使用定位器图像进行平面选择的制作方法

文档序号:19948607发布日期:2020-02-18 09:56阅读:260来源:国知局
使用定位器图像进行平面选择的制作方法

本文所公开的主题涉及使用定位器图像来非侵入性地采集图像。



背景技术:

非侵入性成像技术允许获得患者/对象的内部结构或特征的图像,而无需对患者/对象执行侵入性过程。具体地讲,此类非侵入性成像技术依赖于各种物理原理(诸如x射线穿过目标体积的差分透射、体积内的声波反射、体积内不同组织和材料的顺磁性、目标放射性核素在体内的分解等),以采集数据和构建图像或以其它方式表示观察到的患者/对象的内部特征。

在医学背景中对患者进行成像通常涉及非侵入性地采集所关注的解剖区域的数据(即,在所关注的解剖区域处扫描患者)并将所采集的数据重建为图像。作为该过程的一部分,首次采集有助于查看者将当前扫描器几何结构与患者的所关注解剖结构相关联的定位器或探查图像可能是有用的。然而,此类定位器或探查图像通常具有比待采集的诊断图像更低的质量和/或分辨率,可能难以辨识,并且与拟议的扫描过程和患者解剖结构适当地相关。



技术实现要素:

下文示出了本文所公开的某些实施方案的概述。应当理解,提供这些方面仅仅是为了向读者提供这些特定实施方案的简要概述,并且这些方面并非旨在限制本公开的范围。实际上,本公开可涵盖下文可能未示出的各个方面。

在一个实施方案中,提供一种对解剖区域进行成像的方法。根据该方法,使用成像系统采集多张定位器或探查图像。将多张定位器或探查图像提供给定位器网络,该定位器网络经过训练,以选择定位器或探查图像子集,以供基于定位器图像子集的图像内容检测和可视化所关注的解剖标志。使用扫描平面网络处理定位器或探查图像子集或者由定位器或探查图像生成的图像构造,该扫描平面网络经过训练,以确定包含所关注解剖标志的区域的一个或多个图像扫描平面或图像扫描平面参数。使用结合了提供临床诊断评估所必需的所关注解剖结构的一个或多个图像扫描平面或图像扫描平面参数采集一张或多张诊断图像。

在另一个实施方案中,提供一种成像系统。根据该实施方案,该成像系统包括:存储器,该存储器对处理器可执行例程进行编码以确定一个或多个成像扫描平面;以及处理部件,该处理部件被构造成访问存储器和执行处理器可执行例程。这些例程在由处理部件执行时,致使处理部件:采集多张定位器或探查图像;使用定位器网络处理该多张定位器或探查图像,该定位器网络经过训练,以选择定位器或探查图像的子集,以供基于定位器或探查图像子集的图像内容检测和可视化所关注的解剖标志;使用扫描平面网络处理定位器或探查图像子集或者由定位器图像生成的图像构造,该扫描平面网络经过训练,以确定包含所关注解剖标志的区域的一个或多个图像扫描平面或图像扫描平面参数;以及使用结合了提供临床诊断评估所必需的所关注解剖结构的一个或多个图像扫描平面或图像扫描平面参数采集一张或多张图像。

在另一个实施方案中,提供一种评估成像扫描平面规划的方法。根据该方法,使用成像系统采集定位器或探查图像。将定位器或探查图像数据提供给神经网络,该神经网络经过训练,以按大于定位器数据的分辨率生成合成图像数据。基于图像扫描平面规划重新格式化合成图像数据,以生成重新格式化的合成图像数据。接收与重新格式化的合成图像数据相关的反馈。基于反馈修改图像扫描平面规划,以生成修改后的图像扫描平面规划。然后使用修改后的图像扫描平面规划采集一张或多张诊断图像。

在另一个另外的实施方案中,提供一种基于采集的三维定位器或探查图像体积对解剖区域进行成像的方法。根据该方法,使用成像系统将采集的多张二维定位器或探查图像组合在一个定位器或探查体积中。使用扫描平面网络处理生成的定位器或探查体积,该扫描平面网络经过三维数据训练,以确定一个或多个图像扫描平面或图像扫描平面参数。然后使用该一个或多个图像扫描平面或图像扫描平面参数采集一张或多张诊断图像。

在另一个实施方案中,使用经过归整的图像数据训练定位器网络和扫描平面网络,例如神经网络,使得该网络能够有效而准确地识别呈现给相关网络的图像子集中的不同解剖标志。这样,可准确地识别出包含所关注解剖标志的定位器或探查图像的子集。随后,可使用另外的神经网络诸如扫描平面网络来确定扫描平面,该扫描平面导致在尽可能靠近单个扫描平面的位置处包含所关注解剖标志的重新格式化图像。扫描平面网络可由多个神经网络组成,其中每个网络负责识别一个特定解剖标志或若干解剖标志。

如本文所讨论,神经网络的训练可将经过归整的图像数据用作输入。通常手动执行归整,其中受过训练的个体诸如临床医生在每张输入图像中手动标记相关解剖标志。用于对数据进行归整的另一个典型过程使用预定义解剖图集来自动归整输入图像。这些方法的缺点在于它们在手动归整的情况下不是有效的,或者受到用于自动归整的解剖图集的完整性的限制。

与这些其它方法不同,如本文所讨论的自动归整的实施方案不需要使用预定义解剖图集,而是可利用预先确定或假定的具有涵盖正确相关解剖标志的正确扫描平面的图像。此类方法可能涉及使用包括定位器或探查图像以及诊断图像的一组图像。正确扫描平面的诊断图像将具有相对于定位器或探查图像而言,有利于随后可用于训练神经网络的自动归整方法的必要信息。

在自动归整的另一个实施方案中,可使用特征识别或图像分割算法来处理和预先选择图像,这些图像可随后可训练神经网络,使得它们包含所关注的相关解剖标志。这样,正确的成像扫描平面可从这些图像中识别出并用于训练神经网络。

附图说明

当参考附图阅读以下详细描述时,将更好地理解本发明的这些和其它特征、方面和优点,附图中相同的符号在整个附图中表示相同的部分,其中:

图1示出了根据本公开的各个方面的用于训练深度学习模型的人工神经网络的示例;

图2示出了适用于本发明所公开的技术的磁共振成像(mri)系统的实施方案;

图3示出了根据本公开的各个方面的工作流的高层面概述;

图4示出了根据本公开的各个方面的偏移定位器或探查图像的序列;

图5示出了根据本公开的各个方面的呈现伪影的一对定位器或探查图像;

图6示出了根据本公开的各个方面的脑部扫描图像和获得的掩蔽;

图7示出了根据本公开的各个方面的膝部扫描图像和获得的掩蔽;

图8示出了根据本公开的各个方面的成像扫描平面和相关联参数;

图9a、图9b、图9c、图9d和图9e示出了根据本公开的各个方面的地面实况图像的示例;

图10示出了根据本公开的各个方面包括定位器图像和诊断图像的训练图像对;

图11示出了根据本公开的各个方面针对覆盖网络的示例架构和流程;

图12示出了根据本公开的各个方面显示地面实况和估计图像扫描平面放置的示例图像;

图13示出了根据本公开的各个方面显示地面实况和估计图像扫描平面放置的示例图像;

图14示出了根据本公开的各个方面用于估计图像扫描平面参数的示例网络架构;

图15示出了根据本公开的各个方面用于评估图像扫描平面规划的示例工作流程概述;

图16示出了根据本公开的各个方面对图像扫描平面规划进行手动调节的示例;

图17示出了根据本公开的各个方面对图像扫描平面规划进行基于调色板的调节的示例;并且

图18示出了根据本公开的各个方面对图像扫描平面规划进行基于深度学习的调节的示例。

具体实施方式

在下面将描述一个或多个具体的实施方案。为了提供这些实施方案的简明描述,并非实际实施方式的所有特征都要在说明书中进行描述。应当理解,在任何此类实际实施方式的开发中,如在任何工程或设计项目中,必须做出许多实施方式特定的决策以实现开发者的具体目标,诸如遵守可能因实施方式而不同的系统相关和业务相关约束。此外,应当理解,此类开发努力可能是复杂且耗时的,但对于受益于本公开的普通技术人员来说仍然是设计、制造(fabrication)和制造(manufacture)的常规任务。

虽然在医学成像背景中提供以下讨论的各个方面,但应当理解,本发明所公开的技术不限于此类医学背景。实际上,在此类医学背景中提供示例和解释仅是为了通过提供真实实施方式和应用的实例来便于进行解释。然而,本发明所公开的技术也可用于其它背景中,诸如对所制造零件或货物的非破坏性检查(即质量控制或质量审查应用场景)和/或对包裹、盒、行李箱等的非侵入式检查(即安检或筛检应用场景)的图像重建。一般来讲,本发明所公开的技术可用于任何成像或筛检背景或图像处理领域,其中所采集的一组或一类数据经历重建过程以生成图像或体积。

此外,尽管本文主要提供磁共振成像(mr或mri)示例,但应当理解,本发明所公开的技术可用于其它成像模态背景。例如,本发明所述的方法也可用于由其它类型的扫描器采集的数据,其它类型的扫描器将初始非诊断图像(例如,定位器或探查图像)用于定位目的,包括但不限于计算机断层摄影(ct)或正电子发射断层摄影术(pet)-mr扫描器等。

考虑到这一点并且如本文所讨论,本公开涉及使用一张或多张初始(例如,定位器或探查)图像将基于人工智能的工作流用于不同放射性成像扫描平面的自动规划。自动规划此类成像扫描平面的目的是确保与给定检查相关的不同解剖标志结构的连续可视化,或者确保在有利于更简单或更有效地对给定检查作出诊断评估的给定成像平面内包括一个或多个解剖标志结构。与先前的方法不同,本公开:(a)使用定位器或探查图像本身确定必要的成像扫描平面;(b)不明确地在定位器图像内分割或描绘标志结构来执行平面规划;以及(c)为用户提供解剖标记切片、扫描平面或者定位器或探查图片本身区域的指导或可视化。此外,本文所述的基于深度学习的技术加快了处理时间,具体方式是允许单次激发多平面确定,以及将输入数据与用于深度学习模型生成的训练数据进行匹配以提高规划准确性。在实践中,不同或专门训练的神经网络可用于不同类别的患者(例如,基于年龄、性别、预诊断症状、身高、体重等)、不同手术(例如,神经、心脏、整形外科、血管造影等)和/或不同解剖结构(例如,脑、心、膝、肩、脊柱、脉管、全身扫描方案等)。

考虑到前述介绍性评论,提供了一些广义信息,以提供本公开各个方面的一般背景,并且有利于理解和解释本文所述的某些技术概念。

例如,如上所述,可采用深度学习方法相对于自动确定与所关注的解剖标志相关的一个或多个成像扫描平面。该一个或多个扫描平面可使用初始定位器或探查图像来确定,并且不需要在定位器图像内分割解剖标志。如本文所讨论的深度学习方法可基于人工神经网络,因此可能涵盖深度神经网络、全互连网络、卷积神经网络(cnn)、感知器、自动编码器、回归网络、小波滤波器组或其它神经网络架构。这些技术在本文中称为深度学习技术,但是也可以特别地参考深度神经网络的使用来使用该术语,深度神经网络是具有多个层的神经网络。

如本文所讨论,深度学习技术(也可称为深度机器学习、分级学习或深度结构化学习)是机器学习技术的分支,其采用数据的数学表示以及用于学习和处理此类表示的人工神经网络。例如,深度学习方法可表征为它们使用一个或多个算法来提取一类关注数据的高度抽象概念或对其进行建模。这可以使用一个或多个处理层来完成,其中每个层通常对应于不同级别的抽象,并且因此可能采用或利用初始数据的不同方面或前一层的输出(即,层的分级结构或级联结构)作为给定层的过程或算法的目标。在图像处理或重建背景中,这可以被表征为对应于数据中的不同的特征级别或分辨率的不同的层。

一般来讲,可将一个表示空间到下一级表示空间的处理视为过程的一个“阶段”。过程的每个阶段可由单独的神经网络或由一个较大神经网络的不同部分来执行。例如,如本文所述,可使用单个深度学习网络或多个彼此协作的网络从定位器图像确定图像扫描平面,以用于后续图像采集操作。如本文所述,在不分割定位器图像内的关注解剖标记的情况下执行此类图像扫描平面确定。

作为解决特定问题的深度学习过程的初始训练的一部分,可采用具有深度学习过程的已知初始值(例如,输入图像、投影数据、发射数据、磁共振数据等)和最终输出(例如,对应的图像扫描平面)的已知或期望值的训练数据集。单个阶段的训练可以具有对应于一个表示空间的已知输入值和对应于下一级表示空间的已知输出值。以这种方式,深度学习算法可以(以监督或指导的方式或以无监督或无指导的方式)处理已知或训练数据集,直到看出初始数据与一个或多个期望输出之间的数学关系和/或看出和表征每个层的输入和输出之间的数学关系。类似地,可以采用单独验证数据集,其中初始和期望目标值是已知的,但是仅将初始值提供到受过训练的深度学习算法,然后将输出与深度学习算法的输出进行比较以检验先前训练和/或防止过度训练。

考虑到前述内容,图1示意性地示出了可训练为如本文所讨论的深度学习模型的人工神经网络50的示例。在该示例中,网络50是多层的,具有训练输入52和存在于网络50中的多个层(包括输入层54、隐藏层58a、58b等,以及输出层60和训练目标64)。在该示例中,每个层由多个“神经元”或节点56组成。神经元56的数量在各层之间可以是恒定的,或者可以各层不同。每个层的神经元56生成相应输出,该相应输出用作下一分层的神经元56的输入。在实践中,可计算具有附加偏差的输入的加权和,以根据激活函数来“激励”或“激活”各层的每个相应神经元,激活函数诸如修正线性单位(relu)、s形函数、双曲正切函数或以其它方式指定或编程的函数。最后一层的输出构成网络输出60(例如,图像扫描平面或此类扫描平面的参数),其与目标图像64一起用于计算一些损失或误差函数62,损失或误差函数将反向传播以指导网络训练。

损失或误差函数62测量网络输出(即,去噪图像)与训练目标之间的差异或相似性。在某些具体实施中,损失函数可为推导的均方误差(mse)。在其它情况下,它可能是重叠率。另选地,损失函数62可由与所讨论的特定任务相关联的其它度量诸如dice(重叠测量)函数或评分来定义。

为了便于阐述使用深度学习技术进行的本发明的图像扫描方案确定,本公开主要在mri系统的背景中讨论这些方法。然而,应当理解,以下讨论也可能适用于其它成像模态和系统,包括但不限于计算机断层扫描(ct),以及非医学背景或采用定位器图像作为图像采集协议的一部分的任何背景。

就mri而言,本发明所公开的技术可提供某些优点。例如,mri本身是多平面和多对比度成像模态。mri在其任何任意平面中采集成像数据的能力使mri检查方案变成一项复杂的任务,从而引入了检查的可变性,并且导致mr技术人员的学习曲线更长。对于多对比度mr成像,设置单个成像序列的延迟将増大序列间间隙并导致mr检查的持续时间较长,尤其是在采集多个标志数据时。

为了解决这些问题,本方法提供工具来帮助自动规划mri检查,无需任何额外的用户交互或中断现有工作流并且处理内容最少。在某些具体实施中,扫描设置可使用多平面或三平面定位器或探查图像来完成,无需使用另外的3d定位器图像集或更高分辨率成像数据来规划更精细结构(例如,脑部中的视神经或海马体)的成像。所述方法能够以快速稳健的方式实现这一点,即使在存在病变或一些数据损坏的情况下也是如此。除规划图像扫描平面之外,该方法还能够在给定标志结构的最相关切片上的图像扫描平面的可视化和/或基于所需的覆盖范围、程度和取向来定制采集参数。mti背景中的采集参数的此类定制包括:成像视场(fov)、相位编码轴相对于成像切片取向或扫描平面的方向、频率编码轴相对于成像切片取向或扫描平面的方向、分段视场的数量、足以可视化所关注解剖标志的空间分辨率、足以可视化所关注解剖标志所需的切片或成像平面的数目或者成像扫描平面围绕垂直轴以避免相邻解剖结构产生的运动相关伪影的取向。

考虑到这一点,本文所述的实施方案可实现为磁共振成像(mri)系统的至少一部分,其中特定成像例程(例如,弥散mri序列)由用户(例如,放射科医生或其他技术人员)发起。mri系统可执行数据预采集(即,定位器成像)、主数据采集、数据构造等。因此,参见图1,磁共振成像系统100示意性地示出为包括扫描器102、扫描器控制电路104和系统控制电路106。根据本文所述的实施方案,mri系统100通常被构造成执行mr成像,诸如用于弥散成像的成像序列。

系统100还包括:远程访问和存储系统或装置,诸如图像存档和通信系统(pacs)108;或其它装置,诸如远程放射设备,使得能够现场访问或异地访问由系统100采集的数据。这样,可采集mr数据,然后进行现场或异地处理和评估。虽然mri系统100可包括任何合适的扫描器或检测器,但在例示的实施方案中,系统100包括具有外壳120的全身扫描器102,并且穿过外壳形成孔122。诊断台124可移入孔122中,使患者126可定位在其中,用于对患者体内的所选解剖结构进行成像。

扫描器102包括用于产生受控磁场的一系列相关联线圈,受控磁场用于激励待成像主体的解剖结构内的旋磁材料。具体地讲,提供初级磁体线圈128,用于产生与孔122大致对齐的初级磁场b0。一系列梯度线圈130、132和134能够在检查序列期间生成受控梯度磁场,用于对患者126体内的某些旋磁核进行位置编码。射频(rf)线圈136被构造成产生射频脉冲,用于刺激患者体内的某些旋磁核。除可位于扫描器102本地的线圈之外,系统100还包括被构造用于放置在患者126近侧(例如,抵靠患者)的一组接收线圈138(例如,线圈阵列)。例如,接收线圈138可包括颈椎/胸椎/腰椎(ctl)线圈、头部线圈、单面脊线圈等。一般来讲,接收线圈138放置在患者126近处或头顶,以便接收在患者126返回其松弛状态时由患者体内的某些旋磁核产生的弱rf信号(弱是相对于由扫描线圈产生的传输脉冲而言)。

系统100的各种线圈由外部电路控制,以产生所需的场和脉冲并且以受控方式读取来自旋磁材料的发射。在例示的实施方案中,主电源140向初级场线圈128提供电力以产生主磁场bo。电力输入44(例如,来自公用设施或电网的电力)、配电单元(pdu)、电源(ps)和驱动器电路150可一起提供电力,以使梯度场线圈130、132和134产生脉冲。驱动电路150可包括放大和控制电路,其用于按照由扫描器控制电路104输出的数字化脉冲序列的限定向线圈供应电流。

提供另一个控制电路152,用于调节rf线圈136的操作。电路152包括用于在有源工作模式和无源工作模式之间交替的开关装置,在两种工作模式下rf线圈136分别传输信号和不传输信号。电路152还包括被构造成生成rf脉冲的放大电路。类似地,接收线圈138连接到开关154,该开关能够在接收模式和非接收模式之间切换接收线圈138。因此,在接收模式下,接收线圈138与患者126体内的旋磁核释放而产生的rf信号谐振,而在非接收模式下,它们不与来自传输线圈(即,线圈136)的rf能量谐振以便防止发生非预期操作。另外,接收电路156被构造成接收由接收线圈138检测到的数据,并且可包括一个或多个多路复用和/或放大电路。

应当指出的是,虽然上述扫描器102和控制/放大电路示出为由单根线联接,但在实际实例中可存在许多此类线。例如,可使用单独的线进行控制、数据通信、电力传输等。此外,可沿每种类型的线设置合适的硬件,用于正确处理数据和电流/电压。实际上,可在扫描器与扫描器控制电路104和系统控制电路106中的任一者或两者之间设置各种滤波器、数字转换器和处理器。

如图所示,扫描器控制电路104包括接口电路158,该电路输出用于驱动梯度场线圈和rf线圈以及用于接收代表检查序列中所产生磁共振信号的数据的信号。接口电路158联接到控制和分析电路160。基于经由系统控制电路106选择的限定协议,控制和分析电路160执行用于驱动电路150和电路152的命令。

控制和分析电路160还用于接收磁共振信号,以及在将数据传输至系统控制电路106之前执行后续处理。扫描器控制电路104还包括一个或多个存储器电路162,该电路在操作期间存储配置参数、脉冲序列描述、检查结果等。

接口电路164联接到控制和分析电路160,用于在扫描器控制电路104与系统控制电路106之间交换数据。在某些实施方案中,控制和分析电路160虽然被示出为单个单元,但可包括一个或多个硬件装置。系统控制电路106包括接口电路166,该电路从扫描器控制电路104接收数据并且将数据和命令传输回扫描器控制电路104。控制和分析电路168可包括通用或特定于应用的计算机或工作站上的cpu。控制和分析电路168联接到存储器电路170,以存储用于操作mri系统100的编程代码,以及存储经处理的图像数据以供稍后重建、显示和传输。编程代码可执行一个或多个算法,该算法被构造成在由处理器执行时执行采集数据的重建。

可提供另外的接口电路172,用于与外部系统部件诸如远程访问和存储装置108交换图像数据、配置参数等。最后,系统控制和分析电路168可通信地耦接到各种外围设备,用于有利于操作员界面并产生重建图像的硬拷贝。在例示的实施方案中,这些外围设备包括打印机174、显示器176和用户界面178,用户界面包括诸如键盘、鼠标、触摸屏(例如,与显示器176集成在一起)等装置。

考虑到前面对示例mri系统10和神经网络50的讨论,如本文所述,可使用此类工具识别可用于诊断成像的图像扫描平面。例如,在一个实施方案中,提供一种基于深度学习的框架,用于自动处理一张或多张定位器图像,以在不同解剖结构之间规划放射性成像扫描平面。在一个此类具体实施中,基于深度学习的框架使用受训神经网络的级联执行以下操作:保留或选择相关的定位器或探查图像(通常在诊断成像序列之前获得);确定所选定位器图像上的所关注解剖覆盖范围或区域;以及确定针对所关注解剖标记的任意平面并将该平面参数化(诸如在获得的平面云点上执行平面拟合)。如上所述,基于特定于患者的因素、规划的手术和/或所关注的解剖结构,可在这些不同阶段采用不同或以不同方式训练的神经网络。

关于神经网络的训练,由于基于深度学习的框架依赖于数据,因此可使用增强方案,以基于旋转、平移、旋转加平移、图像强度变化、失真、伪影(在mr中为金属相关的)、由于线圈而产生的mr图像强度偏差等生成多个训练示例。一般来讲,増强方案可采用几何和物理驱动的变化来模拟深度学习训练的实际临床数据场景。

在本文所述的某些实施方案中,自动归整或基于图集的方法既可用于初始神经网络训练,也可用于更新或维护网络性能。如上所述,对于训练数据,可以理解,输入数据与期望的结果之间存在预定关系。作为与本文背景相关的示例,如果要训练神经网络以识别所关注的特定解剖标志,则所关注的解剖标志是输入数据中标记或指示的先验。然后训练神经网络以识别所关注的特定解剖标志。此外,不具有所关注解剖标志的输入数据也可用作训练数据,以协助神经网络区分所关注的特定解剖标志存在与否。在输入数据中指示期望结果的步骤称为数据归整,因为它将输入数据分成包含或不含期望结果的类别。

传统的数据归整依赖于耗时的手动归整,其中受过训练的个体手动地对输入数据进行分类并标记期望结果,如果可将归整过程自动化并实现高精确度,则对处理较大量数据是有益的。诊断成像中手动数据归整的示例为临床医生识别定位器或探查图像中的所关注解剖标志。

其它自动归整方法可使用预定数字图像图集,并且尝试将输入图像与预定图集匹配以识别出所关注标志。这些基于图集的自动归整方法受到匹配预定图集能力的限制,并且在图集和输入图像之间存在变化或偏差时无法良好执行。例如,当存在运动或变形时,基于图集的归整方法的准确性降低。由于训练数据质量较差,这最终影响受训神经网络的准确性和精确度。因此,在运动或变形很少的解剖结构区域诸如脑部,基于图集的自动归整方法表现得更好。它在解剖结构的其它区域中也不起作用,诸如膝部、腹部或心脏,在这些区域运动和变形使匹配固定图集变得困难。

考虑到前述内容,描述了一种不依赖于图集或手动归整的自动归整方法,并且该方法可用于训练本文所述的一个或多个神经网络。自动归整方法的一个实施方案利用由定位器或探查图像组成的一组图像以及基于相应定位器或探查图像采集的多组诊断图像。由于这些图像已用于诊断评估并且未被复制或重新扫描,因此应当理解,诊断图像包含所关注的解剖标志。因此,可在无需手动查看或干预或使用基于图集的匹配的情况下,确定相对于定位器或探查图像的成像扫描平面。这样,与相应诊断图像对应的输入定位器或探查图像将在期望结果被插入训练数据集中用于训练神经网络时自动指示该期望结果。对于大量数据,可高效精确地完成此操作。此外,在使用受训神经网络进行诊断成像操作期间,可以自动方式将通过成像操作生成的新数据合并成更大的不断増长的训练数据集,以自动扩充用于初始训练神经网络的训练数据集,从而不断改善神经网络的准确性和精确度。

自动归整训练方法的另一个实施方案是使用图像分割算法,该算法利用特征识别算法,诸如无监督机器学习所用的算法,以在用于训练神经网络的定位器或探查图像中生成期望结果。在这种情况下,期望结果是确定所关注的解剖标志存在与否。因此,可在无需手动干预或使用基于图集的匹配的情况下,确定相对于定位器或探查图像的成像扫描平面。这样,输入定位器或探查图像将在期望结果被插入训练数据集中用于训练神经网络时自动指示该期望结果。对于大量数据,可高效精确地完成此操作。此外,在使用受训神经网络进行诊断成像操作期间,可以自动方式将新数据合并成更大的不断増长的训练数据集,以自动扩充用于初始训练神经网络的训练数据集,从而不断改善神经网络的准确性和精确度。

考虑到相对于神经网络、合适成像系统的示例以及适用于本文所述某些神经网络的神经网络训练方法的前述讨论,图3示出了针对一个具体实施的高层面处理流的示例。在此例中,首先采集定位器图像200,并将它提供给受训定位器网络202(此处示出为定位器iq网络)进行处理。如本文所用,可采集定位器或探查图像200作为预采集步骤的一部分,在预采集步骤,可评估当前患者和扫描器的几何形状,以便确定可用于采集后续所关注诊断图像的相关图像扫描平面。

例如,在某些具体实施中,定位器或探查图像200可以是在通常被认为或估计是所关注的诊断区域中采集的一张或多张偏移平面图像,诸如三张或更多张单次激发快速自旋回波(ssfse)图像。由于定位器或探查图像200是在不确切了解当前采集几何结构所实际针对的区域的情况下(但期望针对所关注区域或该区域接近定位器或探查图像200中的至少一个)进行拍摄,因此定位器图像200中的一些或全部可能不示出所关注的解剖结构,可能为噪声,和/或可能处于相对于所关注的解剖区域的不良取向。同样,可在不确切了解相对于所关注区域的采集取向的情况下采集定位器或探查图像200。例如,对于脑部检查序列,用于脑部检查的三平面定位器或探查图像200可能是目标解剖结构,可能包含非脑部(即,非目标)解剖结构,和/或可能是噪声切片,因为定位器或探查图像采集对于解剖覆盖范围是不可见的。

如图3所示,在所示的示例中,将定位器或探查图像200提供给受训定位器网络202(此处示出为定位器iq网络)进行处理。在此示例中,定位器网络202识别与所关注解剖结构相关的数据(即,规划的解剖结构)和/或与所规划的图像采集相关联的解剖标志相关联的结构。具体地讲,定位器网络202可表征为:确定或识别出适合由下游解剖引擎(将在下文描述)处理的图像数据,以及识别用于后续标志检测和可视化的最佳图像(即,一个或多个切片)。

例如,由定位器网络202识别出的与所关注解剖结构和/或与解剖标志相关联的结构相关的数据用于标记相关的定位器图像切片(例如,脑部切片),以进行下游处理。在某些具体实施中,定位器网络202标记正确的定位器或探查图像200,以供后续网络进行诊断图像序列计划和参数化,诸如指示所关注的解剖结构或标志覆盖范围最大或最佳的定位器或探查图像200的使用情况。例如,在脊柱成像背景中,可自动标记具有最大脊柱覆盖范围的定位器或探查图像,以供下游网络使用。例如,转到图4,该图示出了为脑部扫描采集的偏移定位器或探查图像200(即,切片)的序列。在此示例中,前两张图像仅捕集了患者肩部(即,不在颅骨平面上),并且由于未捕集到所关注的解剖结构而被拒绝。相反,最后三张图像捕集了脑部的多个部分,由于示出了所关注的解剖结构,因此对于进一步处理是可接受的。

如果未识别出合适的数据或数据模糊,则可拒绝定位器或探查图像200或请求另外/另选的定位器或探查图像200,如图所示。例如,在存在金属的情况下,定位器或探查图像200可能表现出较大或大量金属相关的伪影,使得它们不适于进行扫描平面确定。例如,图5示出了一对定位器或探查图像200,该图像经采集用于脑部扫描,是所关注的解剖结构,但显示出大量伪影,使得图像对于进一步处理是不可接受的。此类定位器图像数据可能被拒绝并向用户提供反馈。类似地,对于膝关节成像背景,技术人员可能在检查设置期间提供错误信息(例如,当实际上首先扫描患者脚部时,指示头部第一取向)。因此,图像将在扫描器几何空间中正确表示,因此它们在用于位置和取向确定之前被标记。

在所示的示例中,定位器网络202向第二受训神经网络提供识别出的相关定位器图像集,第二受训神经网络在这里是指覆盖网络206或coveragenet,其经过训练,以识别相关解剖结构的总成像视场(即,fov的中心以及范围)。因此,在此示例中,第二受训神经网络确定所关注的特征在由第一受训网络进行识别或选择的定位器或探查图像200上的位置和覆盖范围。例如,覆盖网络206可处理一张或多张定位器或探查图像200(或来源于定位器或探查图像200的数据),以估计或预测与给定扫描的期望或所需覆盖范围对应的解剖遮蔽(例如,脑部遮蔽)。如本文所述,在一个具体实施中,覆盖网络206可通过预测解剖结构的符号距离变换来生成解剖遮蔽,然后通过形状编码器对解剖遮蔽设定阈值以提供二进制遮蔽。

可能要注意的是,覆盖网络206的输入可以是二维(2d)定位器或探查图像本身,或者另选地,可以将2d定位器图像堆栈视为三维(3d)体积或由覆盖网络206进行处理,或者来自3d体积采集的融合单张3d图像或2d图像堆栈可由定位器或探查图像生成并由覆盖网络206进行处理。应当理解,使用融合图像可实现在轴向、纵分和冠状平面的每一个上完成正交平面数据,然而在计算复杂性和处理时间増加方面需要权衡。应当理解,在覆盖网络处理3d输入的某些具体实施中,与2d输入相反,可采用与2d卷积神经网络相反的3d卷积神经网络。

在一个具体实施中,覆盖网络206(和下文所讨论的扫描平面网络208)可使用地面实况数据进行训练,地面实况数据通过如下方式生成:在高分辨率图像(例如,t1加权(t1w)mri体积)与对应的t1w图集图像之间执行非刚性映射,并将标签传送至对应的t1w和定位器图像。

通过举例的方式说明覆盖网络的操作,图6示出了:脑部探查图像,其中未确定脑部(即,所关注的解剖区域)的位置和覆盖范围(最左侧图像);以及由受训覆盖网络206处理的图像,其中已将该图像中的脑部位置和覆盖范围或程度(最右侧图像)确定为遮蔽220。基于这一点,可诸如基于遮蔽220来限定视场的中心以及相对于所关注解剖结构的覆盖范围(即,总成像视场)。另一个示例提供于图7中,其中膝部为所关注的解剖结构。在所示的示例中,识别出与所关注解剖结构的位置和范围对应的相关总成像视场(遮蔽220)。

基于识别出的成像视场,确定视场边界框的取向。在所示的示例中,取向由第三受训神经网络(本文中是指扫描平面网络208,在图3中示出为scanplanenet)确定,其基于经处理的定位器或探查图像200内的确定取向、定位和覆盖范围,通过将分析平面拟合到定位器或探查图像200上存在的一个或多个标志结构来输出一个或多个图像扫描平面或图像扫描平面参数。尽管图3所示的示例描述了由于处理覆盖网络208的输出的扫描平面网络208(例如,遮蔽图像220或该遮蔽的标记距离变换),但在实践中,可对扫描平面网络208进行训练,以直接定位器或探查图像200(或源自于定位器或探查图像200的图像或构造)上工作。

在某些具体实施中,扫描平面网络208通过以下方式生成一个或多个成像扫描平面224:将平面分割成二进制遮蔽和将平面拟合到遮蔽点云中的一者或多者,或者从定位器或探查图像200或先前确定的视场区域(即,前述示例中的阴影区域220)直接生成平面参数。因此,如本文所讨论的扫描平面网络208可输出:(1)后续扫描操作中要使用的一个或多个成像扫描平面(诸如呈拟合分割遮蔽的形式),和/或(2)限定或描述后续扫描操作中要使用的一个或多个此类成像扫描平面的参数。

此类确定的成像扫描平面224及其定位和取向参数的示例示于图8中,其中最顶部图像示出了所确定的用于脑部扫描的成像扫描平面,最底部图像示出了所确定的用于膝部扫描的成像扫描平面。

如上所述,在一个实施方案中,扫描平面网络208可使用地面实况数据进行训练,地面实况数据通过如下方式生成:在高分辨率图像(例如,t1加权(t1w)mri体积)与对应的t1w图集图像之间执行映射,并将标签传送至对应的t1w和定位器图像。为了阐明该训练方法的各个方面,在图9a至图9e中提供了地面实况图像的各种示例。在这些示例中,图9a和图9b将拟合的中间纵分平面遮蔽显示为标志结构226,其中分析平面224拟合到该标志结构;图9c将标记的前连合和后连合显示为标志结构226,其中分析平面224拟合到该标志结构;图9d将标记的视觉神经显示为标志结构226,其中分析平面224拟合到该标志结构;以及图9e将标记的海马体显示为标志结构226,其中分析平面224拟合到该标志结构。

值得注意的是,尽管用于拟合给定平面的标志结构可以在用于训练给定扫描平面网络208的地面实况图像中进行标记和注释,但在某些具体实施中,此类结构或标志在操作期间无法进行分割和/或标记,而是由受训扫描平面网络208基于整个或未分割的定位器图像来放置所关注的平面。这与在图像中明确分割和/或标记参考结构或标志作为图像扫描平面放置过程的一部分的常规技术相反。

如上所述,在其它实施方案中,可相对于训练扫描平面网络208(或本文所讨论的其它神经网络,诸如定位器网络202)采用自动归整方法。在此类实施方案中,自动归整方法利用由定位器或探查图像组成的一组图像以及基于相应定位器或探查图像200采集的多组诊断图像。在此方法中,可以假定用于诊断评估的图像包含所关注的解剖标志,并且假定临床规划是正确的。在实践中,可在诊断图像的标头(例如,dicom标头)获得规划。因此,训练对可由一张或多张定位器或探查图像以及使用定位器或探查图像200采集的诊断图像组成,图像扫描平面规划编码在图像文件的标头中。因此,可在无需手动查看或干预或使用基于图集的匹配的情况下,确定相对于定位器或探查图像200的成像扫描平面。

此类训练图像对(即,基于相应的定位器图像采集的定位器图像200和诊断图像228)的示例示于图10中。如上所述,在相对于定位器图像200(这里为轴向定位器图像)确定的已知图像扫描平面224采集诊断图像228(这里为高分辨率纵分临床图像),其中图像扫描平面规划可从诊断图像的标头或元数据获得。因此,可使用诊断图像228的标头图像信息自动确定相对于定位器图像的所关注的图像扫描平面。可随后使用二元平面遮蔽或图像扫描平面参数训练扫描平面网络208。

虽然前文提供了本发明所公开技术的各个方面的高层面概述,但下文讨论了某些具体实施以提供相对于上述网络的进一步示例和技术细节。

相对于定位器网络202,在一个具体实施中,定位器网络202可实现为具有一个或多个子网络层级或组成部分。例如,可将图像分层子网络作为定位器网络202的一部分来提供,以将定位器图像归类或分类成良好切片以及极端或不可接受切片,并且基于该归类或分类过程提供拒绝或反馈指示。

类似地,可将图像视场截断网络作为定位器网络202的一部分来提供。具体地讲,所研究的器官的视场覆盖范围在不同人群和/或不同年龄组中可能不同。为了解决这一问题,可采用视场截断网络自动确定是否截断定位器视场覆盖范围,使得定位器图像200匹配用于下游覆盖网络206和扫描平面网络208的训练数据。例如,在小儿脑部扫描背景下,儿科检查扫描可呈现出延伸到颈部的视场。在此类背景下,视场截断网络可沿上下(si)轴来截短定位器图像200,以对应于覆盖网络206和扫描平面网络208训练数据组群。例如,训练数据可为在si方向上具有从头部过渡到颈部的地面实况指示(由放射科医生的注解提供)的纵分颅内图像。在测试中,可使用受训网络预测si头部至颈部在测试纵分图像中的过渡点。在此类场景中,使用纵分图像训练的神经网络可用于确定纵分图像和冠状图像两者中的视场截断。可随后将由此类神经网络截短的所选定位器图像200传递到覆盖网络206和扫描平面网络208进行处理。

相对于定位器网络202执行的处理,对于给定扫描或检查类型,可建立有限数量的图像类别,并且可将提供的定位器或探查图像200归类到这些类别。例如,在脑部扫描的背景中,可将定位器或探查图像200分类成对应于以下项的类别:(1)轴向,前心室;(2)轴向,心室;(3)轴向,眼睛;(4)轴向,室下;(5)纵分,中间;(6)纵分,眼睛;(7)纵分,侧面;(8)冠状,心室;(9)冠状,非心室;(10)噪音;(11)无关切片;(12)部分脑部视场;(13)卷褶伪影;(14)金属伪影;(15)不是脑部。应当理解,基于其识别过程,可能拒绝某些定位器图像200,而对其它图像进行进一步处理。

对于对应于脑部主要解剖部分的分类,此类分类也可与脑部检查中通常参考的解剖标志相关。例如,中间纵分平面检测可使用轴向和冠状定位器上的心室切片进行,而轨道平面可通过使用包含眼睛的切片获得。如果此类相关切片无法获得或视场中的脑覆盖范围不完整(即,部分脑部视场),则可通知技术人员采取校正措施,诸如移动视场以获得相关的定位器数据或更改定位器协议等。

类似地,定位器或探查图像200可包含空白图像(例如,空气图像)或者具有不相关解剖结构的噪声图像或极端切片。此类不合适的图像被恰当地标记,并且从后续覆盖范围和取向估计过程中排除。

相对于覆盖网络206,如上所述,覆盖网络206可处理一张或多张定位器或探查图像200(或来源于定位器或探查图像200的数据),以估计或预测与给定扫描的期望或所需覆盖范围对应的解剖遮蔽(例如,脑部遮蔽)。考虑到这一点,图11提供了用于脑部视场的深度学习架构具体实施的示例,其中覆盖网络206确定定位器或探查图像切片200内的脑部中心和范围。在此示例中,网络利用基于unet架构的卷积神经网络(cnn)240。在此示例中,cnn240的输入是定位器或探查图像200,而输出是重新采样的脑部遮蔽的欧几里得符号距离变换(sdt)250。在此示例中,在步骤252处,设定sdt图像250的阈值(例如>1)以获得二进制遮蔽。

形状约束网络254优化该二进制遮蔽260,以尽可能紧密地匹配地面实况遮蔽。对于协议或解剖特征不匹配网络已针对处理进行训练的协议或解剖特征的情形,此形状编码可能是有帮助的。具体地讲,由形状约束网络254提供的形状编码可帮助解决训练数据与使用时所提供的数据之间的协议差异,并且可通过解决图像数据中的漏洞、虚假泄漏等帮助确保与预期的解剖形状(例如,头部形状)保持一致。

如上所述,在一个实施方案中,提供覆盖网络206的输出作为扫描平面网络108的输入,用以得到在后续诊断图像扫描采集中要使用的一个或多个图像扫描平面。为了便于解释,本文提供此类扫描平面网络208的一个具体实施的示例。

在一个具体实施中,诸如通过将不同平面投影到2d定位器或探查图像200,以在每张定位器图像上生成对应的2d平面线,扫描平面网络208确定相对于输入定位器或探查图像200中的一些或全部的一条或多条扫描平面线。随后诸如使用具有形状编码器的unet架构来分割投影线,以生成与对应于给定定位器或探查图像200上的投影平面的线对应的分割二进制遮蔽。可以理解,以此方式,投影线被分割,而不分割下面的解剖结构,即,没有明确地分割标志或其它执行的解剖结构。

在此示例中,可随后使用与给定定位器图像上的投影线对应的分割二进制遮蔽来拟合分析平面。例如,可根据以下条件使用投影线来拟合分析平面:ax+by+cz+d=0,其将分割线拟合到平面方程。尽管以举例的方式(与覆盖网络206一样)引用了定位器或探查图像200,但扫描平面网络208的输入可以是2d定位器图像本身、被视为3d体积的2d图像切片堆栈的集合或融合3d图像体积。

如本文所述,可针对每个解剖标志训练不同的扫描平面网络208,诸如将前连合和后连合作为标志结构的一个网络、将视觉神经作为标志结构的一个网络、将海马体作为标志结构的一个网络、将中间纵分平面作为标志结构的一个网络等等。

该方法将前连合和后连合(acpc)用作标志结构的情况的示例示于图12中。地面实况扫描平面放置示于定位器图像的顶行,而使用如本文所论的受训扫描平面网络208估计的扫描计划放置示于对应图像的底行。在此示例中,将acpc图像扫描平面280投影到不同纵分切片(表示为a至e)。理想情况是,使用定位器图像c(即,中间定位器图像切片)来预测acpc图像扫描平面280,因为此定位器图像包含ac和pc点。一些定位器图像(诸如a、b和e定位器图像)不包含与给定扫描平面(诸如此示例中对应于acpc的平面280)对应的必要解剖标志。

在当前所述的管道中,定位器网络202预测此切片(即,定位器图像c)最适合进行acpc扫描平面放置,并且使用此定位器图像预测扫描平面280。然而,如果此定位器图像损坏,诸如由于病理学而损坏,则定位器网络202将指示这种情况,并且acpc扫描平面预测仍可使用其它相关的定位器图像来执行,即使其它定位器图像可能不包含确切的解剖标志点。实际上,与明确分割标志解剖结构相比,本公开的一个优点在于能够训练扫描平面网络208将投影图像扫描平面分割,而不需要给定定位器图像上明确存在解剖参考(即,标志)结构。对于所考虑的结构可能改变(例如,病变、萎缩等)或者由于部分体积效应而缺失或被遮挡的病理情况,这一点可能十分重要。然而,在此类情况下,即使相关联的标志解剖结构缺失或不规则,本发明所公开的方法仍将可靠地预测图像扫描平面。

虽然前述示例描述了使用受训扫描平面网络208生成特定图像扫描平面的情况,但在另选的具体实施中,可训练给定扫描平面网络208以同时预测多个平面。此类具体实施的示例示于图13中,其中多个所关注图像扫描平面(此处为acpc图像扫描平面280、视觉神经图像扫描平面282、内耳道(iac)图像扫描平面284和海马体图像扫描平面286)的地面实况扫描平面放置示于定位器图像的顶行,而如本文所论的使用受训扫描平面网络208估计的扫描计划放置示于对应图像的底行的最左侧图像,而由扫描平面网络208预测的同一扫描平面的预测放置示于右侧。

考虑到前述示例涉及放置和显示用于随后扫描操作的一个或多个成像扫描平面,在另选的实施方案中,可相反输出用于定义或描述一个或多个此类成像扫描平面的参数。一种此类方法的示例示于图14中,其中使用扫描平面网络208(例如,卷积神经网络)直接预测一个或多个图像扫描平面的平面参数310(例如,相对于原点的平面距离、平面法向等)。如在前述示例中一样,受训扫描平面网络208的输入可以是一张或多张定位器图像、被视为集合的此类定位器或探查图像的堆栈302、或通过此类定位器或探查图像200生成的融合图像304(或者,未示出,遮蔽220或遮蔽220的符号距离变换)。与前述实施方案一样,扫描平面网络208直接处理一张或多张输入图像,而不分割解剖标志。

虽然前述示例涉及多种用于使用定位器或探查图像来估计此类平面的图像扫描平面或参数的方法,但在另一个实施方案中,相反(或另外)使用定位器或探查图像200来评估和修正mri平面规划。具体地讲,在此方法中,目标是在采集实际数据之前(即,在诊断图像采集之前),确定执行当前的图像扫描平面规划。可以理解,通常使用一组2d定位器或探查图像200或者低分辨率3d定位器来完成图像扫描平面规划。在这两种情况下,在使用手动或自动方法执行图像扫描平面规划之后,用户必须等待,直至基于规划的图像扫描平面来执行诊断图像采集,以确定图像扫描平面规划在将标志区域可视化为连续结构的能力方面的功效。这与更精细的结构(例如,脑部的视觉神经、膝部的韧带等)尤其相关。

考虑到这一点,根据本公开,提出一种基于深度学习的框架,以有利于在执行诊断图像或主图像采集之前所关注解剖结构的前瞻性可视化及其连续性。在一个实施方案中,使用一张或多张定位器或探查图像200生成合成高分辨率图像。使用基于一张或多张定位器或探查图像200规划的图像扫描平面,可使用合成图像在重新格式化的图像上为技术人员提供所关注解剖结构的实时可视化绘制。技术人员可随后通过如下方式修改或修正所规划的图像扫描平面:(1)用重新格式化指导信息手动操作;(2)使用重新格式化的合成高分辨率图像的显示调色板选择最相关的平面规划;或(3)使用不同平面规划参数重新格式化图像并找到标志平面的最匹配图像,从而自动确定正确的平面规划。这样,技术人员不必等待采集更高分辨率数据(即,诊断图像)用于确定图像扫描平面规划的功效,这可根据将所关注的解剖结构或标志可视化为最终成像体积中的连续结构的能力来定义。相反,扫描平面规划分析引擎可前瞻性地作出这些改变。

这样,通过用合成的重新格式化图像前瞻性地可视化所关注的解剖结构,技术人员可减少或消除不必要的重复图像检查并且在不同患者的扫描中引入一致性。对于算法开发者,该技术可捕集技术人员的偏好,诸如用于图像扫描平面预测以及相对于重新格式化的调色板图像的预测模型。

考虑到这一点,针对所提议的方法的工作流示于图15中。如此示例所示,采集一组定位器或探查图像数据340(2d三平面定位器或探查图像或3d低分辨率图像),可利用该组图像数据规划所关注的标志平面。如果将2d三平面定位器或探查图像用作定位器或探查数据340,则此类图像可以在平面内0.5至1.0mm,厚度为10至15mm,并且使用单次激发快速自旋回波(ssfse)或快速梯度回波(fgre)协议进行采集。如果将3d低分辨率图像用作定位器或探查图像数据340,则此类图像可以在平面内1.5至2.5mm,厚度为3至5mm。如果采集了2d三平面定位器或探查图像,则可使用插值法将多平面定位器结合到物理空间(即,mm空间)中的单个图像体积里,以生成可用作定位器或探查数据340的融合3d图像。

平面规划342可以手动或通过自动方法使用定位器或探查数据340来获得。如本文所讨论,本发明所公开的技术能够在采集实际(例如,高分辨率、诊断)图像数据之前确定是否执行平面规划342。

在所示的具体实施中,使用基于深度学习的算法诸如受训神经网络(即,作为高分辨率编码器344),以通过所采集的定位器或探查图像数据340生成更高分辨率的三维(3d)合成数据350。在一个实施方案中,高分辨率编码器344是经过训练的深度学习模型,使用较低分辨率的定位器或探查数据340作为输入,以生成较高分辨率的成像数据350(通常为3dt1加权、t2加权或各向同性分辨率为0.5至2mm的流体衰减反转恢复(flair)数据)的形式的输出数据。即,对深度学习超分辨率架构进行训练,以映射低分辨率定位器或探查图像数据340以生成合成的较高分辨率图像350。

高分辨率合成数据350一旦生成,即可用于前瞻性地确定使用平面规划342采集的成像数据的保真度。具体地讲,高分辨率合成图像350可使用平面规划342参数进行重新格式化,以生成所关注结构的合成图像。可精简生成结构图像的能力,以预测合适的图像扫描平面来可视化所关注的结构。

在所示的示例流程中,技术人员示出了(步骤360)规划平面342及其相关联的重新格式化的合成成像体积。如果技术人员发现该平面规划342适于研究,则启动扫描(决策框362)。如果技术人员发现默认平面规划342不合适(决策框364),则可向技术人员提供一个或多个选项。

第一可能选项370可以是允许技术人员手动改变平面规划342,诸如通过图形界面或文本界面。在一个此类实施方案中,技术人员可参考重新格式化的高分辨率合成图像350,技术人员可在整个体积中查看这些图像。

记录了技术人员操作以及技术人员所作修正的信息可用于进一步训练或定制神经网络以包含新的偏好。这样,可针对具体的技术人员、放射科医师或成像站点定制或个性化特定神经网络,并且使用另外的数据来连续学习,以自动方式再训练神经网络而无需手动干预或基于图集归整新输入数据。

转到图16,该图示出了所关注的图像扫描平面是视觉神经平面282的示例。基于定位器图像200(此处提供为定位器数据340)预测的视觉神经平面282作为过程的输入而示出。基于深度学习的高分辨率编码器344处理定位器或探查图像200,以利用预测的视觉神经扫描平面来生成合成的高分辨率图像数据350。合成的高分辨率图像数据350基于预测平面进行重新格式化,以生成技术人员可在不同切片上查看的重新格式化的高分辨率合成图像380。查看重新格式化的合成图像380之后,技术人员可手动调节图像扫描平面规划342并实时可视化合成的高分辨率图像数据中的结果。基于该查看,可确定修改的平面规划,该修改的平面规划在重新格式化的图像中提供连续的标志解剖结构可视化,并且该修改的平面规划可用于采集所关注的高分辨率诊断图像384。

另选地,第二可能选项372是显示反映扫描平面参数化过程中的潜在变化的重新格式化合成图像的调色板,以供技术人员从中进行选择。转到图17,在所示的示例中,在合成高分辨率图像数据350、380中调制规划平面,以创建与图像扫描平面调制中的每一次相关联的重新格式化高分辨率合成图像的调色板400。在所示的示例中,图像的顶行表示高分辨率合成图像数据350,图像的底行示出了供技术人员查看的重新格式化轴向平面合成数据。尽管图17针对每次调制仅示出一个图像/切片,以便有利于说明,但在实践中,可针对每次重新格式化显示多个切片,以允许基于查看整个体积进行选择。

在一个此类实施方案中,可基于沿一个或多个轴(诸如平面内旋转)改变所规划的平面参数或偏移中心点坐标来调制图像扫描平面。另选地,调色板400中示出的平面之一可基于与一个或多个其它标志的关系(诸如,基于先验统计)。例如,在脑部,视觉神经平面282相对于ac-pc平面形成约10度的夹角。在该具体实施中,技术人员从调色板400中选择一张或多张最合适的图像,诸如最佳连续地显示所关注解剖标志的一张或多张图像。基于从调色板400中进行选择,可确定修改的平面规划,并且可使用该修改的平面规划采集所关注的高分辨率诊断图像384。

另选地,第三可能选项374(如图18所示)基于前述实施方案的多个方面而创建,并且按上述方式自动调节当前平面规划,以生成反映扫描平面参数化过程中的潜在变化的重新格式化合成图像的调色板。然而,不是由技术人员来查看调色板400,而是使用受训选择神经网络(深度学习引擎410)来评估调色板400并且确定匹配所关注结构的重新格式化图像数据(即,所选的重新格式化数据412)。用于匹配所选重新格式化数据412的适当平面规划用于替代或修改平面规划342(如定位器图像200上的更新后平面规划416所示),便于后续采集诊断或实际高分辨率图像数据。

转回图15,相对于接受或修改平面规划342的用户或系统选择可存储在诸如数据库中(步骤376),并且可用于理解站点偏好和/或更新模型以提升预测能力和提高效率。

本发明的技术效果包括将临床扫描平面规划转换成算法有利型扫描平面规划。一个优点是能够在定位器图像上规划更精细的标志的能力,这先前需要使用更高分辨率图像,从而导致mri扫描平面规划明显减少。此外,提供一致的扫描平面的能力可缩短读取扫描的时间,尤其是在纵向跟随患者时。目前缺乏经过培训的技术人员意味着,在诸如mri的多平面扫描启用模式下进行检查设置是一项耗时的任务,并且导致序列内、测试内和患者内间隙时间显著増加。最后,本发明的某些实施方案的技术效果是确定扫描平面或扫描平面的参数的能力,而无需明确分割或识别参考解剖标志结构。相反,可使用受训神经网络(或其它基于深度学习的构造)来处理整张图像,以确定扫描平面或其参数,而无需识别或分割参考标志解剖结构。

该书面描述使用示例来公开本发明,包括最佳模式,并且还使本领域技术人员能够实践本发明,包括制造和使用任何设备或系统以及执行任何包含的方法。本发明的专利范围由权利要求书限定,并且可包括本领域技术人员想到的其它示例。如果此类其它示例具有与权利要求书的字面语言没有区别的结构元素,或者如果它们包括与权利要求书的字面语言具有微小差别的等效结构元素,则此类其它示例旨在落入权利要求书的范围内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1