指示目的地(例如,目的地存储位置)。可生成包括一个或多个相应的结果浮点数据元素的结果322,并响应于浮点缩放指令而将其存储在目的地中。在一些实施例中,这一个或多个结果浮点数据元素中的每一个(ci)可表示经缩放浮点结果数据元素,其包括第二源的相应浮点数据元素(bi)乘以基数的代表第一源的相应浮点数据元素(ai)的整数(int(a0))次幂,根据下式:ci=bi*基数int(ai)式2该基数可以是第一和/或第二源的浮点数据元素的基数(例如,通常为基数2,但替换地为基数10或基数16)。在一些实施例中,浮点缩放指令/操作可准许第一源具有非整数浮点值。这可帮助避免用于生成整数值作为浮点缩放指令/操作的输入(例如,用于执行位级提取等)的一个或多个在前指令。在一些实施例中,浮点缩放指令/操作可作用于在单个浮点缩放指令/操作的执行界限内计算或确定代表第一源的一个或多个相应浮点数据元素(例如,代表其幅值)的一个或多个整数。在一些实施例中,每个整数可以是小于或等于第一源的相应浮点数据元素的最大整数(例如,向下取整)。在其他实施例中,每个整数可以是大于或等于第一源的相应浮点数据元素的最小整数(例如,向上取整)。基于其他转换惯例,也可使用代表相应浮点数据元素的幅值的其他整数。在一些实施例中,浮点缩放指令/操作可准许第一和/或第二源包括具有为浮点数定义的特殊值(例如,正无穷大、负无穷大、非数(nan)、非规格化数等)的浮点数据元素。在此类实施例中,该指令/操作可在不生成中断、陷入、或其他异常(例如,下溢或上溢异常)的情况下完成执行并存储结果。作为示例,第一源可包括为非数(nan)、正无穷大、负无穷大、和非规格化数之一的浮点数据元素,并且结果可被存储而不生成异常。作为另一示例,第一源可包括为非数(nan)的浮点数据元素,执行可在没有异常的情况下完成,并且结果中的相应结果浮点数据元素可以是nan。作为又一示例,第二源可包括为正无穷大的浮点数据元素,第一源可包括为非数(nan)的相应浮点数据元素,执行可在没有异常的情况下完成,并且相应结果浮点数据元素可以是非数(nan)。有利的是,该指令处置极限状况而没有异常且无需用于检查极限状况的一系列指令并在极限状况发生时处置这些极限状况的能力可倾向于提高计算效率。此外,即使当输入并不特殊时,结果也可能是特殊的(例如,当结果不适合浮点格式时,可上溢或者可下溢)。在这种情形中,该指令可作用于恰当地处置这些特殊情形,例如在一些实施例中根据ieee标准规范来处理。当此类特殊状况发生时,该指令的执行可在没有中断或异常的情况下完成。即,该指令可作用于恰当地处置特殊输入和/或特殊输出。有利的是,可避免异常和中断,并且用单独的指令序列来覆盖此类特殊情形的附加处理也不是必需的。图4a-e是示出适当的浮点格式的示例实施例的框图。电气和电子工程师协会(ieee)已经在标准ieee754的各种版本中将这些格式标准化。图4a示出半精度浮点格式410a。半精度浮点格式具有16位且也被称为二进制16。半精度浮点格式包括在位[9:0]中的10位有效位411a、在位[14:10]中的5位指数412a以及在位[15]中的1位符号413a。图4b示出单精度浮点格式410b。单精度浮点格式具有32位且也被称为二进制32。单精度浮点格式包括在位[22:0]中的23位有效位411b、在位[30:23]中的8位指数412b以及在位[31]中的1位符号413b。图4c示出双精度浮点格式410c。双精度浮点格式具有64位且也被称为二进制64。双精度浮点格式包括在位[51:0]中的52位有效位411c、在位[62:52]中的11位指数412c以及在位[63]中的1位符号413c。目前,单精度和双精度格式可能是最广泛地被大多数处理器、计算机系统和电子设备使用的。图4d示出扩展双精度浮点格式410d。扩展双精度浮点格式具有80位。扩展双精度浮点格式包括在位[63:0]中的64位有效位411d、在位[78:64]中的15位指数412d以及在位[79]中的1位符号413d。图4e示出四精度浮点格式410e。四精度浮点格式具有128位且也被称为二进制128。四精度浮点格式包括在位[111:0]中的112位有效位411e、在位[126:112]中的15位指数412e以及在位[127]中的1位符号413e。在这些浮点格式的每一个中,暗示或假设基数是基数2(即,二进制),且不被单独存储为浮点格式。有效位的最高有效位或最左位被称为j位。隐含地假设j位是二进制1,且一般不被存储为浮点格式,而是提供附加精度但不需要被存储的隐含或隐藏位(例如,明确具有23位用于有效位的单精度浮点数实际具有24位精度)。通常假设小数点在j位之后。指数通常具有指数偏移(exponentbias)。例如,半精度格式可具有指数偏移15,单精度格式可具有指数偏移127,双精度格式可具有指数偏移1023,而四精度格式可具有指数偏移16383。如果需要的话,可在ieee754中获得关于浮点数和格式的进一步细节。这些只是数个说明性示例。其它适当的格式包括但不限于十进制32、十进制64和十进制128。此外,未来开发的其它格式通常也是适当的。图5是处理浮点缩放指令的实施例的方法524的实施例的流程框图。在各实施例中,该方法可由通用处理器、专用处理器(例如,图形处理器或数字信号处理器)、或另一种类型的数字逻辑设备或指令处理装置执行。在一些实施例中,方法524可由图1的处理器100或图2的指令处理装置200来执行。或者,方法524可由处理器或指令处理装置的不同实施例执行。此外,图1的处理器100和图2的指令处理装置200可执行与图5的方法524的操作和方法相同、类似或不同的操作和方法的实施例。该方法包括在框525处接收浮点缩放指令。浮点缩放指令指定或以其它方式指示包括一个或多个浮点数据元素的第一源,指定或以其它方式指示包括一个或多个相应浮点数据元素的第二源,并且指定或以其它方式指示目的地(例如,目的地存储位置)。在各个方面,该指令可在处理器、指令处理装置或者其一部分(例如,解码器、指令转换器等)处接收。在各个方面,指令可从处理器外的源(例如,从主存储器、盘、或总线或互连)或者从处理器上的源(例如,从指令高速缓存)接收。然后,在框526,响应于浮点缩放指令、作为该指令的结果和/或如该指令所指定的,结果被存储在目的地中。结果包括一个或多个相应的结果浮点数据元素。这一个或多个结果浮点数据元素中的每一个都包括第二源的相应浮点数据元素乘以基数(例如,第一源的一个或多个浮点数据元素的基数)的代表第一源的相应浮点数据元素的整数次幂。作为示例,包括至少一些电路的浮点执行单元、指令处理装置或处理器可执行由该指令指定的操作并存储结果。所示的方法包括从处理器或指令处理装置外部可见的操作(例如,从软件角度可见)。在其他实施例中,该方法可任选地包括处理器内出现的一个或多个操作。作为示例,可获取浮点缩放指令,然后可将该指令解码、转换、仿真或以其它方式转换成一个或多个其它指令或控制信号。可访问和/或接收源操作数/数据。可启用浮点执行单元,以执行由该指令指定的操作,并且可执行该操作(例如,可执行用于实现该指令的操作的微架构操作)。图6a-c是示出可响应于浮点缩放指令的实施例对打包32位单精度浮点数据执行的浮点缩放操作的实施例的框图。图6a示出浮点缩放操作624a的第一实施例,可对包括两个打包32位单精度浮点数据元素a0-a1的第一64位源打包数据617a和包括两个相应打包32位单精度浮点数据元素b0-b1的第二64位源打包数据618a执行该浮点缩放操作624a以生成并存储包括两个相应打包32位单精度结果浮点数据元素c0-c1的64位结果622a。图6b示出浮点缩放操作624b的第二实施例,可对包括四个打包32位单精度浮点数据元素a0-a3的第一128位源打包数据617b和包括四个相应打包32位单精度浮点数据元素b0-b3的第二128位源打包数据618b执行该浮点缩放操作624b以生成并存储包括四个相应打包32位单精度结果浮点数据元素c0-c3的128位结果622b。图6c示出浮点缩放操作624c的第三实施例,可对包括八个打包32位单精度浮点数据元素a0-a7的第一256位源打包数据617c和包括八个相应打包32位单精度浮点数据元素b0-b7的第二256位源打包数据618c执行该浮点缩放操作624c以生成并存储包括八个相应打包32位单精度结果浮点数据元素c0-c7的256位结果622c。在图6a-c中的每一个中,每个32位单精度结果浮点数据元素(ci)都包括第二源的相应32位单精度浮点数据元素(bi)乘以基数二(2)的代表第一源的相应32位单精度浮点数据元素的整数(int(ai))次幂。图7a-b是示出可响应于浮点缩放指令的实施例对打包64位双精度浮点数据执行的浮点缩放操作的实施例的框图。图7a示出浮点缩放操作724a的第一实施例,可对包括两个打包64位双精度浮点数据元素a0-a1的第一128位源打包数据717a和包括两个相应打包64位双精度浮点数据元素b0-b1的第二128位源打包数据718a执行该浮点缩放操作724a以生成并存储包括两个相应打包64位双精度结果浮点数据元素c0-c1的128位结果722a。图7b示出浮点缩放操作724b的第二实施例,可对包括四个打包64位双精度浮点数据元素a0-a3的第一256位源打包数据717b和包括四个相应打包64位双精度浮点数据元素b0-b3的第二256位源打包数据718b执行该浮点缩放操作724b以生成并存储包括四个相应打包64位双精度结果浮点数据元素c0-c3的256位结果722b。在图7a-b中的每一个中,每个64位双精度结果浮点数据元素(ci)都包括第二源的相应64位双精度浮点数据元素(bi)乘以基数二(2)的代表第一源的相应64位双精度浮点数据元素的整数(int(ai))次幂。图8是示出可响应于浮点缩放指令的实施例而对标量32位单精度浮点数据执行的浮点缩放操作824的实施例的框图。对标量32位单精度浮点数据元素a的第一源817和标量32位单精度浮点数据元素b的第二源818执行该操作。响应于该操作和/或指令而存储的结果822包括相应的标量32位单精度结果浮点数据元素c。标量32位单精度结果浮点数据元素c包括第二源的相应32位单精度浮点数据元素(b)乘以基数二(2)的代表第一源的相应32位单精度浮点数据元素的整数(int(a))次幂。图9是示出可响应于浮点缩放指令的实施例而对标量64位双精度浮点数据执行的浮点缩放操作924的实施例的框图。对标量64位双精度浮点数据元素a的第一源917和标量64位双精度浮点数据元素b的第二源918执行该操作。响应于该操作和/或指令而存储的结果922包括相应的标量64位双精度结果浮点数据元素c。标量64位双精度结果浮点数据元素c包括第二源的相应64位双精度浮点数据元素(b)乘以基数二(2)的代表第一源的相应64位双精度浮点数据元素的整数(int(a))次幂。如图8-9中所示,在一些实施例中,第一源可存储在第一打包数据存储位置(例如,打包数据寄存器),第二源可存储在第二打包数据存储位置,且结果可存储在第三打包数据存储位置,但这不是必须的。或者,这些中的一个或多个可替换地存储在非打包寄存器或存储器位置。这些仅仅是浮点缩放操作的几个说明性实施例。由于这些格式的广泛使用,已示出了对单精度和双精度浮点数据的操作。然而,在其他实施例中,浮点缩放操作可对其它浮点格式(例如,半精度、四精度、扩展双精度等)进行操作。在本说明中,两个源的浮点格式是相同的,但在其他实施例中,这些源的浮点格式可以不同(例如,可执行混合格式缩放操作)。为了便于说明,已经示出具有256位或更小宽度的打包数据。然而,在其他实施例中,浮点缩放操作可对具有512位或更宽的宽度的打包数据(例如,包括至少16个32位单精度浮点数据元素或至少8个64位双精度浮点数据元素)进行操作。此外,由于目前对基数2的广泛使用,已示出使用基数2的浮点缩放操作。然而,在其他实施例中,浮点缩放操作可使用其他基数(例如,基数10、基数16等)。图10是示出具有数据元素广播的浮点缩放操作1024的实施例的框图,该浮点缩放操作可响应于具有数据元素广播的浮点缩放指令的实施例而执行。在期望将单个源数据元素重用于多个向量操作中的每一个的算法中,数据元素广播是有用的。该指令可指示具有要广播的单个浮点数据元素a的第一源1017、具有多个打包浮点数据元素b0-bn的第二源1018、以及目的地,其中n至少为2。具有数据元素广播的浮点缩放指令可将第一源的单个浮点数据元素a的初始数据元素广播与后续的浮点缩放操作相组合。初始数据元素广播可多次广播或复制单个浮点数据元素a(例如,次数等于第二源的浮点数据元素的数量n)。浮点数据元素a的复制值可表示将在后续浮点缩放操作中连同第二源中的多个浮点数据元素b0-bn一起使用的向量或打包数据。在一些实施例中,单个浮点数据元素a可驻留在存储器中,且数据元素广播可通过从具有广播的浮点缩放指令导出的加载操作(例如,加载微操作)实现。单个数据元素的广播可表示在执行浮点缩放操作之前的预处理数据变换。可响应于具有广播的浮点缩放操作和/或指令将结果打包浮点数据1022存储在目的地中。结果可包括多个打包浮点数据元素c0-cn,其各自对应于第二源的多个打包浮点数据元素b0-bn中相应的一个。这多个打包结果浮点数据元素中的每一个(ci)都可包括第二源的相应浮点数据元素(bi)乘以基数(例如,基数2)的代表第一源的相应单个浮点数据元素的整数(int(a))次幂。注意,第一源的单个浮点数据元素被用于每个结果数据元素。其它实施例涉及经掩码的浮点缩放指令和/或操作。经掩码的浮点缩放指令可指定或以其它方式指示打包数据操作掩码。打包数据操作掩码在本文中还可被简单地称为掩码。每个掩码可表示断言操作数或条件控制操作数,其可对是否要执行与指令相关联的浮点缩放操作和/或是否要存储浮点缩放操作的结果进行掩码、断言或条件控制。在一些实施例中,每个掩码可操作用于按每数据元素粒度对浮点缩放操作进行掩码。每个掩码可允许用于不同结果数据元素的浮点缩放操作被分别地和/或独立于其它结果数据元素来断言或条件控制。掩码可各自包括多个掩码元素、断言元素、条件控制元素或标志。可与结果数据元素一一对应地包括元素或标志(例如,如果有四个结果数据元素则可以有四个元素或标志)。每个元素或标志可操作用于对单独的打包数据操作和/或在相应结果数据元素中浮点缩放结果的存储进行掩码。通常,每个元素或标志可以是单个位。单个位可允许指定两种不同可能性(例如,执行操作与不执行操作,存储操作的结果与不存储操作的结果等)中的任一个。掩码的每个位的二进制值可断言或控制是否要执行与经掩码的浮点缩放指令相关联的浮点缩放操作和/或是否要存储浮点缩放操作的结果。根据一个可能的惯例,每个位可分别被置位(即,具有二进制值1)或清除(即,具有二进制值0),以允许或不允许将对由经掩码的浮点缩放指令所指示的第一和第二源的数据元素执行的浮点缩放操作的结果存储在相应结果数据元素中。在一些实施例中,可执行合并-掩码。在合并-掩码中,当操作被掩蔽时,可将来自源打包数据的相应数据元素的值存储在相应结果数据元素中。例如,如果源被重用作目的地,则相应的目的地数据元素可保留其初始源值(即,不用计算结果来更新)。在其它实施例中,可执行归零-掩码。在归零-掩码中,当操作被掩蔽掉时,相应的结果数据元素可被归零,或可可将零值存储在相应的结果数据元素中。或者,可将其它预定值存储在被掩蔽的结果数据元素中。在一些实施例中,可任选地对第一和第二源数据的所有相应数据元素对执行浮点缩放操作,而不管掩码的相应位如何,但可取决于掩码的相应位而将结果存储或不存储在结果打包数据中。替代地,在另一实施例中,如果掩码的相应位指定不将操作的结果存储在打包数据结果中,则浮点缩放操作可被任选地省去(即,不执行)。在一些实施例中,可任选地对被掩蔽元素上的操作阻止异常或违规,或者被掩蔽元素上的操作可任选地不引起异常或违规。在一些实施例中,对于具有存储器操作数的经掩码的浮点缩放指令,可任选地对被掩蔽数据元素抑制存储器错误。图11是示出可响应于经掩码的浮点缩放指令的实施例而执行的经掩码的浮点缩放操作1124的实施例的框图。该指令指定或以其它方式指示包括打包浮点数据元素a0-an的第一源1117、包括打包浮点数据元素b0-bn的第二源1118、打包数据操作掩码1128、以及目的地(例如,目的地存储位置)。作为示例,在512位宽打包数据和32位单精度浮点数据元素的情况下,掩码可包括16个1位掩码位,或者在64位双精度浮点数据元素的情况下,掩码可包括八个1位掩码位。响应于该指令,包括多个结果浮点数据元素的结果打包浮点数据1122被存储在目的地中。当结果浮点数据元素不被打包数据操作掩码所掩蔽时(例如,在图示中,当相应的掩码位被置为1时),存储浮点缩放操作的结果。替换地,当浮点数据元素被打包数据操作掩码所掩蔽时(例如,在图示中,当相应的掩码位被清除为0时),存储其他值,诸如归零或合并值。图12是一组合适的打包数据操作掩码寄存器1206的实施例的框图。每个寄存器可用于存储打包数据操作掩码。在所例示的实施例中,该组包括标示为k0至k7的八个打包数据操作掩码寄存器。替代的实施例可包括比八个更少(例如,两个、四个、六个等)或比八个更多(例如,十六个、二十个、三十二个等)打包数据操作掩码寄存器。在所例示的实施例中,每个打包数据操作掩码寄存器为64位。在替代实施例中,打包数据操作掩码寄存器的宽度可以比64位更宽(例如,80位,128位等)或比64位更窄(例如,8位、16位、32位等)。打包数据操作掩码寄存器可通过使用公知技术以不同方式实现,并且不限于任何已知的特定类型的电路。图13是示出可响应于具有加法的浮点缩放指令的实施例而执行的具有加法的浮点缩放操作1324的实施例的框图。具有加法的浮点缩放指令指定或以其它方式指示包括打包浮点数据元素a0-an的第一源1317、包括打包浮点数据元素b0-bn的第二源1318、包括打包浮点数据元素d0-dn的第三源1332、以及目的地(例如,目的地存储位置)。响应于该指令,包括多个结果浮点数据元素c0-cn的结果打包浮点数据1322被存储在目的地中。每个结果浮点数据元素(ci)包括第三源的相应浮点数据元素(di)加上第二源的相应浮点数据元素(bi)乘以基数(例如,在所示实施例中为基数2)的代表第一源的相应浮点数据元素的整数(int(ai))次幂之积的总和。图14是浮点缩放指令1403的指令格式的实施例的框图。指令格式包括操作代码或操作码1433。操作码可表示可操作用于标识指令和/或要执行的操作的多个位或者一个或多个字段。如图所示,在一些实施例中,该指令格式可包括用于明确指定第一源操作数或存储位置的第一源指定符1434、用于明确指定第二源操作数或存储位置的第二源指定符1435、和用于明确指定将存储结果的目的地操作数或存储位置的目的地指定符1436。作为示例,这些指定符中的每一个可包括寄存器、存储器位置或其它存储位置的地址。替换地,如先前提及的,第一源、第二源、或目的地中的一个或多个对于该指令是隐含的,而不被明确指定。例如,这些源中的一个可任选地被重用作目的地,且初始内容可由结果覆写,在这种情形中,可隐含地指示目的地为这些源之一。在另一实施例中,可任选地隐含指示或明确指定一个或多个附加源以提供一个或多个附加操作数(例如,以提供图13的相加数据元素1332)。在指令为具有数据元素广播的浮点缩放指令的一些实施例中,指令格式可包括可任选的广播控制1437。广播控制可包括一个或多个位或字段以指示将执行数据元素广播,从而将从指定或指示的存储位置访问的单个源数据元素广播到该指令所使用的多个源数据元素。在指令是经掩码的浮点缩放指令的一些实施例,指令格式可包括任选的掩码指定符1438,用于明确指定打包数据操作掩码操作数或存储位置(例如,掩码寄存器)。或者,打包数据操作掩码可被隐含地指示。在一些实施例中,指令格式还可包括任选类型的掩码操作指定符1439。掩码操作指定符的类型可指定掩码操作的类型。作为示例,掩码操作指定符的类型可包括单个位以指定是否要执行合并-掩码或归零-掩码。或者,掩码操作的类型可被隐含地指示(例如,在隐含控制寄存器中)。如上所述,掩码是任选的且不是必须的。在一些实施例中,浮点缩放指令格式可包括任选的浮点舍入控制1440。浮点舍入控制可超驰处理器的默认浮点舍入模式并且被用于对该指令的最终结果进行舍入。浮点操作通常利用算术浮点舍入。例如,在浮点操作的结果或者向浮点转换需要比有效位所提供的更多数位时,可使用舍入。作为示例,某些英特尔处理器具有控制寄存器(例如,称为mxcsr的机器状态和控制寄存器),其包括指定默认舍入模式的舍入模式控制位(例如,rm)。指令的浮点舍入控制可表示一个或多个位或字段以明确指示将超驰默认浮点舍入模式的算术浮点舍入模式。在一些实施例中,指令的编码前缀可允许基于指令前缀的舍入控制。合适的舍入模式的示例包括但不限于以下舍入模式:(1)就近舍入,其中区块向最近的偶数数位舍入;(2)向下舍入,朝向负无穷大,其中负结果远离0舍入;(3)向上舍入,朝向正无穷大,其中负结果向零舍入;以及(4)向零舍入,截断。在一些实施例中,这些舍入模式中的每一个还可支持sae(抑制所有异常)属性以停用对浮点异常的报告。所示的指令格式示出可被包括在浮点缩放指令的实施例中的字段类型的示例。如图所示,一些实施例可将广播与掩码相组合并且还可指定舍入模式。替代的实施例可包括所示字段的子集,或者可添加附加字段。所示的字段次序/安排并非是必须的,相反,字段可被重排列。字段无需包括连续位序列,相反可包括非连续或分开的位。在一些实施例中,指令格式可遵循evex编码或指令格式,尽管这不是必须的。图15是一组合适的打包数据寄存器1505的实施例的框图。所示打包数据寄存器包括三十二个512位打包数据或向量寄存器。这些三十二个512位寄存器被标记为zmm0至zmm31。在所示实施例中,这些寄存器中的较低十六个的较低阶256位(即,zmm0-zmm15)被混叠或者覆盖在相应256位打包数据或向量寄存器(标记为ymm0-ymm15)上,但是这不是必需的。同样,在所示实施例中,ymm0-ymm15的较低阶128位被重叠或者覆盖在相应128位打包数据或向量寄存器(标记为xmm0-xmm1)上,但是这也不是必需的。512位寄存器zmm0至zmm31可操作用于保持512位打包数据、256位打包数据或者128位打包数据。256位寄存器ymm0-ymm15可操作用于保持256位打包数据或者128位打包数据。128位寄存器xmm0-xmm1可操作用于保持128位打包数据。每一寄存器可用于存储打包浮点数据或打包整数数据。在一些方面,标量浮点数据也可被存储在打包数据寄存器中。支持不同数据元素尺寸,包括至少8位字节数据、16位字数据、32位双字或单精度浮点数据、以及64位四字或双精度浮点数据。打包数据寄存器的替换实施例可包括不同数量的寄存器、不同尺寸的寄存器,并且可以或者可以不将较大寄存器重叠在较小寄存器上。图16是包括机器可读存储介质1643的制品(例如计算机程序产品)1642的框图。在一些实施例中,机器可读存储介质可以是有形的和/或非瞬态的机器可读存储介质。在各示例实施例中,机器可读存储介质可包括软盘、光盘、cd-rom、磁盘、磁光盘、只读存储器(rom)、可编程rom(prom)、可擦除可编程rom(eprom)、电可擦除可编程rom(eeprom)、随机存取存储器(ram)、静态ram(sram)、动态ram(dram)、闪存、相变存储器、半导体存储器、其它类型的存储器或它们的组合。在一些实施例中,介质可包括一个或多个固态数据存储材料,例如半导体数据存储材料、相变数据存储材料、磁性数据存储材料、光学透明固体数据存储材料等等。机器可读存储介质存储一个或多个浮点缩放指令1603。每个浮点缩放指令指示包括一个或多个浮点数据元素的第一源,指示包括一个或多个相应浮点数据元素的第二源,并且指示目的地。每个浮点缩放指令在被机器执行时操作用于导致机器将结果存储在目的地中。结果包括一个或多个相应的结果浮点数据元素。这一个或多个结果浮点数据元素中的每一个都包括第二源的相应浮点数据元素乘以第一源的一个或多个浮点数据元素的基数的代表第一源的相应浮点数据元素的整数次幂。本文中公开的任何浮点缩放指令和相关联的结果都是适当的。不同类型的机器的示例包括但不限于处理器(例如,通用处理器和专用处理器)、指令处理装置、以及具有一个或多个处理器或指令处理装置的各种电子设备。这种电子设备的几个代表示例包括但不限于计算机系统、台式机、膝上型计算机、笔记本、服务器、网络路由器、网络交换机、上网计算机、机顶盒、蜂窝电话、视频游戏控制器等。为了进一步说明某些概念,考虑浮点缩放指令和操作的以下详细示例实施例。该浮点缩放指令被称为vscalefpd,其用其他双精度浮点值来缩放打包双精度浮点(float64)值。表1列出了该指令的操作码并且提供了对所执行的的操作的描述。表1.vscalefpd–用float64值来缩放打包float64值evex是指本文别处描述的evex编码。xmm、ymm和zmm表示128位、256位、和512位打包数据寄存器。{k1}指示被用作写掩码的掩码寄存器(例如,k0-k7之一)。{z}指示掩码类型(例如,合并-掩码或归零掩码)。{er}指示对嵌入式舍入控制的支持,其适用于该指令的寄存器-寄存器形式,并且还暗示对抑制所有异常(sae)的支持。b64(mv)指示广播向量存储器操作数,用于将64位双精度浮点元素广播成向量。表2列出了指令操作数编码。modrm允许寄存器(reg)或者寄存器或存储器(r/m)。(r)指示读取,且(w)指示写入。表2.指令操作编码操作数1操作数2操作数3modrm:reg(w)vex.vvvv(r)modrm:r/m(r)vscalefpd操作通过将第一源操作数中的打包双精度浮点值乘以2的第二源操作数中的双精度浮点值次幂来对第一源操作数中的打包双精度浮点值执行浮点缩放。该操作的等式由下式给出:zmm1=zmm2*2floor(zmm3).floor(zmm3)表示≤zmm3的最大整数值。如果结果不能用双精度浮点来表示,则将返回恰当的有符号inf(对于正缩放操作数)或0(对于负缩放操作数)。以下示出该操作的伪代码。在该伪代码中,src1表示第一源,src2表示第二源,以及dest表示目的地。kl表示掩码的长度,以及vl表示向量或打包数据的长度。set_rm设置来自嵌入式舍入控制(evex.rc)或来自控制寄存器中的默认舍入模式(mxcsr.rm)的舍入模式。evex.b==1对寄存器-寄存器指令启用嵌入式舍入模式和sae控制。evex.b==1在src2*为存储器*时启用嵌入式广播。符号←表示存储。操作:表3列出了vscalefpd的特殊情形。inf指示无穷大,qnan指示静态非数。表3.特殊情形这只是一个示例实施例。单精度浮点值、标量双精度浮点值、以及标量单精度浮点的其他实施例也是可能的。再一些其他实施例可省略掩码和/或广播或所示的其他特征。指令集包括一个或多个指令格式。给定指令格式定义各个字段(位的数量、位的位置)以尤其指定要执行的操作(操作码)以及要对其执行该操作的操作码等。通过指令模板(或子格式)的定义来进一步分解一些指令格式。例如,给定指令格式的指令模板可被定义为具有指令格式的字段的不同子集(所包括的字段通常按照相同顺序,但是至少一些字段具有不同的位位置,因为包括更少的字段),和/或被定义为具有不同解释的给定字段。由此,isa的每一指令使用给定指令格式(并且如果定义,则在该指令格式的指令模板的给定一个中)来表达,并且包括用于指定操作和操作数的字段。例如,示例性add指令具有专用操作码以及包括用于指定该操作码的操作码字段和用于选择操作数的操作数字段(源1/目的地以及源2)的指令格式,并且该add指令在指令流中的出现将具有选择具体操作数的操作数字段中的具体内容。已经发布和/或公布了被称为高级向量扩展(avx)(avx1和avx2)且使用向量扩展(vex)编码方案的simd扩展集(例如,参见2011年10月的64和ia-32架构软件开发手册,并且参见2011年6月的高级向量扩展编程参考)。示例性指令格式本文中所描述的指令的实施例可以不同的格式体现。另外,在下文中详述示例性系统、架构、以及流水线。指令的实施例可在这些系统、架构、以及流水线上执行,但是不限于详述的系统、架构、以及流水线。通用向量友好指令格式向量友好指令格式是适于向量指令(例如,存在专用于向量操作的特定字段)的指令格式。尽管描述了其中通过向量友好指令格式支持向量和标量操作两者的实施例,但是替换实施例仅使用通过向量友好指令格式的向量操作。图17a-17b是示出根据本发明的实施例的通用向量友好指令格式及其指令模板的框图。图17a是示出根据本发明的实施例的通用向量友好指令格式及其a类指令模板的框图;而图17b是示出了根据本发明的实施例的通用向量友好指令格式及其b类指令模板的框图。具体地,针对通用向量友好指令格式1700定义a类和b类指令模板,两者包括无存储器访问1705的指令模板和存储器访问1720的指令模板。在向量友好指令格式的上下文中的术语“通用”是指不束缚于任何专用指令集的指令格式。尽管将描述其中向量友好指令格式支持64字节向量操作数长度(或尺寸)与32位(4字节)或64位(8字节)数据元素宽度(或尺寸)(并且由此,64字节向量由16双字尺寸的元素或者替换地8四字尺寸的元素组成)、64字节向量操作数长度(或尺寸)与16位(2字节)或8位(1字节)数据元素宽度(或尺寸)、32字节向量操作数长度(或尺寸)与32位(4字节)、64位(8字节)、16位(2字节)、或8位(1字节)数据元素宽度(或尺寸)、以及16字节向量操作数长度(或尺寸)与32位(4字节)、64位(8字节)、16位(2字节)、或8位(1字节)数据元素宽度(或尺寸)的本发明的实施例,但是替换实施例可支持更大、更小、和/或不同的向量操作数尺寸(例如,256字节向量操作数)与更大、更小或不同的数据元素宽度(例如,128位(16字节)数据元素宽度)。图17a中的a类指令模板包括:1)在无存储器访问1705的指令模板内,示出无存储器访问的完全舍入(round)控制型操作1710的指令模板、以及无存储器访问的数据变换型操作1715的指令模板;以及2)在存储器访问1720的指令模板内,示出存储器访问的时效性1725的指令模板和存储器访问的非时效性1730的指令模板。图17b中的b类指令模板包括:1)在无存储器访问1705的指令模板内,示出无存储器访问的写掩码控制的部分舍入控制型操作1712的指令模板以及无存储器访问的写掩码控制的vsize型操作1717的指令模板;以及2)在存储器访问1720的指令模板内,示出存储器访问的写掩码控制1727的指令模板。通用向量友好指令格式1700包括以下列出以在图17a-17b中示出的顺序的如下字段。格式字段1740-该字段中的特定值(指令格式标识符值)唯一地标识向量友好指令格式,并且由此标识指令在指令流中以向量友好指令格式出现。由此,该字段在无需仅有通用向量友好指令格式的指令集的意义上是任选的。基础操作字段1742-其内容区分不同的基础操作。寄存器索引字段1744-其内容直接或者通过地址生成来指定源和目的地操作数在寄存器中或者在存储器中的位置。这些字段包括足够数量的位以从pxq(例如,32x512、16x128、32x1024、64x1024)个寄存器组选择n个寄存器。尽管在一个实施例中n可高达三个源和一个目的地寄存器,但是替换实施例可支持更多或更少的源和目的地寄存器(例如,可支持高达两个源,其中这些源中的一个源还用作目的地,可支持高达三个源,其中这些源中的一个源还用作目的地,可支持高达两个源和一个目的地)。修饰符(modifier)字段1746-其内容将以指定存储器访问的通用向量指令格式出现的指令与不指定存储器访问的通用向量指令格式出现的指令区分开;即在无存储器访问1705的指令模板与存储器访问1720的指令模板之间。存储器访问操作读取和/或写入到存储器层次(在一些情况下,使用寄存器中的值来指定源和/或目的地地址),而非存储器访问操作不这样(例如,源和目的地是寄存器)。尽管在一个实施例中,该字段还在三种不同的方式之间选择以执行存储器地址计算,但是替换实施例可支持更多、更少或不同的方式来执行存储器地址计算。扩充操作字段1750-其内容区分除基础操作以外还要执行各种不同操作中的哪一个操作。该字段是上下文专用的。在本发明的一个实施例中,该字段被分成类字段1768、α字段1752、以及β字段1754。扩充操作字段1750允许在单一指令而非2、3或4个指令中执行多组共同的操作。比例字段1760-其内容允许用于存储器地址生成(例如,用于使用2比例*索引+基址的地址生成)的索引字段的内容的按比例缩放。位移字段1762a-其内容被用作存储器地址生成的一部分(例如,用于使用2比例*索引+基址+位移的地址生成)。位移因数字段1762b(注意,位移字段1762a直接在位移因数字段1762b上的并置指示了使用一个或另一个)——其内容被用作地址生成的一部分;它指定通过存储器访问尺寸(n)按比例缩放的位移因数,其中n是存储器访问中的字节的数量(例如,用于使用2比例*索引+基址+经按比例缩放的位移的地址生成)。忽略冗余的低阶位,并且因此将位移因数字段的内容乘以存储器操作数总尺寸(n)以生成在计算有效地址中使用的最终位移。n的值由处理器硬件在运行时基于完整操作码字段1774(稍候在本文中描述)和数据操纵字段1754c确定。位移字段1762a和位移因数字段1762b在它们不用于无存储器访问1705的指令模板和/或不同的实施例可实现两者中的仅一个或均未实现的意义上是任选的。数据元素宽度字段1764-其内容区分使用多个数据元素宽度中的哪一个(在一些实施例中用于所有指令,在其他实施例中只用于一些指令)。该字段在如果支持仅一个数据元素宽度和/或使用操作码的某一方面来支持数据元素宽度则不需要的意义上是任选的。写掩码字段1770-其内容在每一数据元素位置的基础上控制目的地向量操作数中的数据元素位置是否反映基础操作和扩充操作的结果。a类指令模板支持合并-写掩码,而b类指令模板支持合并写掩码和归零写掩码两者。在合并时,向量掩码允许在执行任何操作(由基础操作和扩充操作指定)期间保护目的地中的任何元素集免于更新;在另一实施例中,保持其中对应掩码位具有0的目的地的每一元素的旧值。相反,在归零时,向量掩码允许在执行任何操作(由基础操作和扩充操作指定)期间使目的地中的任何元素集归零;在一个实施例中,目的地的元素在对应掩码位具有0值时被设为0。该功能的子集是控制执行的操作的向量长度的能力(即,从第一个到最后一个要修改的元素的跨度),然而,被修改的元素不必是连续的。由此,写掩码字段1770允许部分向量操作,这包括加载、存储、算术、逻辑等。尽管描述了其中写掩码字段1770的内容选择了多个写掩码寄存器中的包含要使用的写掩码的一个写掩码寄存器(并且由此写掩码字段1770的内容间接地标识了要执行的掩码操作)的本发明的实施例,但是替换实施例相反或另外允许掩码写字段1770的内容直接地指定要执行的掩码操作。立即数字段1772-其内容允许对立即数的指定。该字段在实现不支持立即数的通用向量友好格式中不存在且在不使用立即数的指令中不存在的意义上是任选的。类字段1768-其内容在不同类的指令之间进行区分。参考图17a-b,该字段的内容在a类和b类指令之间进行选择。在图17a-b中,圆角方形用于指示专用值存在于字段中(例如,在图17a-b中分别用于类字段1768的a类1768a和b类1768b)。a类指令模板在a类非存储器访问1705的指令模板的情况下,α字段1752被解释为其内容区分要执行不同扩充操作类型中的哪一种(例如,针对无存储器访问的舍入型操作1710和无存储器访问的数据变换型操作1715的指令模板分别指定舍入1752a.1和数据变换1752a.2)的rs字段1752a,而β字段1754区分要执行指定类型的操作中的哪一种。在无存储器访问1705的指令模板中,比例字段1760、位移字段1762a以及位移比例字段1762b不存在。无存储器访问的指令模板-完全舍入控制型操作在无存储器访问的完全舍入控制型操作1710的指令模板中,β字段1754被解释为其内容提供静态舍入的舍入控制字段1754a。尽管在本发明的所述实施例中舍入控制字段1754a包括抑制所有浮点异常(sae)字段1756和舍入操作控制字段1758,但是替换实施例可支持、可将这些概念两者都编码成相同的字段或者只有这些概念/字段中的一个或另一个(例如,可只有舍入操作控制字段1758)。sae字段1756-其内容区分是否停用异常事件报告;当sae字段1756的内容指示启用抑制时,给定指令不报告任何种类的浮点异常标志且不唤起任何浮点异常处理程序。舍入操作控制字段1758-其内容区分执行一组舍入操作中的哪一个(例如,向上舍入、向下舍入、向零舍入、以及就近舍入)。由此,舍入操作控制字段1758允许在每一指令的基础上改变舍入模式。在其中处理器包括用于指定舍入模式的控制寄存器的本发明的一个实施例中,舍入操作控制字段1750的内容超驰该寄存器值。无存储器访问的指令模板-数据变换型操作在无存储器访问的数据变换型操作1715的指令模板中,β字段1754被解释为数据变换字段1754b,其内容区分要执行多个数据变换中的哪一个(例如,无数据变换、拌和、广播)。在a类存储器访问1720的指令模板的情况下,α字段1752被解释为驱逐提示字段1752b,其内容区分要使用驱逐提示中的哪一个(在图17a中,为存储器访问时效性1725指令模版和存储器访问非时效性1730指令模版分别指定时效性1752b.1和非时效性1752b.2),而β字段1754被解释为数据操纵字段1754c,其内容区分要执行大量数据操纵操作(也称为基元(primitive))中的哪一个(例如,无操纵、广播、源的向上转换、以及目的地的向下转换)。存储器访问1720的指令模板包括比例字段1760、以及任选的位移字段1762a或位移比例字段1762b。向量存储器指令使用转换支持来执行来自存储器的向量加载并将向量存储到存储器。如同寻常的向量指令,向量存储器指令以数据元素式的方式与存储器来回传输数据,其中实际传输的元素由选为写掩码的向量掩码的内容规定。存储器访问的指令模板-时效性的时效性的数据是可能很快地重新使用从而足以从高速缓存受益的数据。然而,这是提示且不同的处理器可以不同的方式实现它,包括完全忽略该提示。存储器访问的指令模板-非时效性的非时效性的数据是不可能很快地重新使用从而足以从第一级高速缓存中的高速缓存受益且应当给予驱逐优先级的数据。然而,这是提示且不同的处理器可以不同的方式实现它,包括完全忽略该提示。b类指令模板在b类指令模板的情况下,α字段1752被解释为写掩码控制(z)字段1752c,其内容区分由写掩码字段1770控制的写掩码应当是合并还是归零。在b类非存储器访问1705的指令模板的情况下,β字段1754的一部分被解释为rl字段1757a,其内容区分要执行不同扩充操作类型中的哪一种(例如,针对无存储器访问的写掩码控制部分舍入控制类型操作1712的指令模板和无存储器访问的写掩码控制vsize型操作1717的指令模板分别指定舍入1757a.1和向量长度(vsize)1757a.2),而β字段1754的其余部分区分要执行指定类型的操作中的哪一种。在无存储器访问1705的指令模板中,比例字段1760、位移字段1762a以及位移比例字段1762b不存在。在无存储器访问的写掩码控制的部分舍入控制型操作1710的指令模板中,β字段1754的其余部分被解释为舍入操作字段1759a,并且停用异常事件报告(给定指令不报告任何种类的浮点异常标志且不唤起任何浮点异常处理程序)。舍入操作控制字段1759a-只作为舍入操作控制字段1758,其内容区分要执行一组舍入操作中的哪一个(例如,向上舍入、向下舍入、向零舍入、以及就近舍入)。由此,舍入操作控制字段1759a允许在每一指令的基础上改变舍入模式。在其中处理器包括用于指定舍入模式的控制寄存器的本发明的一个实施例中,舍入操作控制字段1750的内容超驰该寄存器值。在无存储器访问的写掩码控制vsize型操作1717的指令模板中,β字段1754的其余部分被解释为向量长度字段1759b,其内容区分要执行多个数据向量长度中的哪一个(例如,128字节、256字节、或512字节)。在b类存储器访问1720的指令模板的情况下,β字段1754的一部分被解释为广播字段1757b,其内容区分是否要执行广播型数据操纵操作,而β字段1754的其余部分被解释为向量长度字段1759b。存储器访问1720的指令模板包括比例字段1760、以及任选的位移字段1762a或位移比例字段1762b。针对通用向量友好指令格式1700,示出完整操作码字段1774包括格式字段1740、基础操作字段1742以及数据元素宽度字段1764。尽管示出了其中完整操作码字段1774包括所有这些字段的一个实施例,但是完整操作码字段1774包括在不支持所有这些字段的实施例中的少于所有的这些字段。完整操作码字段1774提供操作码(opcode)。扩充操作字段1750、数据元素宽度字段1764以及写掩码字段1770允许在每一指令的基础上以通用向量友好指令格式指定这些特征。写掩码字段和数据元素宽度字段的组合创建各种类型的指令,因为这些指令允许基于不同的数据元素宽度应用该掩码。在a类和b类内出现的各种指令模板在不同的情形下是有益的。在本发明的一些实施例中,不同处理器或者处理器内的不同核可支持仅a类、仅b类、或者可支持两类。举例而言,期望用于通用计算的高性能通用无序核可仅支持b类,期望主要用于图形和/或科学(吞吐量)计算的核可仅支持a类,并且期望用于两者的核可支持两者(当然,具有来自两类的模板和指令的一些混合、但是并非来自两类的所有模板和指令的核在本发明的范围内)。同样,单一处理器可包括多个核,所有核支持相同的类或者其中不同的核支持不同的类。举例而言,在具有分离的图形和通用核的处理器中,图形核中的期望主要用于图形和/或科学计算的一个核可仅支持a类,而通用核中的一个或多个可以是具有期望用于通用计算的仅支持b类的无序执行和寄存器重命名的高性能通用核。没有单独的图形核的另一处理器可包括支持a类和b类两者的一个或多个通用有序或无序核。当然,在本发明的不同实施例中,来自一类的特征也可在其他类中实现。以高级语言撰写的程序可被输入(例如,及时编译或者静态编译)到各种不同的可执行形式,包括:1)仅具有用于执行的目标处理器支持的类的指令的形式;或者2)具有使用所有类的指令的不同组合而编写的替换例程且具有基于由当前正在执行代码的处理器支持的指令而选择这些例程以执行的控制流代码的形式。示例性专用向量友好指令格式图18是示出根据本发明的实施例的示例性专用向量友好指令格式的框图。图18示出在其指定位置、尺寸、解释和字段的次序、以及那些字段中的一些字段的值的意义上是专用的专用向量友好指令格式1800。专用向量友好指令格式1800可用于扩展x86指令集,并且由此一些字段与在现有x86指令集及其扩展(例如,avx)中使用的那些字段类似或相同。该格式保持与具有扩展的现有x86指令集的前缀编码字段、实操作码字节字段、modr/m字段、sib字段、位移字段、以及立即数字段一致。示出来自图18的字段映射到的来自图17的字段。应当理解,虽然出于说明的目的在通用向量友好指令格式1700的上下文中,本发明的实施例参考专用向量友好指令格式1800进行了描述,但是本发明不限于专用向量友好指令格式1800,声明的地方除外。例如,通用向量友好指令格式1700构想各种字段的各种可能的尺寸,而专用向量友好指令格式1800被示为具有特定尺寸的字段。作为具体示例,尽管在专用向量友好指令格式1800中数据元素宽度字段1764被示为一位字段,但是本发明不限于此(即,通用向量友好指令格式1700构想数据元素宽度字段1764的其他尺寸)。通用向量友好指令格式1700包括以下列出的按照图18a中示出的顺序的如下字段。evex前缀(字节0-3)1802-以四字节形式进行编码。格式字段1740(evex字节0,位[7:0])-第一字节(evex字节0)是格式字段1740,并且它包含0x62(在本发明的一个实施例中用于区分向量友好指令格式的唯一值)。第二-第四字节(evex字节1-3)包括提供专用能力的多个位字段。rex字段1805(evex字节1,位[7-5])-由evex.r位字段(evex字节1,位[7]–r)、evex.x位字段(evex字节1,位[6]–x)以及(1757bex字节1,位[5]–b)组成。evex.r、evex.x和evex.b位字段提供与对应vex位字段相同的功能,并且使用1补码的形式进行编码,即zmm0被编码为1111b,zmm15被编码为0000b。这些指令的其他字段对如在本领域中已知的寄存器索引的较低三个位(rrr、xxx、以及bbb)进行编码,由此可通过增加evex.r、evex.x以及evex.b来形成rrrr、xxxx以及bbbb。rex’字段1710-这是rex’字段1710的第一部分,并且是用于对扩展的32个寄存器集合的较高16个或较低16个寄存器进行编码的evex.r’位字段(evex字节1,位[4]–r’)。在本发明的一个实施例中,该位与以下指示的其他位一起以位反转的格式存储以(在公知x86的32位模式下)与实操作码字节是62的bound指令进行区分,但是在modr/m字段(在下文中描述)中不接受mod字段中的值11;本发明的替换实施例不以反转的格式存储该指示的位以及其他指示的位。值1用于对较低16个寄存器进行编码。换句话说,通过组合evex.r’、evex.r、以及来自其他字段的其他rrr来形成r’rrrr。操作码映射字段1815(evex字节1,位[3:0]–mmmm)–其内容对隐含的领先操作码字节(0f、0f38、或0f3)进行编码。数据元素宽度字段1764(evex字节2,位[7]–w)-由记号evex.w表示。evex.w用于定义数据类型(32位数据元素或64位数据元素)的粒度(尺寸)。evex.vvvv1820(evex字节2,位[6:3]-vvvv)-evex.vvvv的作用可包括如下:1)evex.vvvv对以反转(1补码)的形式指定的第一源寄存器操作数进行编码且对具有两个或两个以上源操作数的指令有效;2)evex.vvvv针对特定向量移位对以1补码的形式指定的目的地寄存器操作数进行编码;或者3)evex.vvvv不对任何操作数进行编码,该字段被保留并且应当包含1111b。由此,evex.vvvv字段1820对以反转(1补码)的形式存储的第一源寄存器指定符的4个低阶位进行编码。取决于该指令,额外不同的evex位字段用于将指定符尺寸扩展到32个寄存器。evex.u1768类字段(evex字节2,位[2]-u)-如果evex.u=0,则它指示a类或evex.u0,如果evex.u=1,则它指示b类或evex.u1。前缀编码字段1825(evex字节2,位[1:0]-pp)-提供了用于基础操作字段的附加位。除了对以evex前缀格式的传统sse指令提供支持以外,这也具有压缩simd前缀的益处(evex前缀只需要2位,而不是需要字节来表达simd前缀)。在一个实施例中,为了支持使用以传统格式和以evex前缀格式的simd前缀(66h、f2h、f3h)的传统sse指令,这些传统simd前缀被编码成simd前缀编码字段;并且在运行时在提供给解码器的pla之前被扩展成传统simd前缀(因此pla可执行传统和evex格式的这些传统指令,而无需修改)。虽然较新的指令可将evex前缀编码字段的内容直接作为操作码扩展,但是为了一致性,特定实施例以类似的方式扩展,但允许由这些传统simd前缀指定不同的含义。替换实施例可重新设计pla以支持2位simd前缀编码,并且由此不需要扩展。α字段1752(evex字节3,位[7]–eh,也称为evex.eh、evex.rs、evex.rl、evex.写掩码控制、以及evex.n,也用α示出)-如先前所述的,该字段是上下文专用的。β字段1754(evex字节3,位[6:4]-sss,也称为evex.s2-0、evex.r2-0、evex.rr1、evex.ll0、evex.llb,也用βββ示出)-如先前所述的,该字段是上下文特定的。rex’字段1710-这是rex’字段的其余部分,并且是可用于对扩展的32个寄存器集合的较高16个或较低16个寄存器进行编码的evex.v’位字段(evex字节3,位[3]–v’)。该位以位反转的格式存储。值1用于对较低16个寄存器进行编码。换句话说,通过组合evex.v’、evex.vvvv来形成v’vvvv。写掩码字段1770(evex字节3,位[2:0]-kkk)-其内容指定写掩码寄存器中的寄存器索引,如先前所述。在本发明的一个实施例中,特定值evex.kkk=000具有暗示没有写掩码用于特定指令(这可以各种方式实现,包括使用硬连线到全1的写掩码或者旁路掩码硬件的硬件来实现)的特别行为。实操作码字段1830(字节4)还被称为操作码字节。操作码的一部分在该字段中被指定。modr/m字段1840(字节5)包括mod字段1842、reg字段1844、以及r/m字段1846。如先前所述的,mod字段1842的内容将存储器访问和非存储器访问操作区分开。reg字段1844的作用可被归结为两种情形:对目的地寄存器操作数或源寄存器操作数进行编码;或者被视为操作码扩展且不用于对任何指令操作数进行编码。r/m字段1846的作用可包括如下:对引用存储器地址的指令操作数进行编码;或者对目的地寄存器操作数或源寄存器操作数进行编码。比例、索引、基址(sib)字节(字节6)-如先前所述的,比例字段1750的内容用于存储器地址生成。sib.xxx1854和sib.bbb1856-先前已经针对寄存器索引xxxx和bbbb提及了这些字段的内容。位移字段1762a(字节7-10)-当mod字段1842包含10时,字节7-10是位移字段1762a,并且它与传统32位位移(disp32)一样地工作,并且以字节粒度工作。位移因数字段1762b(字节7)-当mod字段1842包含01时,字节7是位移因数字段1762b。该字段的位置与传统x86指令集8位位移(disp8)的位置相同,它以字节粒度工作。由于disp8是符号扩展的,因此它可只在-128和127字节偏移量之间寻址;在64字节高速缓存线的方面,disp8使用可被设为仅四个真正有用的值-128、-64、0和64的8位;由于常常需要更大的范围,所以使用disp32;然而,disp32需要4个字节。与disp8和disp32对比,位移因数字段1762b是disp8的重新解释;当使用位移因数字段1762b时,通过位移因数字段的内容乘以存储器操作数访问的尺寸(n)来确定实际位移。该类型的位移被称为disp8*n。这减小了平均指令长度(用于位移但具有大得多的范围的单一字节)。这种压缩位移基于有效位移是存储器访问的粒度的倍数的假设,并且由此地址偏移量的冗余低阶位不需要被编码。换句话说,位移因数字段1762b替代传统x86指令集8位位移。由此,位移因数字段1762b以与x86指令集8位位移相同的方式(因此在modrm/sib编码规则中没有变化)进行编码,唯一的不同在于,disp8超载至disp8*n。换句话说,在编码规则或编码长度中没有变化,而仅在通过硬件对位移值的解释中有变化(这需要按存储器操作数的尺寸按比例缩放位移量以获得字节式地址偏移量)。立即数字段1772如先前所述地操作。完整操作码字段图18b是示出根据本发明的一个实施例的构成完整操作码字段1774的具有专用向量友好指令格式1800的字段的框图。具体地,完整操作码字段1774包括格式字段1740、基础操作字段1742、以及数据元素宽度(w)字段1764。基础操作字段1742包括前缀编码字段1825、操作码映射字段1815以及实操作码字段1830。寄存器索引字段图18c是示出根据本发明的一个实施例的构成寄存器索引字段1744的具有专用向量友好指令格式1800的字段的框图。具体地,寄存器索引字段1744包括rex字段1805、rex’字段1810、modr/m.reg字段1844、modr/m.r/m字段1846、vvvv字段1820、xxx字段1854以及bbb字段1856。扩充操作字段图18d是示出根据本发明的一个实施例的构成扩充操作字段1750的具有专用向量友好指令格式1800的字段的框图。当类(u)字段1768包含0时,它表明evex.u0(a类1768a);当它包含1时,它表明evex.u1(b类1768b)。当u=0且mod字段1842包含11(表明无存储器访问操作)时,α字段1752(evex字节3,位[7]–eh)被解释为rs字段1752a。当rs字段1752a包含1(舍入1752a.1)时,β字段1754(evex字节3,位[6:4]–sss)被解释为舍入控制字段1754a。舍入控制字段1754a包括一位sae字段1756和两位舍入操作字段1758。当rs字段1752a包含0(数据变换1752a.2)时,β字段1754(evex字节3,位[6:4]–sss)被解释为三位数据变换字段1754b。当u=0且mod字段1842包含00、01或10(表达存储器访问操作)时,α字段1752(evex字节3,位[7]–eh)被解释为驱逐提示(eh)字段1752b且β字段1754(evex字节3,位[6:4]–sss)被解释为三位数据操纵字段1754c。当u=1时,α字段1752(evex字节3,位[7]–eh)被解释为写掩码控制(z)字段1752c。当u=1且mod字段1842包含11(表达无存储器访问操作)时,字段1754的一部分(evex字节3,位[4]–s0)被解释为rl字段1757a;当它包含1(舍入1757a.1)时,字段1754的其余部分(evex字节3,位[6-5]–s2-1)被解释为舍入操作字段1759a,而当rl字段1757a包含0(vsize1757.a2)时,字段1754的其余部分(evex字节3,位[6-5]-s2-1)被解释为向量长度字段1759b(evex字节3,位[6-5]–l1-0)。当u=1且mod字段1842包含00、01或10(表达存储器访问操作)时,字段1754(evex字节3,位[6:4]–sss)被解释为向量长度字段1759b(evex字节3,位[6-5]–l1-0)和广播字段1757b(evex字节3,位[4]–b)。示例性寄存器架构图19是根据本发明的一个实施例的寄存器架构1900的框图。在所示出的实施例中,有32个512位宽的向量寄存器1910;这些寄存器被引用为zmm0到zmm31。较低的16zmm寄存器的较低阶256位覆盖在寄存器ymm0-16上。较低的16zmm寄存器的较低阶128位(ymm寄存器的较低阶128位)覆盖在寄存器xmm0-15上。专用向量友好指令格式1800对这些覆盖的寄存器组操作,如在以下表格中所示的。换句话说,向量长度字段1759b在最大长度与一个或多个其他较短长度之间进行选择,其中每一这种较短长度是前一长度的一半,并且不具有向量长度字段1759b的指令模板对最大向量长度操作。此外,在一个实施例中,专用向量友好指令格式1800的b类指令模板对打包或标量单/双精度浮点数据以及打包或标量整数数据操作。标量操作是在zmm/ymm/xmm寄存器中的最低阶数据元素位置上执行的操作;取决于实施例,较高阶数据元素位置保持与在指令之前相同或者归零。写掩码寄存器1915-在所示的实施例中,存在8个写掩码寄存器(k0至k7),每一写掩码寄存器的尺寸是64位。在替换实施例中,写掩码寄存器1915的尺寸是16位。如先前所述的,在本发明的一个实施例中,向量掩码寄存器k0无法用作写掩码;当正常指示k0的编码用作写掩码时,它选择硬连线的写掩码0xffff,从而有效地停用该指令的写掩码操作。通用寄存器1925——在所示出的实施例中,有十六个64位通用寄存器,这些寄存器与现有的x86寻址模式一起使用来寻址存储器操作数。这些寄存器通过名称rax、rbx、rcx、rdx、rbp、rsi、rdi、rsp以及r8到r15来引用。标量浮点栈寄存器组(x87栈)1945,在其上面重叠了mmx打包整数平坦寄存器组1950——在所示出的实施例中,x87栈是用于使用x87指令集扩展来对32/64/80位浮点数据执行标量浮点运算的八元素栈;而使用mmx寄存器来对64位打包整数数据执行操作,以及为在mmx和xmm寄存器之间执行的某些操作保存操作数。本发明的替换实施例可以使用较宽的或较窄的寄存器。另外,本发明的替换实施例可以使用更多、更少或不同的寄存器组和寄存器。示例性核架构、处理器和计算机架构处理器核可以用不同方式、出于不同目的、在不同的处理器中实现。例如,这样的核的实现可以包括:1)旨在用于通用计算的通用有序核;2)旨在用于通用计算的高性能通用无序核;3)主要旨在用于图形和/或科学(吞吐量)计算的专用核。不同处理器的实现可包括:包括预期用于通用计算的一个或多个通用有序核和/或预期用于通用计算的一个或多个通用无序核的cpu;以及2)包括主要预期用于图形和/或科学(吞吐量)的一个或多个专用核的协处理器。这样的不同处理器导致不同的计算机系统架构,其可包括:1)在与cpu分开的芯片上的协处理器;2)在与cpu相同的封装中但分开的管芯上的协处理器;3)与cpu在相同管芯上的协处理器(在该情况下,这样的协处理器有时被称为诸如集成图形和/或科学(吞吐量)逻辑等的专用逻辑,或被称为专用核);以及4)可以将所描述的cpu(有时被称为应用核或应用处理器)、以上描述的协处理器和附加功能包括在同一管芯上的片上系统。接着描述示例性核架构,随后描述示例性处理器和计算机架构。示例性核架构有序和无序核框图图20a是示出根据本发明的实施例的示例性有序流水线以及示例性寄存器重命名的无序发布/执行流水线两者的框图。图20b是示出根据本发明的实施例的有序架构核的示例性实施例以及包括在处理器中的示例性寄存器重命名的无序发布/执行架构核两者的框图。图20a-b中的实线框示出有序流水线和有序核,而任选增加的虚线框示出寄存器重命名的无序发布/执行流水线和核。考虑到有序方面是无序方面的子集,将描述无序方面。在图20a中,处理器流水线2000包括获取(fetch)级2002、长度解码级2004、解码级2006、分配级2008、重命名级2010、调度(也称为分派或发布)级2012、寄存器读取/存储器读取级2014、执行级2016、写回/存储器写入级2018、异常处理级2022和提交级2024。图20b示出处理器核2090,该核包括耦合到执行引擎单元2050的前端单元2030,并且两者耦合到存储器单元2070。核2090可以是精简指令集计算(risc)核、复杂指令集计算(cisc)核、超长指令字(vliw)核、或混合或替代核类型。作为又一选项,核2090可以是专用核,诸如例如网络或通信核、压缩引擎、协处理器核、通用计算图形处理器单元(gpgpu)核、图形核等等。前端单元2030包括耦合到指令高速缓存单元2034的分支预测单元2032,该指令高速缓存单元2034被耦合到指令转换后备缓冲器(tlb)2036,该指令转换后备缓冲器2036被耦合到指令获取单元2038,指令获取单元2038被耦合到解码单元2040。解码单元2040(或解码器)可解码指令,并生成从原始指令解码出的、或以其他方式反映原始指令的、或从原始指令导出的一个或多个微操作、微代码进入点、微指令、其他指令、或其他控制信号作为输出。解码单元2040可使用各种不同的机制来实现。合适的机制的示例包括但不限于查找表、硬件实现、可编程逻辑阵列(pla)、微代码只读存储器(rom)等。在一个实施例中,核2090包括存储特定宏指令的微代码的微代码rom或其他介质(例如,在解码单元2040中或否则在前端单元2030内)。解码单元2040耦合至执行引擎单元2050中的重命名/分配器单元2052。执行引擎单元2050包括重命名/分配器单元2052,该重命名/分配器单元2052耦合至引退单元2054以及一个或多个调度器单元(多个)2056的集合。调度器单元2056表示任何数目的不同调度器,包括预留站(reservationsstations)、中央指令窗等。调度器单元2056被耦合到物理寄存器组单元2058。每个物理寄存器组单元2058表示一个或多个物理寄存器组,其中不同的物理寄存器组存储一种或多种不同的数据类型,诸如标量整数、标量浮点、打包整数、打包浮点、向量整数、向量浮点、状态(例如,作为要执行的下一指令的地址的指令指针)等。在一个实施例中,物理寄存器组单元2058包括向量寄存器单元、写掩码寄存器单元和标量寄存器单元。这些寄存器单元可以提供架构向量寄存器、向量掩码寄存器、和通用寄存器。物理寄存器组单元2058与引退单元2054重叠以示出可以用来实现寄存器重命名和无序执行的各种方式(例如,使用重排序缓冲器和引退寄存器组;使用将来的文件、历史缓冲器和引退寄存器组;使用寄存器映射和寄存器池等等)。引退单元2054和物理寄存器组单元2058被耦合到执行群集2060。执行群集2060包括一个或多个执行单元2062的集合以及一个或多个存储器访问单元2064的集合。执行单元2062可以执行各种操作(例如,移位、加法、减法、乘法),以及对各种类型的数据(例如,标量浮点、打包整数、打包浮点、向量整数、向量浮点)执行。尽管某些实施例可以包括专用于特定功能或功能集合的多个执行单元,但其他实施例可包括全部执行所有函数的仅一个执行单元或多个执行单元。调度器单元2056、物理寄存器组单元2058和执行群集2060被示为可能有多个,因为某些实施例为某些类型的数据/操作(例如,标量整数流水线、标量浮点/打包整数/打包浮点/向量整数/向量浮点流水线,和/或各自具有其自己的调度器单元、物理寄存器组单元和/或执行群集的存储器访问流水线——以及在分开的存储器访问流水线的情况下,实现其中仅该流水线的执行群集具有存储器访问单元2064的某些实施例)创建分开的流水线。还应当理解,在分开的流水线被使用的情况下,这些流水线中的一个或多个可以为无序发布/执行,并且其余流水线可以为有序发布/执行。存储器访问单元2064的集合被耦合到存储器单元2070,该存储器单元2070包括耦合到数据高速缓存单元2074的数据tlb单元2072,其中该数据高速缓存单元2074耦合到二级(l2)高速缓存单元2076。在一个示例性实施例中,存储器访问单元2064可包括加载单元、存储地址单元和存储数据单元,其中的每一个均耦合至存储器单元2070中的数据tlb单元2072。指令高速缓存单元2034还耦合到存储器单元2070中的二级(l2)高速缓存单元2076。l2高速缓存单元2076被耦合到一个或多个其他级的高速缓存,并最终耦合到主存储器。作为示例,示例性寄存器重命名的、无序发布/执行核架构可以如下实现流水线2000:1)指令获取2038执行取指和长度解码级2002和2004;2)解码单元2040执行解码级2006;3)重命名/分配器单元2052执行分配级2008和重命名级2010;4)调度器单元2056执行调度级2012;5)物理寄存器组单元2058和存储器单元2070执行寄存器读取/存储器读取级2014;执行群集2060执行执行级2016;6)存储器单元2070和物理寄存器组单元2058执行写回/存储器写入级2018;7)各单元可牵涉到异常处理级2022;以及8)引退单元2054和物理寄存器组单元2058执行提交级2024。核2090可支持一个或多个指令集(例如,x86指令集(具有与较新版本一起添加的某些扩展);加利福尼亚州桑尼维尔市的mips技术公司的mips指令集;加利福尼州桑尼维尔市的arm控股的arm指令集(具有诸如neon等可选附加扩展)),其中包括本文中描述的各指令。在一个实施例中,核2090包括支持打包数据指令集扩展(例如,avx1、avx2)的逻辑,由此允许被许多多媒体应用使用的操作将使用打包数据来执行。应当理解,核可支持多线程化(执行两个或更多个并行的操作或线程的集合),并且可以按各种方式来完成该多线程化,此各种方式包括时分多线程化、同步多线程化(其中单个物理核为物理核正同步多线程化的各线程中的每一个线程提供逻辑核)、或其组合(例如,时分取指和解码以及此后诸如用超线程化技术来同步多线程化)。尽管在无序执行的上下文中描述了寄存器重命名,但应当理解,可以在有序架构中使用寄存器重命名。尽管所例示的处理器的实施例还包括分开的指令和数据高速缓存单元2034/2074以及共享l2高速缓存单元2076,但替换实施例可以具有用于指令和数据两者的单个内部高速缓存,诸如例如一级(l1)内部高速缓存或多级内部高速缓存。在某些实施例中,该系统可包括内部高速缓存和在核和/或处理器外部的外部高速缓存的组合。或者,所有高速缓存都可以在核和/或处理器的外部。具体的示例性有序核架构图21a-b示出更具体的示例性有序核架构的框图,该核可以是芯片中的若干逻辑块(包括具有相同类型和/或不同类型的其他核)中的一个。这些逻辑块通过高带宽的互连网络(例如,环形网络)与某些固定的功能逻辑、存储器i/o接口和其它必要的i/o逻辑通信,这依赖于应用。图21a是根据本发明的实施例的连接到片上互联网络2102且具有第二级(l2)高速缓存的本地子集2104的单一处理器核的框图。在一个实施例中,指令解码器2100支持具有打包数据指令集扩展的x86指令集。l1高速缓存2106允许对高速缓存存储器的低等待时间访问进入标量和向量单元。尽管在一个实施例中(为了简化设计),标量单元2108和向量单元2110使用分开的寄存器集合(分别为标量寄存器2112和向量寄存器2114),并且在这些寄存器之间转移的数据被写入到存储器并随后从一级(l1)高速缓存2106读回,但是本发明的替换实施例可以使用不同的方法(例如使用单个寄存器集合,或包括允许数据在这两个寄存器组之间传输而无需被写入和读回的通信路径)。l2高速缓存的本地子集2104是全局l2高速缓存的一部分,该全局l2高速缓存被划分成多个分开的本地子集,即每个处理器核一个本地子集。每个处理器核具有到其自己的l2高速缓存的本地子集2104的直接访问路径。被处理器核读出的数据被存储在其l2高速缓存子集2104中,并且可以被快速访问,该访问与其他处理器核访问它们自己的本地l2高速缓存子集并行。被处理器核写入的数据被存储在其自己的l2高速缓存子集2104中,并在必要的情况下从其它子集清除。环形网络确保共享数据的一致性。环形网络是双向的,以允许诸如处理器核、l2高速缓存和其它逻辑块之类的代理在芯片内彼此通信。每个环形数据路径每个方向为1012位宽。图21b是根据本发明的各实施例的图21a中的处理器核的一部分的展开图。图21b包括l1高速缓存2104的l1数据高速缓存2106a部分、以及关于向量单元2110和向量寄存器2114的更多细节。具体地说,向量单元2110是16宽向量处理单元(vpu)(见16宽alu2128),该单元执行整数、单精度浮点以及双精度浮点指令中的一个或多个。该vpu支持通过拌和单元2120混合寄存器输入、通过数值转换单元2122a-b进行数值转换,以及通过复制单元2124进行对存储器输入的复制。写掩码寄存器2126允许断言(predicating)所得的向量写入。具有集成存储器控制器和图形器件的处理器图22是根据本发明的实施例的处理器2200的框图,该处理器可具有一个以上的核,可具有集成的存储器控制器,且可具有集成的图形器件。图22的实线框示出了处理器2200,处理器2200具有单个核2202a、系统代理2210、一个或多个总线控制器单元2216的集合,而可选附加的虚线框示出了替换处理器2200,其具有多个核2202a-n、系统代理单元2210中的一个或多个集成存储器控制器单元2214的集合以及专用逻辑2208。因此,处理器2200的不同实现可包括:1)cpu,其中专用逻辑2208是集成图形和/或科学(吞吐量)逻辑(其可包括一个或多个核),并且核2202a-n是一个或多个通用核(例如,通用的有序核、通用的无序核、这两者的组合);2)协处理器,其中核2202a-n是主要旨在用于图形和/或科学(吞吐量)的大量专用核;以及3)协处理器,其中核2202a-n是大量通用有序核。因此,处理器2200可以是通用处理器、协处理器或专用处理器,诸如例如网络或通信处理器、压缩引擎、图形处理器、gpgpu(通用图形处理单元)、高吞吐量的集成众核(mic)协处理器(包括30个或更多核)、或嵌入式处理器等。该处理器可以被实现在一个或多个芯片上。处理器2200可以是一个或多个衬底的一部分,和/或可以使用诸如例如bicmos、cmos或nmos等的多个加工技术中的任何一个技术将其实现在一个或多个衬底上。存储器层次结构包括在各核内的一个或多个级别的高速缓存、一组或一个或多个共享高速缓存单元2206、以及耦合至集成存储器控制器单元2214的集合的外部存储器(未示出)。该共享高速缓存单元2206的集合可以包括一个或多个中间级高速缓存,诸如二级(l2)、三级(l3)、四级(l4)或其他级别的高速缓存、末级高速缓存(llc)、和/或其组合。尽管在一个实施例中,基于环的互连单元2212将集成图形逻辑2208、共享高速缓存单元2206的集合以及系统代理单元2210/集成存储器控制器单元2214互连,但替代实施例可使用任何数量的公知技术来将这些单元互连。在一个实施例中,在一个或多个高速缓存单元2206与核2202-a-n之间维持一致性。在某些实施例中,核2202a-n中的一个或多个核能够多线程化。系统代理2210包括协调和操作核2202a-n的那些组件。系统代理单元2210可包括例如功率控制单元(pcu)和显示单元。pcu可以是或包括调整核2202a-n和集成图形逻辑2208的功率状态所需的逻辑和组件。显示单元用于驱动一个或多个外部连接的显示器。核2202a-n在架构指令集方面可以是同构的或异构的;即,这些核2202a-n中的两个或更多个核可以能够执行相同的指令集,而其他核可以能够执行该指令集的仅仅子集或不同的指令集。示例性计算机架构图23-26是示例性计算机架构的框图。本领域已知的对膝上型设备、台式机、手持pc、个人数字助理、工程工作站、服务器、网络设备、网络中枢、交换机、嵌入式处理器、数字信号处理器(dsp)、图形设备、视频游戏设备、机顶盒、微控制器、蜂窝电话、便携式媒体播放器、手持设备以及各种其他电子设备的其他系统设计和配置也是合适的。一般来说,能够含有本文中所公开的处理器和/或其它执行逻辑的大量系统和电子设备一般都是合适的。现在参考图23,所示出的是根据本发明一实施例的系统2300的框图。系统2300可以包括一个或多个处理器2310、2315,这些处理器耦合到控制器中枢2320。在一个实施例中,控制器中枢2320包括图形存储器控制器中枢(gmch)2390和输入/输出中枢(ioh)2350(其可以在分开的芯片上);gmch2390包括存储器和图形控制器,存储器2340和协处理器2345耦合到该图形控制器;ioh2350将输入/输出(i/o)设备2360耦合到gmch2390。或者,存储器和图形控制器中的一个或两个集成在处理器内(如本文所述),存储器2340和协处理器2345直接耦合到处理器2310和在单个芯片中具有ioh2350的控制器中枢2320。附加处理器2315的可选性质用虚线表示在图23中。每一处理器2310、2315可包括本文中描述的处理核中的一个或多个,并且可以是处理器2200的某一版本。存储器2340可以是例如动态随机存取存储器(dram)、相变存储器(pcm)或这两者的组合。对于至少一个实施例,控制器中枢2320经由诸如前端总线(fsb)之类的多点总线(multi-dropbus)、诸如快速通道互连(qpi)之类的点对点接口、或者类似的连接2395与处理器2310、2315进行通信。在一个实施例中,协处理器2345是专用处理器,诸如例如高吞吐量mic处理器、网络或通信处理器、压缩引擎、图形处理器、gpgpu、或嵌入式处理器等等。在一个实施例中,控制器中枢2320可以包括集成图形加速器。按照包括架构、微架构、热、功耗特征等等优点的度量谱,物理资源2310、2315之间可存在各种差别。在一个实施例中,处理器2310执行控制一般类型的数据处理操作的指令。嵌入在这些指令中的可以是协处理器指令。处理器2310将这些协处理器指令识别为应当由附连的协处理器2345执行的类型。因此,处理器2310在协处理器总线或者其他互连上将这些协处理器指令(或者表示协处理器指令的控制信号)发布到协处理器2345。协处理器2345接受并执行所接收的协处理器指令。现在参照图24,所示出的是根据本发明一个实施例的更具体的第一示例性系统2400的框图。如图24所示,多处理器系统2400是点对点互连系统,且包括经由点对点互连2450耦合的第一处理器2470和第二处理器2480。处理器2470和2480中的每一个都可以是处理器2200的某一版本。在本发明的一个实施例中,处理器2470和2480分别是处理器2310和2315,而协处理器2438是协处理器2345。在另一实施例中,处理器2470和2480分别是处理器2310和协处理器2345。处理器2470和2480被示为分别包括集成存储器控制器(imc)单元2472和2482。处理器2470还包括作为其总线控制器单元的一部分的点对点(p-p)接口2476和2478;类似地,第二处理器2480包括点对点接口2486和2488。处理器2470、2480可以使用点对点(p-p)接口电路2478、2488经由p-p接口2450来交换信息。如图24所示,imc2472和2482将处理器耦合到相应的存储器,即存储器2432和存储器2434,这些存储器可以是本地附连到相应处理器的主存储器的部分。处理器2470、2480可各自使用点对点接口电路2476、2494、2486、2498经由各个p-p接口2452、2454与芯片组2490交换信息。芯片组2490可以可选地经由高性能接口2439与协处理器2438交换信息。在一个实施例中,协处理器2438是专用处理器,诸如例如高吞吐量mic处理器、网络或通信处理器、压缩引擎、图形处理器、gpgpu、或嵌入式处理器等等。共享高速缓存(未示出)可以被包括在任一个处理器之内或被包括在两个处理器外部但仍经由p-p互连与这些处理器连接,从而如果将某处理器置于低功率模式时,可将任一处理器或两个处理器的本地高速缓存信息存储在该共享高速缓存中。芯片组2490可经由接口2496耦合至第一总线2416。在一个实施例中,第一总线2416可以是外围部件互连(pci)总线,或诸如pciexpress总线或其它第三代i/o互连总线之类的总线,但本发明的范围并不受此限制。如图24所示,各种i/o设备2414可以连同总线桥2418耦合到第一总线2416,总线桥2418将第一总线2416耦合至第二总线2420。在一个实施例中,诸如协处理器、高吞吐量mic处理器、gpgpu、加速器(诸如例如图形加速器或数字信号处理器(dsp)单元)、现场可编程门阵列或任何其他处理器的一个或多个附加处理器2415被耦合到第一总线2416。在一个实施例中,第二总线2420可以是低引脚计数(lpc)总线。各种设备可以被耦合至第二总线2420,在一个实施例中这些设备包括例如键盘/鼠标2422、通信设备2427以及诸如可包括指令/代码和数据2430的盘驱动器或其它海量存储设备的存储单元2428。此外,音频i/o2424可以被耦合至第二总线2420。注意,其它架构是可能的。例如,代替图24的点对点架构,系统可实现多点总线或者其他此类架构。现在参照图25,所示出的是根据本发明实施例的更具体的第二示例性系统2500的框图。图24和25中的相同元件使用相同附图标记,且在图25中省略了图24的某些方面以避免混淆图25的其它方面。图25示出处理器2470、2480可分别包括集成存储器和i/o控制逻辑(“cl”)2472和2482。因此,cl2472、2482包括集成存储器控制器单元并包括i/o控制逻辑。图25示出:不仅存储器2432、2434耦合至cl2472、2482,i/o设备2514也耦合至控制逻辑2472、2482。传统i/o设备2515被耦合至芯片组2490。现在参照图26,所示出的是根据本发明一个实施例的soc2600的框图。图22中的类似元件具有相似的附图标记。另外,虚线框是更先进的soc的可选特征。在图26中,互连单元2602被耦合至:应用处理器2610,该应用处理器包括一个或多个核202a-n的集合以及共享高速缓存单元2206;系统代理单元2210;总线控制器单元2216;集成存储器控制器单元2214;一组或一个或多个协处理器2620,其可包括集成图形逻辑、图像处理器、音频处理器和视频处理器;静态随机存取存储器(sram)单元2630;直接存储器存取(dma)单元2632;以及用于耦合至一个或多个外部显示器的显示单元2640。在一个实施例中,协处理器2620包括专用处理器,诸如例如网络或通信处理器、压缩引擎、gpgpu、高吞吐量mic处理器、或嵌入式处理器等等。本文公开的机制的各实施例可以被实现在硬件、软件、固件或这些实现方法的组合中。本发明的实施例可实现为在可编程系统上执行的计算机程序或程序代码,该可编程系统包括至少一个处理器、存储系统(包括易失性和非易失性存储器和/或存储元件)、至少一个输入设备以及至少一个输出设备。诸如图24所示的代码2430之类的程序代码可应用于输入指令,以执行本文中所描述的功能并生成输出信息。输出信息可以按已知方式被应用于一个或多个输出设备。为了本申请的目的,处理系统包括具有诸如例如数字信号处理器(dsp)、微控制器、专用集成电路(asic)或微处理器之类的处理器的任何系统。程序代码可以用高级过程语言或面向对象的编程语言来实现,以便与处理系统通信。程序代码也可以在需要的情况下用汇编语言或机器语言来实现。事实上,本文中描述的机制不限于任何特定编程语言的范围。在任一情形下,语言可以是编译语言或解译语言。至少一个实施例的一个或多个方面可以由存储在机器可读介质上的代表性指令来实现,该指令表示处理器中的各种逻辑,该指令在被机器读取时使得该机器制作用于执行本文所述的技术的逻辑。被称为“ip核”的这些表示可以被存储在有形的机器可读介质上,并被提供给各种客户或生产设施以加载到实际制造该逻辑或处理器的制造机器中。这样的机器可读存储介质可以包括但不限于通过机器或设备制造或形成的制品的非瞬态、有形配置,其包括存储介质,诸如硬盘;任何其它类型的盘,包括软盘、光盘、紧致盘只读存储器(cd-rom)、紧致盘可重写(cd-rw)的以及磁光盘;半导体器件,例如只读存储器(rom)、诸如动态随机存取存储器(dram)和静态随机存取存储器(sram)的随机存取存储器(ram)、可擦除可编程只读存储器(eprom)、闪存、电可擦除可编程只读存储器(eeprom);相变存储器(pcm);磁卡或光卡;或适于存储电子指令的任何其它类型的介质。因此,本发明的各实施例还包括非瞬态、有形机器可读介质,该介质包含指令或包含设计数据,诸如硬件描述语言(hdl),它定义本文中描述的结构、电路、装置、处理器和/或系统特性。这些实施例也被称为程序产品。仿真(包括二进制变换、代码变形等)在某些情况下,指令转换器可用来将指令从源指令集转换至目标指令集。例如,指令转换器可以变换(例如使用静态二进制变换、包括动态编译的动态二进制变换)、变形(morph)、仿真或以其它方式将指令转换成将由核来处理的一个或多个其它指令。指令转换器可以用软件、硬件、固件、或其组合实现。指令转换器可以在处理器上、在处理器外、或者部分在处理器上部分在处理器外。在所示的实施例中,指令转换器是软件指令转换器,但作为替代该指令转换器可以用软件、固件、硬件或其各种组合来实现。图27以高级语言2702示出了程序,该程序可使用x86编译器2704来编译以生成x86二进制代码2706,该二进制代码可原生地由具有至少一个x86指令集核的处理器2716来执行。具有至少一个x86指令集核的处理器2716表示任何处理器,这些处理器能通过兼容地执行或以其他方式处理以下内容来执行与具有至少一个x86指令集核的英特尔处理器基本相同的功能:1)英特尔x86指令集核的指令集的本质部分(substantialportion),或2)目标旨在在具有至少一个x86指令集核的英特尔处理器上运行的应用或其它程序的对象代码版本,以便取得与具有至少一个x86指令集核的英特尔处理器基本相同的结果。x86编译器2704表示用于生成x86二进制代码2706(例如,对象代码)的编译器,该二进制代码2706可通过或不通过附加的可链接处理在具有至少一个x86指令集核的处理器2716上执行。类似地,图27以高级语言2702示出了程序,该程序可使用替换指令集编译器2708来编译以生成替换指令集二级制代码2710,替换指令集二级制代码2710可由不具有至少一个x86指令集核的处理器2714(诸如,具有执行加利福尼亚州桑尼威尔的mips技术公司的mips指令集的处理器和/或执行加利福尼亚州桑尼威尔的arm控股公司的arm指令集的处理器)来原生地执行。指令转换器2712被用来将x86二进制代码2706转换成可以由不具有x86指令集核的处理器2714原生执行的代码。该经转换的代码不大可能与替换性指令集二进制代码2710相同,因为能够这样做的指令转换器难以制造;然而,转换后的代码将完成一般操作并由来自替换性指令集的指令构成。因此,指令转换器2712表示:通过仿真、模拟或任何其它过程来允许不具有x86指令集处理器或核的处理器或其它电子设备得以执行x86二进制代码2706的软件、固件、硬件或其组合。在该描述和权利要求中,使用了术语“耦合”和/或“连接”、及其派生词。应当理解,这些术语并不旨在作为彼此的同义词。相反,在具体实施例中,“连接的”用于指示两个或更多个要素彼此直接物理或电接触。“耦合”可表示两个或多个元件直接物理或电气接触。然而,“耦合的”也可表示两个或更多个要素可能并未彼此直接接触,但是仍然彼此协作、彼此作用。例如,执行单元可通过一个或多个中间组件与寄存器或解码器耦合。在附图中,箭头用于示出连接和/或耦合。在以上描述中,为了提供对实施例的透彻理解阐述了具体的细节。然而,在没有这些具体细节中的部分的情况下,可实践其他实施例。本发明的范围不是由所提供的具体示例确定,而是仅由所附权利要求确定。在附图中显示且在说明书中描述的关系的所有等效关系都被涵盖在实施例内。在其它实例中,以框图形式而非以细节地示出了公知的电路、结构、设备和操作以避免使说明书的理解变得晦涩。特定操作可由硬件组件执行,和/或可体现在机器可执行或电路可执行指令中,这些操作可用于使得和/或者导致硬件组件(例如,处理器、处理器的一部分、电路等)通过执行操作的指令来编程。硬件组件可包括通用或专用硬件组件。操作可由硬件、软件和/或固件的组合来执行。硬件组件可包括专用或特定逻辑(例如,潜在地与软件和/或固件组合的电路),该逻辑操作以执行和/或处理指令并响应于指令存储结果(例如,响应于一个或多个微指令或从该指令导出的其它控制信号)。例如,贯穿本说明书对“一个实施例”、“实施例”、“一个或多个实施例”、“一些实施例”的引用指示特定特征可被包括在本发明的实践中,但是不一定需要这样。类似地,在该描述中,出于流线型化本公开和辅助对各个发明性方面的理解的目的,各种特征有时被一起归组在单一实施例、附图、及其描述中。然而,该公开方法不应被解释成反映本发明需要比每项权利要求中所明确记载的更多特征的意图。相反,如所附权利要求反映的,发明性方面在于少于单一公开的实施例的所有特征。因此,所附权利要求因此被明确纳入该说明书中,每一项权利要求独自作为本发明单独的实施例。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1