设备能效综合控制平台及其控制方法与流程

文档序号:17132201发布日期:2019-03-16 01:26阅读:300来源:国知局
设备能效综合控制平台及其控制方法与流程

本发明涉及一种能效控制平台及其控制方法,具体涉及一种设备能效综合控制平台及其控制方法。



背景技术:

我国需要开发一种能效控制平台及其控制方法,实现对城市用电数据的采集、监测、分析、挖掘,使政府能及时了解电能供应、配送及用电情况,掌握电能消耗情况与用电趋势等,对整个城市能源能够进行合理的管理与调配,实现合理用电,降低用能成本,同时为能源政策制定、节能减排指标管理及宏观经济运行分析提供决策支持;通过延伸到用户内部的广覆盖、细粒度的数据采集网络,实时掌握用户用能情况,实现电网与用户间耗能数据的在线互动,使电力公司调控城市区域负荷,优化城市负荷曲线,实现削峰填谷,减少设备维护频率,保障电网稳定经济运行,促进城市经济发展,实现节能降耗,响应国家能源战略要求。



技术实现要素:

本发明的目的在于解决上述现有技术缺少一种综合能效监测平台方法的问题,提供一种设备能效综合控制平台及其控制方法。

本发明解决其技术问题所采用的技术方案是:一种设备能效综合控制平台,其特征在于,包括政府信息外网、公众网络、电力信息内部网和能效设备数据源,电力信息内部网包括电力信息内网应用区和电力信息外网应用区,所述政府信息外网通过防火墙与所述公众网络通信连接,所述政府信息外网通过隔离装置与所述电力信息内网应用区通信连接,电力信息内网应用区通过隔离装置与所述电力信息外网应用区通信连接,电力信息外网应用区通过防火墙与能效设备数据源连接,所述电力信息内网应用区包括由若干存贮节点和若干管理节点构成的云计算节点、应用服务器集群、事物服务器和本地数据源,所述的本地数据源通过防火墙与所述云计算节点通信连接,云计算节点与所述应用服务器集群以及事物服务器连接。

作为优选,所述政府信息外网也包括由若干存贮节点和若干管理节点构成的云计算节点、应用服务器集群和事物服务器,云计算节点与所述应用服务器集群以及事物服务器连接。

一种设备能效综合控制方法,适用于如上所述的设备能效综合控制平台,其特征在于,包括以下步骤:

步骤一,获取各个运行设备的运行参数;

步骤二,计算目标设备的能效数据,

步骤三,对目标设备的能效数据进行分析,发布能效分析结果。

作为优选,在步骤一中,所述运行设备包括变压器、电动机、电加热设备和/或空调制冷设备。

作为优选,在目标设备为变压器时,

在步骤一中,获得目标变压器的实测运行数据和铭牌数据,

在步骤二中,执行以下变压器能效计算子步骤:

变压器能效计算子步骤一,计算获得变压器日均负载率β(%);

变压器能效计算子步骤二,根据日变压器投入运行的工作时间t、变压器的空载损耗po、变压器的负载损耗pn和额定容量sn通过以下计算公式:

δap=(po+β2pn)t

计算得出变压器日均有功电能损耗δap;

变压器能效计算子步骤三,根据变压器日均有功电能损耗δap和变压器日的输出电量az,通过以下计算公式:

计算得出变压器实际运行效率ηd;

变压器能效计算子步骤三,计算压器的最佳负荷率和变压器的最大效率

在步骤三中,若则判断为维持现状;

若在设定时长内变压器的负载率均低于30%,则判断为需要改用符合的计算结果的变压器,上式中s为实际使用负荷;

若变压器的运行效率时,则判断为需要执行以下动作:增加无功就地补偿。

作为优选,在目标设备为电动机时,

在步骤一中,获得目标电动机的实测运行数据和铭牌数据,

在步骤二中,执行以下电动机能效计算子步骤:

电动机能效计算子步骤一,根据获取的实测电动机的输入线电流i1、实测电动机的输入线电压u、电动机的额定电流in、电动机的额定电压un、电动机的额定效率ηn、电动机的空载有功损耗po和电动机的额定空载电流ion通过以下计算公式:

计算得出电动机运行负载率β,上式中,io为电动机输入线电压为非额定值时的空载电流,io的计算公式如下:

电动机能效计算子步骤二,通过以下计算公式:

计算得出电动机运行效率ηc;

在步骤三中,若β位于60%~80%之间,则判断为维持现状,ηc≥0.6时,则判断为维持现状,

若β在设定时长内均小于40%则判断为需要执行以下动作:需要更换小容量的电动机,

对于设定时长内ηc<0.6的轻载、空载或周期性负载条件下使用的电动机,判断为需要执行以下动作:进行无功就地补偿或安装节能控制器;

对于大于设定时长依然存在ηc<0.6的轻载、空载或周期性变动负载下运行的电动机,判断为需要执行以下动作:采用异步电动机轻载调压节能装置,定子输入端加装△-y转换串电抗器自动有级调压节电器以降低轻载运行时电动机的输入电压,提高电动机运行效率,减少电机损耗。

作为优选,在目标设备为电加热设备时,

在步骤一中,获得目标电加热设备的实测运行数据和铭牌数据,

在步骤二中,执行以下电加热设备能效计算子步骤:

电加热设备能效计算子步骤一:根据获取的实际生产耗电量w和产品的实际质量mi

通过以下计算公式:

计算测试周期内的合格产品的可比用电单耗bk,上式中,m2--测试周期的总折合质量,i=1,2,3,....,n,为产品或工件品种,k1为产品或工件单件质量折算系数,k2为产品或工件类别折算系数,k3为热处理温度折算系数,k4为热处理工艺折算系数;

电加热设备能效计算子步骤二:用温度测量仪表测量电炉最高工作温度下的热稳定状态时炉体外表面任意测量点的温度与特定环境温度之差δθ;在步骤三中,若bk≤0.600kwh/kg且δθ符合设定值,则判断为保持现状,否则判断为需要执行以下动作:缩小和密封电加热设备的开口部分或开口处安装双层封盖、减少热损失;在加热或热处理的电炉中,改进升温曲线;电加热设备集中生产,减少空载损失。

作为优选,所述的单价质量折算系数符合以下要求,

单件产品或工件质量>0.3kg/件时,k1=1.0,

单件产品或工件质量<0.1kg/件时,k1=1.5,

单件产品或工件质量≥0.1kg/件且≤0.3kg/件时,k1=1.2;

产品或工件类别折算系数符合以下要求,

当产品或工件类别为工模具类时,k2=1.2,否则k2=1.0;

热处理温度折算系数符合以下要求,

热处理温度>1000℃时,k3=1.5,

热处理温度≥700℃且≤1000℃时,k3=1.0,

热处理温度≥500℃且<700℃时,k3=0.7,

热处理温度≥350℃且<500℃时,k3=0.5,

热处理温度<350℃时,k3=0.3;

热处理工艺折算系数符合以下要求,

渗碳渗氮的折算系数k4=2.0,

盐浴工艺的折算系数k4=1.5,

铝合金淬火工艺的折算系数k4=1.1,

钢材淬火工艺的折算系数k4=1.1,

退火保温工艺的时间>20h时的折算系数k4=1.7,

退火保温工艺的时间10~20h时的折算系数k4=1.3,

正火工艺或退火保温工艺的时间<10h时折算系数k4=1.0。

作为优选,在目标设备为空调制冷设备时,

在步骤一中,获得目标空调制冷设备的实测运行数据和铭牌数据,

在步骤二中,执行以下空调制冷设备能效计算子步骤:

空调制冷设备能效计算子步骤一,根据获取的空调制冷设备运行时间t、冷水进口温度t1、冷水出口温度t2、冷水质量流量qm、平均温度下水的比热容c和制冷消耗电量ap,通过以下计算公式:

qn=cqm(t2-t1)t计算得出运行期间的制冷量qn;

通过以下计算公式:

计算得出运行平均能效比运行平均能效比cop;

在步骤三中,cop≥copn则判断为保持现状,copn为设定的能效比,否则判断为需要执行以下动作:定期清洗换热器、提高制冷设备冷水的出口温度,检查冷凝效果,定期对冷却水进行排放。

作为优选,在步骤一中,还输入企业供配电线路的基本信息,

在步骤二中,执行以下企业总线损率能效计算子步骤,

企业总线损率能效计算子步骤一,根据日线路运行时间t、日内平均环境温度t、线路长度l、20℃时导线的单位电阻值r20和线路每小时的实测负荷电流ij,通过以下计算公式:

计算每相导线的电阻r,

上式中,tx为导线最高允许温度,ix为环境温度为25℃时,导线的允许载流,k为温度换算系数,ii为线路中实测负荷电流的均方根值,

通过以下计算公式:

计算每条线路的日平均电能损耗δasx

上式中,m为相数系数,单相m=2,三相3线m=3,三相4线m=3.5;企业总线损率能效计算子步骤二,根据获取的企业每台变压器损耗:δapi、企业每条线路损耗:δasxi和企业代表日受入电量:az,通过以下计算公式:

计算得出企业总线损率α,上式中,n1为变压器台数,n2为线路条数;

在步骤三中,对于一次变压,α小于3.5%、对于二次变压,α小于5.5%、对于三次变压,α小于7%且用电体系中单条线路的损耗电量小于该线路首端输送的有功电量的5%的企业判断为保持现状,否则判断为需要采取以下措施:将配电变压器安排在负荷中心、缩短低压线路的长度、提高供电线路的功率因数、减少线路输送的无功电流、采用无功就地补偿、减少负荷波动引起的附加线损或提高输送电压。

本发明的实质性效果是:本发明通过合理的获取目标数据的能效数据,对数据进行处理,使得综合能效提高,能效监管更为到位。

附图说明

图1是本发明的框架结构图。

图中:1、公众网络,2、政府信息外网,3、电力信息内网应用区,4、电力信息外网应用区,5、能效设备数据源,6、本地数据源,7、云计算节点,8、防火墙,9、隔离装置。

具体实施方式

下面通过具体实施例,并结合附图,对本发明的技术方案作进一步的具体说明。

实施例1:

一种设备能效综合控制平台(参见附图1),包括政府信息外网2、公众网络1、电力信息内部网和能效设备数据源5,电力信息内部网包括电力信息内网应用区3和电力信息外网应用区4,所述政府信息外网通过防火墙与所述公众网络通信连接,所述政府信息外网通过隔离装置9与所述电力信息内网应用区通信连接,电力信息内网应用区通过隔离装置与所述电力信息外网应用区通信连接,电力信息外网应用区通过防火墙与能效设备数据源连接,所述电力信息内网应用区包括由若干存贮节点和若干管理节点构成的云计算节点7、应用服务器集群、事物服务器和本地数据源6,所述的本地数据源通过防火墙8与所述云计算节点通信连接,云计算节点与所述应用服务器集群以及事物服务器连接。所述政府信息外网也包括由若干存贮节点和若干管理节点构成的云计算节点、应用服务器集群和事物服务器,云计算节点与所述应用服务器集群以及事物服务器连接。

一种设备能效综合控制方法,适用于如上所述的设备能效综合控制平台,包括以下步骤:

步骤一,获取各个运行设备的运行参数;

步骤二,计算目标设备的能效数据,

步骤三,对目标设备的能效数据进行分析,发布能效分析结果。

在步骤一中,所述运行设备包括变压器、电动机、电加热设备和/或空调制冷设备。

在目标设备为变压器时,

在步骤一中,获得目标变压器的实测运行数据和铭牌数据,

在步骤二中,执行以下变压器能效计算子步骤:

变压器能效计算子步骤一,计算获得变压器日均负载率β(%);

变压器能效计算子步骤二,根据日变压器投入运行的工作时间t、变压器的空载损耗po、变压器的负载损耗pn和额定容量sn通过以下计算公式:

δap=(po+β2pn)t

计算得出变压器日均有功电能损耗δap;

变压器能效计算子步骤三,根据变压器日均有功电能损耗δap和变压器日的输出电量az,通过以下计算公式:

计算得出变压器实际运行效率ηd;

变压器能效计算子步骤三,计算压器的最佳负荷率和变压器的最大效率

在步骤三中,若则判断为维持现状;

若在设定时长内变压器的负载率均低于30%,则判断为需要改用符合的计算结果的变压器,上式中s为实际使用负荷;

若变压器的运行效率时,则判断为需要执行以下动作:增加无功就地补偿。

在目标设备为电动机时,

在步骤一中,获得目标电动机的实测运行数据和铭牌数据,

在步骤二中,执行以下电动机能效计算子步骤:

电动机能效计算子步骤一,根据获取的实测电动机的输入线电流i1、实测电动机的输入线电压u、电动机的额定电流in、电动机的额定电压un、电动机的额定效率ηn、电动机的空载有功损耗po和电动机的额定空载电流ion通过以下计算公式:

计算得出电动机运行负载率β,上式中,io为电动机输入线电压为非额定值时的空载电流,io的计算公式如下:

电动机能效计算子步骤二,通过以下计算公式:

计算得出电动机运行效率ηc;

在步骤三中,若β位于60%~80%之间,则判断为维持现状,ηc≥0.6时,则判断为维持现状,

若β在设定时长内均小于40%则判断为需要执行以下动作:需要更换小容量的电动机,

对于设定时长内ηc<0.6的轻载、空载或周期性负载条件下使用的电动机,判断为需要执行以下动作:进行无功就地补偿或安装节能控制器;

对于大于设定时长依然存在ηc<0.6的轻载、空载或周期性变动负载下运行的电动机,判断为需要执行以下动作:采用异步电动机轻载调压节能装置,定子输入端加装△-y转换串电抗器自动有级调压节电器以降低轻载运行时电动机的输入电压,提高电动机运行效率,减少电机损耗。

在目标设备为电加热设备时,

在步骤一中,获得目标电加热设备的实测运行数据和铭牌数据,

在步骤二中,执行以下电加热设备能效计算子步骤:

电加热设备能效计算子步骤一:根据获取的实际生产耗电量w和产品的实际质量mi

通过以下计算公式:

计算测试周期内的合格产品的可比用电单耗bk,上式中,m2--测试周期的总折合质量,i=1,2,3,....,n,为产品或工件品种,k1为产品或工件单件质量折算系数,k2为产品或工件类别折算系数,k3为热处理温度折算系数,k4为热处理工艺折算系数;

电加热设备能效计算子步骤二:用温度测量仪表测量电炉最高工作温度下的热稳定状态时炉体外表面任意测量点的温度与特定环境温度之差δθ;在步骤三中,若bk≤0.600kwh/kg且δθ符合设定值,则判断为保持现状,否则判断为需要执行以下动作:缩小和密封电加热设备的开口部分或开口处安装双层封盖、减少热损失;在加热或热处理的电炉中,改进升温曲线;电加热设备集中生产,减少空载损失。

所述的单价质量折算系数符合以下要求,

单件产品或工件质量>0.3kg/件时,k1=1.0,

单件产品或工件质量<0.1kg/件时,k1=1.5,

单件产品或工件质量≥0.1kg/件且≤0.3kg/件时,k1=1.2;

产品或工件类别折算系数符合以下要求,

当产品或工件类别为工模具类时,k2=1.2,否则k2=1.0;

热处理温度折算系数符合以下要求,

热处理温度>1000℃时,k3=1.5,

热处理温度≥700℃且≤1000℃时,k3=1.0,

热处理温度≥500℃且<700℃时,k3=0.7,

热处理温度≥350℃且<500℃时,k3=0.5,

热处理温度<350℃时,k3=0.3;

热处理工艺折算系数符合以下要求,

渗碳渗氮的折算系数k4=2.0,

盐浴工艺的折算系数k4=1.5,

铝合金淬火工艺的折算系数k4=1.1,

钢材淬火工艺的折算系数k4=1.1,

退火保温工艺的时间>20h时的折算系数k4=1.7,

退火保温工艺的时间10~20h时的折算系数k4=1.3,

正火工艺或退火保温工艺的时间<10h时折算系数k4=1.0。

在目标设备为空调制冷设备时,

在步骤一中,获得目标空调制冷设备的实测运行数据和铭牌数据,

在步骤二中,执行以下空调制冷设备能效计算子步骤:

空调制冷设备能效计算子步骤一,根据获取的空调制冷设备运行时间t、冷水进口温度t1、冷水出口温度t2、冷水质量流量qm、平均温度下水的比热容c和制冷消耗电量ap,通过以下计算公式:

qn=cqm(t2-t1)t计算得出运行期间的制冷量qn;

通过以下计算公式:

计算得出运行平均能效比运行平均能效比cop;

在步骤三中,cop≥copn则判断为保持现状,copn为设定的能效比,否则判断为需要执行以下动作:定期清洗换热器、提高制冷设备冷水的出口温度,检查冷凝效果,定期对冷却水进行排放。

在步骤一中,还输入企业供配电线路的基本信息,

在步骤二中,执行以下企业总线损率能效计算子步骤,

企业总线损率能效计算子步骤一,根据日线路运行时间t、日内平均环境温度t、线路长度l、20℃时导线的单位电阻值r20和线路每小时的实测负荷电流ij,通过以下计算公式:

计算每相导线的电阻r,

上式中,tx为导线最高允许温度,ix为环境温度为25℃时,导线的允许载流,k为温度换算系数,ii为线路中实测负荷电流的均方根值,

通过以下计算公式:

计算每条线路的日平均电能损耗δasx

上式中,m为相数系数,单相m=2,三相3线m=3,三相4线m=3.5;企业总线损率能效计算子步骤二,根据获取的企业每台变压器损耗:δapi、企业每条线路损耗:δasxi和企业代表日受入电量:az,通过以下计算公式:

计算得出企业总线损率α,上式中,n1为变压器台数,n2为线路条数;

在步骤三中,对于一次变压,α小于3.5%、对于二次变压,α小于5.5%、对于三次变压,α小于7%且用电体系中单条线路的损耗电量小于该线路首端输送的有功电量的5%的企业判断为保持现状,否则判断为需要采取以下措施:将配电变压器安排在负荷中心、缩短低压线路的长度、提高供电线路的功率因数、减少线路输送的无功电流、采用无功就地补偿、减少负荷波动引起的附加线损或提高输送电压。

实施例2:

本实施例与实施例1基本相同,不同之处在于,本实施例中,还对工业总产值、环比节电量、同比节电量、环比节电率、同比节电率进行监测,

(1)工业总产值--以货币表现的工业企业在报告期内生产的工业产品按实际销售价格计算的价值量。(产值=产量×单价,万元)

环比节电量δac--统计报告期(例如某月(年)对应上月(年),上月(年)对应前月(年)的逐期电量之比。计算公式:δac=本期电量-上期电量同比节电量δah--统计报告期(例如某月对应去年同期某月)电量之比。计算公式:δah=本期电量-去年同期电量

环比节电率计算公式:

同比节电率计算公式:

注意:节电量计算为负值时表示节电。

(2)电能信息

在分析电能能效时监测的项目主要包括日负荷率、变压器负载系数、线损率、企业用电体系功率因数、三相电压不平衡度、电压不合格累计次数(从系统记录获知)。

1)日负荷率的测试与计算

日负荷率kf的定义:用电体系日平均负荷与日最大负荷的数值之比的百分数,%。

在测试期内,测算以下参数:

日平均负荷--用电体系在测试期内实际用电平均有功负荷pp,kw;其数值等于实际用电量除以用电小时数;

日最大负荷--用电体系在测试期出现的最大小时平均有功负荷pmax,kw。注:测试期为一个代表日,24h,测试数据每小时准点记录一次。

用电体系在测试期的日负荷率kf按下面公式计算:

日负荷率的评价

根据不同的用电情况,企业日负荷率应不低于以下指标。

表1.企业日负荷率表

建议:在企业处于正常生产实际运行工况时,应该调整企业用电设备的工作状态,合理分配与平衡负荷,使企业用电均衡化,提高企业负荷率。

2)企业用电体系功率因数的测试与计算

功率因数的定义:

用电体系有功功率与视在功率之比,即功率因数;以用电体系有功电量与无功电量为参数计算而得的功率因数,即企业用电体系功率因数又称企业用电体系加权平均功率因数。

在测试期内,测算以下参数:

供给用电体系的总有功电量erp,kw·h;

供给用电体系的总无功电量erq,kvar·h。

测试期的企业用电体系功率因数按下面公式计算:

注:当备有功率因数表时,可直接读取功率因数的值。

企业用电体系功率因数的评价

企业用电体系功率因数如果企业的功率因数小于0.9,应就地实施无功补偿。

3)三相电压不平衡度ε企业用电体系功率因数的测试与计算

三相电压不平衡度ε即三相电压最大差值与平均电压的比值。计算公式为:

其中:

电力系统公共连接点电压不平衡限值为:

电网正常运行时,负序电压不平衡度不超过2%,短时不得超多4%。

建议:企业单相用电设备应均匀地接在三相网络上,降低三相电压不平衡度。

(3)生产信息

在分析生产能效时监测的项目主要包括万元产值电耗(单位:kwh/万元)、万元产值电费。

万元产值电耗--指企业每万元工业产值的耗电量(kwh)。计算公式:万元产值电耗=企业电量消耗总量(kwh)/工业总产值(万元)。

万元产值电费--指企业每万元工业产值所支付的电费数。计算公式:万元产值电费=万元产值电耗*电价。

(4)环境信息

在分析环境能效时监测的项目主要包括损失电量、谐波含量。

损失电量--供给电量与有效电量之差称为损失电量。它是工业企业体系生产产品过程中克服电、磁、热及机械阻力而消耗的电量。

谐波含量(电压或电流)--从周期性交流量中减去基波分量后所得的量。

建议通过以下方式降低谐波含量:1)在谐波源处安装无源谐波滤除装置;2)在谐波源处安装有源谐波滤除装置;3)在谐波源处进行无功补偿。

以上所述的实施例只是本发明的一种较佳的方案,并非对本发明作任何形式上的限制,在不超出权利要求所记载的技术方案的前提下还有其它的变体及改型。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1