用于基于雷达的应用的雷达图像整形器的制作方法

文档序号:21788252发布日期:2020-08-07 20:38阅读:183来源:国知局
用于基于雷达的应用的雷达图像整形器的制作方法



背景技术:

能够使用可跟踪的控制器来与许多应用交互,所述可跟踪的控制器允许应用感测控制器的位置和运动。游戏控制器、用于电视和其它媒体设备的遥控器、手写笔及其它控制器允许用户使用用控制器做出的手势来玩游戏,选择和改变广播节目,操纵和创建内容,并且执行无数的其它功能。随着能够被以这种方式控制的应用的数目和种类增加,与控制器一起使用的运动的数目和复杂性也增加,这对用户来说可能是令人沮丧的。常规的控制器使用能够由正被控制的设备中的相机跟踪的目标或能够向正被控制的设备提供位置信息的惯性测量单元(imu)。常常包括它们自己的电子装置(诸如处理器和可选控件)的这些控制器能够帮助提供这种附加功能性中的一些,但是还要求它们自己的电源。例如,将游戏控制器的模式从转向机制改变为武器并返回或者将手写笔从内容创建模式(例如,绘制线或改变线的颜色)改变为编辑模式(例如,用于通过移动线或对象来操纵内容)可能要求在控制器或另一设备上键入命令的繁琐过程。因此,利用由可跟踪的控制器提供的灵活性和真实性可能是不便且令人沮丧的,并且可能无法实现电子设备和应用的全部潜力。



技术实现要素:

本文献描述了能够实现用于基于雷达的应用的雷达图像整形器的技术和系统。所述技术和系统使用雷达场来使得电子设备能够准确地确定所述雷达场中的对象的特性配置(所述对象在特定时间的定位、定向、速度或方向)。所述对象的特性配置是通过检测被包括在所述对象中的雷达图像整形器的雷达标记(或雷达横截面)来确定的。所述雷达图像整形器是由指定材料制成并具有具体形状的组件,所述具体形状当被所述雷达场照射时产生已知标记。使用这些技术,所述电子设备能够确定所述对象的特性配置,这允许所述对象用于用手势和其它基于位置的技术来与所述电子设备交互。因为所述雷达图像整形器能够实现否则无源的对象来控制所述电子设备上的应用,所以用户可以具有采用不要求附加组件或电池的丰富的手势和控件库的交互方法。

下述方面包括一种电子设备,所述电子设备包括雷达系统、一个或多个计算机处理器和一个或多个计算机可读介质。所述雷达系统至少部分地用硬件实现并提供雷达场。所述雷达系统还感测来自所述雷达场中的所述对象的反射并且对来自所述雷达场中的所述对象的所述反射进行分析。所述雷达系统还基于对所述反射的分析来提供雷达数据。所述一个或多个计算机可读介质包括存储的指令,所述存储的指令能够由所述一个或多个计算机处理器执行以实现雷达标记管理器。所述雷达标记管理器基于所述雷达数据的第一子集来检测所述雷达场中的所述对象的雷达图像整形器的雷达标记。所述雷达标记管理器还将所检测到的雷达标记与和所述雷达图像整形器的特性配置相对应的基准雷达标记相比较,并且基于所述比较来确定所检测到的雷达标记与所述基准雷达标记匹配。响应于确定所检测到的雷达标记与所述基准雷达标记匹配,所述雷达标记管理器基于与所匹配的基准雷达标记相对应的所述雷达图像整形器的特性配置来确定所述雷达场中的所述对象的特性配置。

下述方面还包括一种由包括雷达系统的电子设备实现的方法。所述方法包括:由所述雷达系统提供雷达场;以及由所述雷达系统感测来自所述雷达场中的对象的反射。所述方法还包括:对来自所述雷达场中的所述对象的所述反射进行分析;以及基于对所述反射的分析来提供雷达数据。所述方法附加地包括:基于所述雷达数据的第一子集来检测所述对象的雷达图像整形器的雷达标记;以及将所检测到的雷达标记与和所述雷达图像整形器的特性配置相对应的基准雷达标记相比较。所述方法还包括:基于所述比较来确定所检测到的雷达标记与所述基准雷达标记匹配。所述方法附加地包括:响应于确定所检测到的雷达标记与所述基准雷达标记匹配,基于与所匹配的基准雷达标记相对应的所述雷达图像整形器的特性配置来确定所述雷达场中的所述对象的特性配置。

下述方面包括一种控制器,包括外壳和与所述外壳集成在一起的雷达图像整形器。所述雷达图像整形器被构造成提供可由雷达系统检测的雷达标记,并且所述雷达标记有效使得所述雷达系统能够确定所述外壳的特性配置。

下述方面还包括一种系统,所述系统包括电子设备,所述电子设备包括第一手段或与第一手段相关联。所述第一手段是用于提供雷达场、感测来自所述雷达场中的对象的反射、对来自所述雷达场中的所述对象的所述反射进行分析并且基于对所述反射的分析来提供雷达数据的手段。所述系统还包括第二手段。所述第二手段是用于基于所述雷达数据的第一子集来检测所述雷达场中的所述对象的雷达图像整形器的雷达标记的手段。所述第二手段还将所检测到的雷达标记与和所述雷达图像整形器的特性配置相对应的基准雷达标记相比较并且基于所述比较来确定所述雷达标记与所述基准雷达标记匹配。响应于确定所述雷达标记与所述基准雷达标记匹配,所述第二手段基于与所匹配的基准雷达标记相对应的所述雷达图像整形器的特性配置来确定所述雷达场中的所述对象的特性配置。

下述方面还包括一种系统,所述系统包括电子设备和控制器,例如手写笔,其中,所述电子设备实现雷达标记管理器,所述雷达标记管理器被特别地构造成基于所述雷达图像整形器的特性配置来确定雷达场中的所述控制器的特性配置,并且其中,所述控制器包括集成所述雷达图像整形器的外壳。

通常,能够将所提出的电子设备的各方面与所提出的方法、所提出的控制器和所提出的系统的实施例组合。

本发明内容被提供来引入关于将在下面在具体实施方式和附图中进一步描述的用于基于雷达的应用的雷达图像整形器的简化构思。本发明内容不旨在识别所要求保护的主题的必要特征,它也不意在供在确定所要求保护的主题的范围时使用。

附图说明

在本文献中参考以下附图描述用于基于雷达的应用的雷达图像整形器的一个或多个方面的细节。相同的标号在附图中自始至终用于引用相似的特征和组件:

图1图示能够实现其中能够实现用于基于雷达的应用的雷达图像整形器的技术的示例环境。

图2图示能够实现用于基于雷达的应用的雷达图像整形器的图1的电子设备的示例实施方式。

图3图示图2的雷达系统的示例实施方式。

图4图示用于图3的雷达系统的接收天线元件的示例布置。

图5图示图2的雷达系统的示例实施方式的附加细节。

图6图示能够由图2的雷达系统实现的示例方案。

图7和图8描绘能够用于能够实现用于基于雷达的应用的雷达图像整形器的雷达图像整形器的示例实施方式。

图9和图10描绘能够实现用于基于雷达的应用的雷达图像整形器的示例方法。

图11-13图示能够实现用于基于雷达的应用的雷达图像整形器的附加细节的对象和设备的示例实施方式。

图14图示示例计算系统的各种组件,所述示例计算系统能够作为要实现的如参考图1至图13所描述的任何类型的客户端、服务器和/或电子设备被实现,或者在所述示例计算系统中可以实现能够实现用于基于雷达的应用的雷达图像整形器的技术。

具体实施方式

概要

本文献描述了能够实现用于基于雷达的应用的雷达图像整形器的技术和系统。如指出的,使用可跟踪的控制器可能是方便的,但是对要求多种手势或具有多种模式的复杂任务来说可能是令人沮丧的。另外,即便当基于运动的控制器是具有它自己的组件和电源的有源设备时,改变模式或交互方法也可能是不便的,这可能令用户感到沮丧,尤其是当在诸如内容创建或游戏的创造性或竞争性环境中工作时。因此,由于输入设备的限制,用户可能无法实现其应用的全部潜力。所描述的技术和系统利用对象(诸如控制器)中的雷达图像整形器,该雷达图像整形器提供能够被雷达系统检测到以准确地确定对象的特性配置的唯一雷达反射。在这种情况下,准确性是增加的精细度、增加的真实符合性或增加的精细度和增加的真实符合性两者。这些技术能够实现用控制器生成增加量的手势和手势组合。附加地,所描述的技术在不用向控制器添加电子组件或电源的情况下是有效的。因为雷达系统能够准确地确定手势并改进系统的性能,同时减少组件计数和功耗,所以交互可能是更方便且不太令人沮丧的。另外,雷达系统能够使用其它雷达数据(例如,方位角和距离数据)来确定雷达图像整形器的三维(3d)位置以及移动和加速度,特别是如果在对象中包括至少两个雷达图像整形器的话。

考虑包括一个或多个雷达图像整形器的控制器,诸如游戏控制器。该控制器能够与包括雷达标记管理器和雷达系统的游戏机或其它电子设备一起使用,所述雷达系统能够用于在电子设备附近提供雷达场。雷达场能够检测雷达图像整形器的雷达标记,并且基于该雷达标记,确定控制器的特性配置。例如,用于玩飞机飞行游戏或模拟器的游戏控制器可以在控制器的各端处包括雷达图像整形器。游戏机中的雷达系统能够检测来自雷达图像整形器的雷达反射(例如,雷达图像整形器的雷达“标记”)并且将所检测到的标记与各种雷达图像整形器的已知参考标记相比较。该比较允许雷达系统确定雷达图像整形器的特性配置,从而确定控制器的特性配置。另外,雷达系统能够使用其它雷达数据(例如,方位角和距离数据)来确定雷达图像整形器的三维(3d)位置以及移动和加速度。以这种方式,能够使用没有电子组件并且不要求专用电源的控制器来做出能够控制游戏或其它应用的复杂手势。

一些常规的控制器可以使用相机、加速度计或惯性传感器来确定控制器的特性配置。例如,控制器可以包括能够跟踪控制器的移动并将信息发送到游戏机的电动传感器和通信接口。在其它情况下,常规的控制器可以包括能够通过连接到游戏机的相机来跟踪的球形或其它对象。然而,这些常规的技术常常在确定位置(尤其是3d位置)时不太准确,并且通常要求附加组件和电源两者,这增加成本和不便(例如,更换电池),并且可以导致可靠性问题(例如,组件破裂、损坏或磨损)。另外,在此示例中,常规的游戏机它本身还要求可以引入类似挑战的附加组件(例如,相机和通信接口)。因此,常规的技术可以使用更多的功率并潜在地提供较低质量的用户体验。

相比之下,所描述的系统和技术能够在降低功耗和维护成本的同时改进用户在若干区域中的体验和可用性。例如,在上述示例中,控制器可以是“无源”控制器(没有内部电子装置或电动组件),所述“无源”控制器能够被具有与相机比使用显著更少的功率的雷达系统的游戏机准确地检测到。雷达系统能够使用控制器中的雷达图像整形器的雷达标记来准确地确定控制器的特性配置或移动。在本文献中,参考对象,术语“特性配置”可以指代对象在特定时间的定位、定向、速度或方向中的任一个或组合。例如,对象的定位可以是对象参考雷达系统的绝对位置,诸如离雷达系统的距离和3d空间中的位置(例如,倾斜范围、方位角和仰角)。附加地,定向可以是对象参考雷达系统且相对于对象的一个或多个特征(例如,对象如何被“指向”雷达系统,诸如具有面对雷达系统的对象的特定特征或表面)的位置。速度可以包括对象的绝对速度或相对于雷达系统的速度。方向可以指代对象朝向或远离雷达系统的移动。

特性配置还可以包括那些值中的任一个或全部在一段时间期间的变化。例如,对象的特性配置的变化可以包括绝对或相对速度的变化、对象与雷达系统之间的距离的变化(例如,对象是更靠近还是更远离雷达系统)、定向的变化(诸如对象朝向或远离雷达系统转动或绕轴线旋转)或方向的变化。

以这种方式,所描述的技术和系统给控制器和游戏系统提供较高质量的用户体验。用户能够享受由控制器提供的优点和方便,同时雷达标记管理器和雷达系统提供附加灵活性和增强功能性,而没有过度的功耗。附加地,因为用户的视频图像不是必要的,所以使用雷达系统来检测对象的特性配置能够提供增加的隐私性和安全性。另外,控制器和游戏机它本身的功耗能够大大少于一些常规的技术,所述常规的技术可以使用始终开启相机(或其它传感器或传感器的组合)来控制或检测控制器的位置和运动。

这些只是如何可以使用所描述的技术和设备来实现用于基于雷达的应用的雷达图像整形器的几个示例。贯穿本文献描述其它示例及其实施方式。本文献现在转向示例环境,此后描述示例系统、装置、方法和组件。

工作环境

图1图示能够实现其中能够实现用于基于雷达的应用的雷达图像整形器的技术的示例环境100。示例环境100包括电子设备102,其包括雷达系统104、雷达标记管理器106(标记管理器106)和标记库108或与之相关联。

在示例环境100中,雷达系统104通过如在下面参考图3至图6所描述的那样发射一个或多个雷达信号或波形来提供雷达场110。雷达场110是空间的体积,雷达系统104能够从中检测雷达信号和波形的反射(例如,从空间的体积中的对象反射的雷达信号和波形)。雷达系统104还使得电子设备102或另一电子设备能够感测并分析来自雷达场110中的对象112的反射。雷达系统104的一些实施方式当被应用在智能电话(诸如电子设备102)(对智能电话来说存在许多问题,诸如对低功率的需要、对处理效率的需要、天线元件的间距和布局方面的限制和其它问题)的上下文中时是特别有利的,并且在期望精细手势的雷达检测的智能电话的特定上下文中是甚至更有利的。尽管实施例在所描述的要求精细雷达检测的手势的智能电话的上下文中是特别有利的,但是应当领会的是,本发明的特征和优点的适用性不一定如此受限制,并且涉及其它类型的电子设备的其它实施例也可以在本教导的范围内。

对象112可以是各种对象中的任一个。在一些情况下,对象112可以是雷达系统104能够从中感测并分析雷达反射的对象,诸如木材、塑料、金属、织物、人体或身体部位(例如,电子设备102的用户的脚、手或手指)。如图1中所示,对象112是手写笔。对象112包括被附接到对象112的雷达图像整形器114。雷达图像整形器可以与对象112集成在一起,如图1中所示,或者以可移动的方式附接到对象112。基于对反射的分析,雷达系统104能够提供雷达数据,所述雷达数据包括与雷达场110以及来自对象112和雷达图像整形器114的反射相关联的各种类型的信息,如参考图3至图6所描述的(例如,雷达系统104可以将雷达数据传递给其它实体,诸如标记管理器106)。

应该注意的是,基于经感测和分析的来自雷达场110中的对象112的反射,可以随着时间的推移而连续地或周期性地提供雷达数据。对象112的位置能够随着时间的推移而改变(例如,对象112可以在雷达场110内移动),并且雷达数据因此能够与已改变的位置、反射和分析相对应地随着时间的推移而变化。因为雷达数据可以随着时间的推移而变化,所以雷达系统104可以提供包括与不同时间段相对应的雷达数据的一个或多个子集的雷达数据。例如,雷达系统104可以提供与第一时间段相对应的雷达数据的第一子集、与第二时间段相对应的雷达数据的第二子集等。

雷达图像整形器114是有可辨识的雷达标记(例如,较大的雷达横截面)的组件。例如,雷达图像整形器114可以包括一个或多个角形反射器(例如,由反射雷达信号的两个或三个垂直相交的平坦表面制成的形状)。雷达图像整形器114的雷达标记可以取决于其相对于雷达系统104的特性配置而变化,这能够允许雷达系统104确定对象112的特性配置。参考图7和图8描述雷达图像整形器114的附加细节。

标记管理器106使得用户能够与电子设备102的各种功能交互或者控制电子设备102的各种功能(例如,玩游戏,操作应用或其它程序,并且控制电子设备102的特征)。例如,标记管理器106能够使用雷达数据的一个或多个子集来检测雷达图像整形器114的雷达标记。如指出的,雷达图像整形器114可以与雷达场中的对象集成在一起或者以可移除的方式附接。标记管理器106能够将所检测到的雷达标记与和雷达图像整形器的特性配置相对应的基准雷达标记相比较。

例如,标记管理器106可以通过使用雷达数据的一个或多个子集来将所检测到的雷达标记与基准雷达标记相比较以确定雷达图像整形器114的各种特征(例如,与特定材料、形状、角形、边缘、表面或其组合相关联的雷达数据的特性)。能够对所检测到的特征进行分析以确定与基准雷达标记的对应已知特征的匹配。在一些实施方式中,雷达标记管理器可以将所检测到的雷达标记与和雷达图像整形器114的不同特性配置相对应的多个基准雷达标记相比较。例如,标记管理器106可以将所检测到的雷达标记与存储在标记库108中的多个基准雷达标记相比较。

标记库108是能够存储基准雷达标记和其它数据(诸如对象112的与雷达图像整形器114的特性配置相对应的特性配置)的存储器设备。标记库108可以是能够被电子设备102的其它组件(诸如标记管理器106)访问和使用的任何适合种类的存储器。标记库108可以是标记管理器106的一部分,如图1中所示。在其它实施方式中,标记库108可以是电子设备102的一部分,但是与标记管理器106分离,或者远离电子设备102。

基于所检测到的雷达标记与基准雷达标记之间的比较,标记管理器106能够确定所检测到的雷达标记与基准雷达标记匹配。响应于雷达标记与基准雷达标记匹配的确定,标记管理器106能够基于与匹配的基准雷达标记相对应的雷达图像整形器114的特性配置来确定雷达场中的对象的特性配置。考虑标记管理器106确定雷达图像整形器114参考电子设备102的特定特性配置的示例。在此示例中,标记管理器106还能够通过访问存储数据的标记库108(或另一源)来确定对象112的特性配置,所述数据包括对象112的与雷达图像整形器114的特性配置相对应的特性配置。

以这种方式,标记管理器106能够确定对象112的特性配置,这使得用户能够与电子设备102交互或者控制电子设备102。例如,标记管理器106能够如上所述确定对象112的特性配置。如指出的,确定对象112的特性配置可以包括确定对象112的特性配置的各种不同方面中的一个或多个,包括这些方面中的任一个的组合。这些方面可以包括例如对象112参考电子设备102的绝对位置、对象112离电子设备102的距离、对象112的速度、对象112参考电子设备102的位置或距离的变化(例如,对象112正在更靠近还是远离电子设备102移动,朝向还是远离电子设备102转动,绕轴线旋转等)或对象112的速度的变化。

标记管理器106还能够使用雷达数据的一个或多个子集来确定对象112的特性配置的变化(例如,通过使用雷达数据来确定对象112随着时间的推移的特性配置)。基于对象112的特性配置的变化,标记管理器106能够确定通过对象112做出的手势。标记管理器106然后能够(例如,使用三维(3d)手势库,诸如下述3d手势模块116)确定电子设备的与手势相对应的功能并且使电子设备102提供与手势相对应的功能。

考虑对象112是包括一个或多个雷达图像整形器114的飞行模拟器游戏控制器的示例。当抓住控制器的用户做出要将模拟器向上和向左转动的手势(例如,将控制器朝向用户移动并使控制器逆时针旋转的手势)时。标记管理器106能够通过如上所述确定雷达图像整形器114的特性配置来确定游戏控制器在手势开始时的特性配置,并且继续通过手势的持续时间来确定控制器的特性配置。这允许标记管理器106使用对手势的(或对多个手势的)确定以使得用户能够将控制器与电子设备102一起使用来操作飞行模拟器。

在一些实施方式中,电子设备102还可以包括一个或多个其它模块、接口或系统或者与之相关联。如图1中所示,电子设备102包括3d手势模块116,该3d手势模块116能够存储与基于雷达数据来确定3d手势有关的信息和与和3d手势相对应的动作有关的信息两者。如图1中所示,3d手势模块116被描绘为标记管理器106的一部分。然而,在其它实施方式中,3d手势模块116可以是可以为电子设备102的一部分或者与电子设备102分离的单独的实体。

3d手势可以是用对象112做出的各种手势中的任一种,包括朝向或远离电子设备102的移动、左右移动、对象112绕轴线的旋转等。在一些情况下,对象112可以是穿戴在用户的身体上(例如,在手指或手腕上)的对象,并且雷达标记管理器能够用于检测由用户做出的3d手势,诸如通过沿着水平方向(例如,从电子设备102的左侧到电子设备102的右侧)在电子设备102上方移动手而做出的滚动手势、通过用户的手臂绕肘部旋转而做出的挥动手势、通过沿着垂直方向(例如,从电子设备102的底侧到电子设备102的顶侧)在电子设备102上方移动用户的手而做出的推手势。还可以做出其它类型的3d手势或动作,诸如通过将用户的手朝向电子设备102移动而做出的到达手势、通过使用户的手的手指卷曲以握持假想门把手并以顺时针或逆时针方式旋转来模仿使假想门把手转动的动作而做出的旋钮转动手势和通过一起摩擦拇指和至少一个其它手指而做出的转轴扭转手势。这些示例手势类型中的每一种可以由雷达系统104检测。

基于雷达数据,或者基于雷达数据的一个或多个子集,标记管理器106能够检测由对象112做出的3d手势,并且例如,使用3d手势模块116)确定(手势与电子设备102的特定功能或动作相对应。特定功能或动作可以是各种功能或动作中的任一种,诸如与应用交互(例如,浏览、选择或打开应用),控制游戏、媒体播放器或另一应用的用户界面等。以这种方式,雷达系统104能够提供对电子设备102的无接触控制。在下面附加详细地描述示例性3d手势和对应的动作。

如参考图3至图6所描述的,雷达系统104能够使用雷达场110来以对于手势辨识能够实现高分辨率和准确性的方式感测并分析来自雷达场110中的对象的反射。另外,3d手势可以是预定义的、从列表中选择的或定制的(例如,用户可以与标记管理器106和雷达系统104交互以定义如与特定动作相对应的唯一手势或手势的组合)。

更详细地,考虑图2,图2图示能够实现用于基于雷达的应用的雷达图像整形器的电子设备102(包括雷达系统104、标记管理器106、标记库108和可选地3d手势模块116)的示例实施方式200。图2的电子设备102被图示有各种示例设备,包括智能电话102-1、手写笔102-2、膝上型电脑102-3、台式计算机102-4、计算手表102-5、平板102-6、游戏系统102-7、家庭自动化和控制系统102-8及遥控器102-9。电子设备102还能够包括其它设备,诸如电视、娱乐系统、音频系统、汽车、无人机、触控板、绘图板、上网本、电子阅读器、家庭安全系统和其它家用电器。注意的是,电子设备102可以是可穿戴的、不可穿戴的但是移动的,或相对不可移动的(例如,台式机和电器)。

应该注意的是,电子设备102的示例性总体横向尺寸可以是例如约八厘米乘约十五厘米。雷达系统104的示例性占用面积可以是甚至更有限的,诸如在包括天线情况下约四毫米乘四毫米。将电子设备102的许多其它所希望的特征容纳在与功率和处理限制组合的这种空间有限封装(例如,指纹传感器、其它非雷达传感器等)中所需的这样的用于雷达系统104的有限占用面积的要求可能导致雷达手势检测的准确性和功效方面的折衷,能够鉴于本文的教导克服其中的一些。

电子设备102还包括一个或多个计算机处理器202和一个或多个计算机可读介质204,所述计算机可读介质204包括存储器介质和存储介质。作为计算机可读指令实现在计算机可读介质204上的应用和/或操作系统(未示出)能够由计算机处理器202执行以提供本文描述的功能性中的一些或全部。电子设备102还可以包括网络接口206。电子设备102能够将网络接口206用于通过有线网络、无线网络或光网络来传送数据。作为示例而非限制,网络接口206可以通过局域网(lan)、无线局域网(wlan)、个域网(pan)、广域网(wan)、内部网、因特网、对等网络、点对点网络或网状网络来传送数据。

雷达系统104的各种实施方式能够包括片上系统(soc)、一个或多个集成电路(ic)、具有嵌入式处理器指令或被构造成访问存储在存储器中的处理器指令的处理器、具有嵌入式固件的硬件、具有各种硬件组件的印刷电路板或其任何组合。雷达系统104通过发送并接收它自己的雷达信号来作为单雷达操作。在一些实施方式中,雷达系统104还可以与在外部环境内的其它雷达系统104合作以实现双基地雷达、多基地雷达或网络雷达。然而,电子设备102的约束或限制可以影响雷达系统104的设计。例如,电子设备102可以具有可用于操作雷达的有限功率、有限计算能力、尺寸约束、布局限制、使雷达信号衰减或失真的外部外壳等。雷达系统104包括使得在存在这些约束的情况下实现先进雷达功能性和高性能的若干特征,如在下面关于图3进一步描述的。注意的是在图2中,雷达系统104和标记管理器106被图示为电子设备102的一部分。在其它实施方式中,雷达系统104和标记管理器106中的任何一个或两个可以与电子设备102分离或远离电子设备102。

在下面更详细地阐述这些及其它能力和构造以及图1的实体行动和交互的方式。这些实体可以被进一步划分、组合等。图1的环境100图1及图2至图14的详细图示说明了能够采用所描述的技术的许多可能的环境和设备中的一些。图3至图6描述雷达系统104的附加细节和特征。在图3至图6中,在电子设备102的上下文中描述雷达系统104,但是如上面所指出的,所描述的系统和技术的特征和优点的适用性不一定如此受限制,并且涉及其它类型的电子设备的其它实施例也可以在本教导的范围内。

图3图示能够用于实现用于基于雷达的应用的雷达图像整形器的雷达系统104的示例实施方式300。在示例300中,雷达系统104包括以下组件中的每一种的至少一个:通信接口302、天线阵列304、收发器306、处理器308和系统介质310(例如,一个或多个计算机可读存储介质)。能够将处理器308实现为数字信号处理器、控制器、应用处理器、另一处理器(例如,电子设备102的计算机处理器202)或其一些组合。

可以被包括在电子设备102的计算机可读介质204内或者与电子设备102的计算机可读介质204分离的系统介质310包括以下模块中的一个或多个:衰减减轻器314、数字波束形成器316、角度估计器318或电源管理器320。这些模块能够补偿或者减轻如下影响:将雷达系统104集成在电子设备102内,从而使得雷达系统104能够辨识特定雷达标记(例如,特定雷达横截面或频率响应),辨识小手势或复杂手势、区分电子设备102、另一对象(例如,对象112)或用户的不同特性配置,连续地监视外部环境或者实现目标误报率。利用这些特征,能够将雷达系统104实现在各种不同的设备(诸如图2中图示的设备)内。

使用通信接口302,雷达系统104能够将雷达数据提供给标记管理器106。基于雷达系统104被实现为与电子设备102分离或者集成在电子设备102内,通信接口302可以是无线接口或有线接口。取决于应用,雷达数据可以包括原始或最低限度地处理的数据、同相和正交(i/q)数据、距离多普勒数据、包括目标定位信息(例如,距离、方位角、仰角)的处理数据、杂波图数据等。通常,雷达数据包含可由标记管理器106用于实现或能够实现用于基于雷达的应用的雷达图像整形器的信息。

天线阵列304包括至少一个发射天线元件(未示出)和至少两个接收天线元件(如图4中所示)。在一些情况下,天线阵列304可以包括多个发射天线元件以实现能够一次发射多个不同波形(例如,每发射天线元件有不同波形)的多输入多输出(mimo)雷达。使用多个波形能够增加雷达系统104的测量准确性。对于包括三个或更多个接收天线元件的实施方式,能够以一维形状(例如,线)或二维形状定位接收天线元件。一维形状使得雷达系统104能够测量一个角维度(例如,方位角或仰角)而二维形状使得能够测量两个角维度(例如,方位角和仰角两者)。关于图4进一步描述接收天线元件的示例二维布置。

图4图示接收天线元件402的示例布置400。例如,如果天线阵列304包括至少四个接收天线元件402,则能够以如在图4中间所描绘的矩形布置404-1布置接收天线元件402。替换地,如果天线阵列304包括至少三个接收天线元件402,则可以使用三角形布置404-2或l形布置404-3。

由于电子设备102的尺寸或布局约束,接收天线元件402之间的元件间距或接收天线元件402的数量对雷达系统104将要监视的角度来说可能不是理想的。特别地,元件间距可以导致存在角模糊,这使常规的雷达估计目标的角位置变得有挑战性。常规的雷达因此可以限制视场(例如,要监视的角度)以避免具有角模糊的模糊区,从而减少假检测。例如,常规的雷达可以将视场限制为介于约-45度至45度之间的角度以避免在使用5毫米(mm)的波长和3.5mm的元件间距(例如,元件间距为波长的70%)时发生的角模糊。因此,常规的雷达可能无法检测超过视场的45度极限的目标。相比之下,雷达系统104包括数字波束形成器316和角度估计器318,它们解析角模糊并使得雷达系统104能够监视超过45度极限的角度,诸如介于约-90度至90度之间的角度,或多达约-180度和180度。能够跨一个或多个方向(例如,方位角和/或仰角)应用这些角度范围。因此,雷达系统104能够针对各种不同的天线阵列设计(包括小于、大于或等于雷达信号的中心波长的一半的元件间距)实现低误报率。

使用天线阵列304,雷达系统104能够形成被转向或未转向、宽的或窄的、或被整形(例如,为半球、立方体、扇形、圆锥或圆柱体)的波束。作为示例,一个或多个发射天线元件(未示出)可以具有未转向的全向辐射方向图或者可以能够产生宽波束,诸如宽发射波束406。这些技术中的任何一种使得雷达系统104能够照射空间的大体积。然而,为了实现目标角度准确性和角分辨率,能够使用接收天线元件402和数字波束形成器316来生成数千个窄且转向的波束(例如,2000个波束、4000个波束或6000个波束),诸如窄接收波束408。以这种方式,雷达系统104能够高效地监视外部环境并且准确地确定反射在外部环境内的到达角。

返回到图3,收发器306包括用于经由天线阵列304发射并接收雷达信号的电路和逻辑。收发器306的组件能够包括用于调节雷达信号的放大器、混频器、开关、模数转换器、滤波器等。收发器306还能够包括用于执行同相/正交(i/q)操作(诸如调制或解调)的逻辑。收发器306能够被构造用于连续波雷达操作或脉冲雷达操作。能够使用各种调制来产生雷达信号,包括线性频率调制、三角频率调制、阶跃频率调制或相位调制。

收发器306能够生成在一系列频率(例如,频率频谱)内(诸如在1吉赫兹(ghz)与400ghz之间、在4ghz与100ghz之间或在57ghz与63ghz之间)的雷达信号。能够将频率频谱划分成具有类似带宽或不同带宽的多个子频谱。带宽能够为大约500兆赫兹(mhz)、1ghz、2ghz等。作为示例,不同的频率子频谱可以包括约57ghz和59ghz、59ghz和61ghz或61ghz和63ghz之间的频率。还可以为了相干性而选取具有相同带宽并且可以为连续的或非连续的多个频率子频谱。能够使用单个雷达信号或多个雷达信号来同时地发射或在时间上分离多个频率子频谱。连续频率子频谱使得雷达信号能够具有较宽的带宽而非连续频率子频谱能够进一步强调使得角度估计器318能够解析角模糊的振幅和相位差异。衰减减轻器314或角度估计器318可以使收发器306利用一个或多个频率子频谱来改进雷达系统104的性能,如关于图5和图6进一步描述的。

电源管理器320使得雷达系统104能够在电子设备102内部或外部保存电力。在一些实施方式中,电源管理器320与标记管理器106或智能电话电源管理接口118进行通信以保存雷达系统104或电子设备102中的任何一个或两个内的电力。在内部,例如,电源管理器320能够使得雷达系统104能够使用预定义功率模式或具体占空比来收集数据。在这种情况下,电源管理器320在不同的功率模式之间动态地切换,使得响应延迟和功耗基于环境内的活动被一起管理。通常,电源管理器320确定何时且如何能够保存电力,并且渐增地调整功耗以使得雷达系统104能够在电子设备102的功率限制内操作。在一些情况下,电源管理器320可以监视剩余可用电力的量并相应地调整雷达系统104的操作。例如,如果剩余电力量低,则电源管理器320可以继续在较低功率模式下操作而不是切换到较高功率模式。

较低功率模式例如可以使用大约几赫兹(例如,约1hz或小于5hz)的较低占空比,这将功耗降低至几毫瓦(mw)(例如,介于约2mw与8mw之间)。另一方面,较高功率模式可以使用大约数十赫兹(hz)(例如,约20hz或大于10hz)的较高占空比,这使雷达系统104消耗大约数毫瓦(例如,介于约6mw与20mw之间)的功率。虽然低功率模式能够用于监视外部环境或者检测接近的用户,但是如果雷达系统104确定用户正在开始执行手势,则电源管理器320可以切换到较高功率模式。不同的触发器可以使电源管理器320在不同的功率模式之间切换。示例触发器包括运动或缺少运动、用户的出现或消失、用户进出指定区域(例如,通过范围、方位角或仰角所定义的区域)、与用户相关联的运动的速度的变化或反射信号强度的变化(例如,由于雷达横截面的变化而导致)。通常,指示用户与电子设备102交互的较低概率或要使用较长响应延迟来收集数据的偏好的触发器可以使较低功率模式被激活以保存电力。

电源管理器320还能够通过在不活动时间段期间关闭收发器306内的一个或多个组件(例如,压控振荡器、复用器、模数转换器、锁相环或晶体振荡器)来保存电力。如果雷达系统104未主动地发射或接收雷达信号,则发生这些不活动时间段,其可以是大约微秒(μs)、毫秒(ms)或秒(s)。另外,电源管理器320能够通过调整由信号放大器提供的放大量来修改雷达信号的发射功率。附加地,电源管理器320能够控制雷达系统104内的不同硬件组件的使用以保存电力。例如,如果处理器308包括较低功率处理器和较高功率处理器(例如,具有不同的存储器量和计算能力的处理器),则电源管理器320能够在利用用于低级分析(例如,实现空闲模式、检测运动、确定用户的定位或监视环境)的较低功率处理器和用于由标记管理器106请求高保真或准确雷达数据(例如,以用于实现注意模式或交互模式、手势辨识或用户定向)的情形的较高功率处理器之间切换。

除了上述内部省电技术之外,电源管理器320还能够通过激活或去激活位于电子设备102内的其它外部组件或传感器来保存电子设备102内的电力。这些外部组件可以包括扬声器、相机传感器、全球定位系统、无线通信收发器、显示器、陀螺仪或加速度计。因为雷达系统104能够使用少量电力来监视环境,所以电源管理器320能够基于用户位于在哪里或用户正在做什么适当地打开或关闭这些外部组件。以这种方式,电子设备102能够无缝地对用户进行响应并保留电力,而无需使用自动关闭定时器或用户以物理方式触摸或者口头地控制电子设备102。因此能够使用所描述的电源管理技术来提供如本文所描述的空闲模式、注意模式和交互模式的各种实施方式。

图5图示电子设备102内的雷达系统104的示例实施方式500的附加细节。在示例500中,天线阵列304被定位在电子设备102的外部外壳(诸如玻璃盖或外部壳体)下面。取决于其材料性质,外部外壳可以作为衰减器502,其使由雷达系统104发射和接收的雷达信号衰减或失真。衰减器502可以包括不同类型的玻璃或塑料,其中的一些可以在电子设备102的显示屏幕、外部外壳或其它组件内找到,并且具有约四至十之间的介电常数(例如,相对介电常数)。因此,衰减器502对雷达信号506而言是不透明或半透明的并且可以使发射或接收的雷达信号506的一部分被反射(如通过反射部分504所示出的)。对于常规的雷达,衰减器502可以减小能够被监视的有效范围,防止小目标被检测到,或者降低总体准确性。

假定雷达系统104的发射功率是有限的,并且不希望重新设计外部外壳,雷达信号506的一种或多种衰减相关性质(例如,频率子频谱508或转向角510)或衰减器502的衰减相关特性(例如,衰减器502与雷达系统104之间的距离512或衰减器502的厚度514)被调整以减轻衰减器502的影响。这些特性中的一些能够在制造期间被设置或者能够在雷达系统104的操作期间通过衰减减轻器314来调整。例如,衰减减轻器314能够使收发器306使用所选择的频率子频谱508或转向角510来发射雷达信号506,使平台将雷达系统104移近或远离衰减器502以改变距离512,或者提示用户应用另一衰减器以增加衰减器502的厚度514。

能够由衰减减轻器314基于衰减器502的预先确定的特性(例如,在电子设备102的计算机可读介质204中或在系统介质310内存储的特性)或通过处理雷达信号506的返回以测量衰减器502的一个或多个特性来做出适当的调整。即使衰减相关特性中的一些是固定的或受约束的,衰减减轻器314可能够考虑这些限制以平衡每个参数并实现目标雷达性能。结果,衰减减轻器314使得雷达系统104能够实现增强的准确性和较大的有效范围以便检测并跟踪位于衰减器502的相对侧的用户。这些技术提供用于增加发射功率(这增加雷达系统104的功耗)或者改变衰减器502的材料性质(一旦设备在生产中,这就可能是困难且昂贵的)的替代方案。

图6图示由雷达系统104实现的示例方案600。方案600的各部分可以由处理器308、计算机处理器202或其它硬件电路执行。能够定制方案600以支持不同类型的电子设备和基于雷达的应用(例如,标记管理器106),并且还使得雷达系统104能够不管设计约束如何都实现目标角度准确性。

收发器306基于接收天线元件402对接收到的雷达信号的个别响应来产生原始数据602。所接收到的雷达信号可以与由角度估计器318选择来促进角模糊解析的一个或多个频率子频谱604相关联。例如,可以选取频率子频谱604以减小旁波瓣的量或者减小旁波瓣的振幅(例如,将振幅减小0.5db、1db或更多)。能够基于雷达系统104的目标角度准确性或计算限制来确定频率子频谱的量。

原始数据602包含一段时间内的数字信息(例如,同相和正交数据)、不同的波数以及分别与接收天线元件402相关联的多个信道。对原始数据602执行快速傅立叶变换(fft)606以生成预处理数据608。预处理数据608针对不同距离(例如,距离区间)和针对多个信道包括跨所述时间段的数字信息。对预处理数据608执行多普勒滤波过程610以生成距离多普勒数据612。多普勒滤波过程610可以包括另一fft,所述另一fft针对多个距离区间、多个多普勒频率并针对多个信道生成振幅和相位信息。数字波束形成器316基于距离多普勒数据612来产生波束形成数据614。波束形成数据614包含针对一组方位角和/或仰角的数字信息,其表示不同的转向角和波束由数字波束形成器316形成的视场。尽管未描绘,但是数字波束形成器316可以替换地基于预处理数据608来生成波束形成数据614,并且多普勒滤波过程610可以基于波束形成数据614来生成距离多普勒数据612。为了减少计算的量,数字波束形成器316可以基于距离、时间或感兴趣的多普勒频率间隔来处理距离多普勒数据612或预处理数据608的一部分。

能够使用单视波束形成器616、多视干涉仪618或多视波束形成器620来实现数字波束形成器316。通常,单视波束形成器616能够被用于确定性对象(例如,具有单个相位中心的点源目标)。对于非确定性目标(例如,具有多个相位中心的目标),多视干涉仪618或多视波束形成器620用于改进相对于单视波束形成器616的准确性。人类是非确定性目标的示例并且具有能够基于如624-1和624-2处所示的不同宽高比而改变的多个相位中心622。通过多个相位中心622生成的相干或相消干涉中的变化能够使常规的雷达准确确定角位置变得有挑战性。然而,多视干涉仪618或多视波束形成器620执行相干平均以增加波束形成数据614的精确性。多视干涉仪618相干地计算两个信道的平均数以生成能够用于准确地确定角度信息的相位信息。另一方面,多视波束形成器620能够使用线性或非线性波束形成器(诸如傅立叶、capon、多信号分类(music)或最小方差无失真响应(mvdr))来相干地计算两个或更多个信道的平均数。经由多视波束形成器620或多视干涉仪618提供的增加的准确性使得雷达系统104能够辨识小手势或者区分用户的多个部分。

角度估计器318分析波束形成数据614以估计一个或多个角位置。角度估计器318可以利用信号处理技术、模式匹配技术或机器学习。角度估计器318还解析可以由雷达系统104的设计或雷达系统104监视的视场产生的角模糊。示例角模糊被示出在振幅图626(例如,振幅响应)内。

振幅图626描绘针对目标的不同的角位置和针对不同的转向角510可能发生的振幅差异。针对定位在第一角位置630-1处的目标示出了第一振幅响应628-1(用实线图示)。同样地,针对定位在第二角位置630-2处的目标示出了第二振幅响应628-2(用虚线图示)。在此示例中,跨-180度与180度之间的角度考虑差异。

如振幅图626中所示,对两个角位置630-1和630-2来说存在模糊区。第一振幅响应628-1在第一角位置630-1处具有最高峰而在第二角位置630-2处具有较小峰。虽然最高峰与目标的实际位置相对应,但是较小峰使第一角位置630-1模糊,因为它在常规的雷达可能无法确信地确定目标是在第一角位置630-1还是第二角位置630-2处的某个阈值内。相比之下,第二振幅响应628-2在第二角位置630-2处具有较小峰而在第一角位置630-1处具有较高峰。在这种情况下,较小峰与目标的定位相对应。

虽然常规的雷达可能限于使用最高峰振幅来确定角位置,但是角度估计器318替代地分析振幅响应628-1和628-2的形状方面的细微差异。形状的特性能够包括例如滚降、峰或零点宽度、峰或零点的角位置、峰和零点的高度或深度、旁波瓣的形状、振幅响应628-1或628-2内的对称性或振幅响应628-1或628-2内的对称性的缺少。能够在相位响应中分析类似的形状特性,这能够提供用于解析角模糊的附加信息。角度估计器318因此将唯一角标记或图案映射到角位置。

角度估计器318能够包括能够根据电子设备102的类型(例如,计算能力或功率约束)或用于标记管理器106的目标角分辨率来选择的一套算法或工具。在一些实施方式中,角度估计器318能够包括神经网络632、卷积神经网络(cnn)634或长短期记忆(lstm)网络636。神经网络632能够具有各种深度或数量的隐藏层(例如,三个隐藏层、五个隐藏层或十个隐藏层)并且还能够包括不同数量的连接(例如,神经网络632能够包括完全连接神经网络或部分连接神经网络)。在一些情况下,cnn634能够用于提高角度估计器318的计算速度。lstm网络636能够用于使得角度估计器318能够跟踪目标。使用机器学习技术,角度估计器318采用非线性函数来分析振幅响应628-1或628-2的形状并且生成角概率数据638,其指示用户或用户的一部分在角区间内的可能性。角度估计器318可以针对几个角区间(诸如两个角区间)提供角概率数据638以提供目标在电子设备102的左边或右边的概率或者针对数千个角区间提供角概率数据638(例如,以提供用于连续角测量的角概率数据638)。

基于角概率数据638,跟踪器模块640产生识别目标的角定位的角位置数据642。跟踪器模块640可以基于在角概率数据638中有最高概率的角区间或者基于预测信息(例如,先前测量的角位置信息)来确定目标的角定位。跟踪器模块640还可以跟踪一个或多个移动目标以使得雷达系统104能够确信地区分或识别目标。还能够使用其它数据来确定角位置,包括距离、多普勒、速度或加速度。在一些情况下,跟踪器模块640能够包括α-β跟踪器、卡尔曼滤波器、多假设跟踪器(mht)等。

量化器模块644获得角位置数据642并且对数据进行量化以产生量化角位置数据646。能够基于用于标记管理器106的目标角分辨率来执行量化。在一些情形下,能够使用较少的量化等级,使得量化角位置数据646指示目标是在电子设备102的右边还是在电子设备102的左边或者识别目标所位于的90度象限。这对一些基于雷达的应用(诸如用户接近检测)来说可能是足够的。在其它情形下,能够使用较大数目的量化等级,使得量化角位置数据646在度的分数、一度、五度等的准确性内指示目标的角位置。此分辨率能够被用于基于较高分辨率雷达的应用(诸如手势辨识),或者用在如本文所描述的注意模式或交互模式的实施方式中。在一些实施方式中,数字波束形成器316、角度估计器318、跟踪器模块640和量化器模块644被一起实现在单个机器学习模块中。

在下面阐述这些及其它能力和构造以及图1至图6的实体行动和交互的方式。所描述的实体可以被进一步划分、组合,连同其它传感器或组件一起使用等。以这种方式,能够使用具有雷达系统104和非雷达传感器的不同构造的电子设备102的不同实施方式来实现用于基于雷达的应用的雷达图像整形器。图1的示例工作环境100和图2至图6的详细图示仅仅说明了能够采用所描述的技术的许多可能的环境和设备中的一些。

示例雷达图像整形器

图7和图8描绘能够用于能够实现用于基于雷达的应用的雷达图像整形器的雷达图像整形器114的示例实施方式。图7描绘为包括八个三面角形反射器702的八面体的雷达图像整形器的示例实施方式700。通常,三面角形反射器是由三个垂直相交的平坦表面构成的形状。此形状当由反射雷达信号的材料制成时,将信号反射回源。在示例实施方式700中,个别三面角形反射器702-1至702-8由三角表面制成,但是还可以使用其它形状,如参考图8所描述的。

图8通常在800处图示雷达图像整形器的示例实施方式802和804。在示例雷达图像整形器802中,个别三面角形反射器806由矩形表面制成。在示例雷达图像整形器804中,个别三面角形反射器808由四分之一圆形表面制成。虽然雷达图像整形器114、700、802和804在图7和图8中被示出为参考一个或多个轴线(例如,以雷达图像整形器的中心为原点的x-y-z坐标系的轴线)对称,但是还可以使用所描述的形状的不对称实施方式。可以使用不对称形状来确定对象(例如,对象112)的特性配置。例如,不对称雷达图像整形器114可以具有允许雷达系统104在与对象112一起使用仅一个雷达图像整形器114时确定对象的定向(或特性配置的另一方面)的雷达标记。其它对称或不对称形状(在图7或图8中未图示)还可以被用于雷达图像整形器。例如,球体或椭圆形固体或带三面或球形凹痕(浅凹)的球体或椭圆形固体。

参考图1、图7或图8中的任一个或全部描述的示例雷达图像整形器可以由反射雷达信号的任何适合的材料(诸如铝或铝合金)制成。通常,雷达图像整形器114的边缘长度是雷达信号的波长的倍数。因此,对于具有亚毫米(mm)波长的雷达信号,包括雷达图像整形器的角形反射器可以具有波长(例如,在1毫米与10毫米之间,诸如3.5毫米或5毫米)的倍数的边缘长度(例如,最长边缘长度)。在其它情况下,利用不同波长的雷达信号,雷达图像整形器的边缘长度可以是不同的长度。

附加地,不同的材料吸收并反射雷达信号的不同频率,并且标记管理器106可以基于在特定频率范围内反射的雷达信号的比例来确定雷达图像整形器114的雷达标记。例如,标记库108可以包含用于不同的形状的雷达图像整形器的基准雷达标记和用于一些或所有形状的不同的材料。在一些实施方式中,雷达图像整形器可以由不止一种材料制成,这允许标记管理器106区分相同形状的多个雷达图像整形器114。

考虑雷达图像整形器具有由第一材料(例如,铝合金)制成的第一部分和由第二材料(例如,另一类型的铝合金)制成的第二部分的示例。第一材料可以吸收特定频率范围内的雷达信号,而第二材料可以吸收第二频率范围内的雷达信号。在此示例中,假定第二频率范围的至少一部分未被包括在第一频率范围中。以这种方式,标记管理器106可以区分雷达图像整形器114的两个部分,这可以允许标记管理器106在较高准确度上确定雷达图像整形器114的特性配置和对应对象112的特性配置。

另外,如指出的,雷达图像整形器114可以被附接到对象(例如,对象112),或者与对象(例如,对象112)集成在一起,并且用于通过确定雷达图像整形器114的特性配置和对象的对应特性配置来控制诸如电子设备102的系统或设备。因为对象能够由对雷达信号(诸如雷达场110)至少部分透明的材料制成,所以可以将雷达图像整形器114包住在固体(且不透明的)材料中,这保护雷达图像整形器114免于损坏并且防止用户免受到雷达图像整形器114上的任何尖锐边缘或拐角伤害。相比之下,用于用远程对象控制系统的常规方法常常使用不能被包住的相机或红外信号。因此,用于基于雷达的应用的雷达图像整形器能够实现更多的设计选择(形状、材料、颜色等),同时仍然以较低功耗提供准确的测量结果,这能够导致较高质量的用户体验。

示例方法

图9和图10描绘能够实现用于基于雷达的应用的雷达图像整形器的示例方法900。能够用使用雷达系统来提供雷达场的电子设备执行方法900。雷达场用于确定雷达场中的对象的存在。雷达场还能够用于确定对象的意图等级,并且意图等级能够用于确定对象是否打算与电子设备交互。基于对对象的意图的确定,电子设备能够进入和退出功能性和电力使用的不同模式。

方法900被示出为指定被执行操作的一组框,但是这些框不一定限于为了通过各个框执行操作而示出的次序或组合。另外,可以重复、组合、重组或链接这些操作中的一个或多个中的任一个以提供各式各样的附加和/或替代方法。在以下讨论的各部分中,可以参考图1的示例工作环境100或者参考如仅作为示例参考的图2至图6中详述的实体或过程。这些技术不限于由在一个设备上操作的一个实体或多个实体执行。

在902处,提供雷达场。此雷达场能够由各种电子设备中的任一个(例如,上述电子设备102)提供,所述各种电子设备包括雷达系统(例如,雷达系统104)和雷达标记管理器(例如,标记管理器106,其还可以包括标记库108和3d手势模块116中的任何一个或两个)或者与之相关联。另外,雷达场可以是各种类型的雷达场中的任一种(诸如上述雷达场110)。

在904处,由雷达系统感测来自雷达场中的对象的反射。对象可以是各种对象中的任一种,诸如木材、塑料、金属、织物或有机材料(例如,游戏控制器或手写笔,诸如上述对象112,或人的身体部位)。雷达场中的对象包括或者被附接到至少一个雷达图像整形器,诸如上述并参考图7和图8的雷达图像整形器114。

在906处,对来自雷达场中的对象的反射进行分析。分析可以由各种实体(例如,雷达系统104、标记管理器106或另一实体)中的任一个执行,并且可以包括各种操作或确定,诸如参考图3至图6描述的操作或确定。

在908处,基于对反射的分析,提供雷达数据(例如,参考图1至图6描述的雷达数据)。雷达数据可以由各种实体(诸如雷达系统104、标记管理器106或另一实体)中的任一个提供。在一些实施方式中,雷达系统可以提供雷达数据并将雷达数据传递给其它实体(例如,所描述的基于雷达的应用、库或模块中的任一个)。方法900的描述在图10中继续,如通过图9的框908之后的字母“a”所指示的,所述字母“a”与图10的框910之前的字母“a”相对应。

在910处,雷达系统使用雷达数据的一个或多个子集来检测雷达图像整形器的雷达标记。例如,雷达系统104能够生成标记管理器106使用来检测雷达图像整形器114的雷达标记的雷达数据。

在912处,将所检测到的雷达标记与和雷达图像整形器的特性配置相对应的基准雷达标记相比较。例如,标记管理器106可以通过使用雷达数据的一个或多个子集来将所检测到的雷达标记与基准雷达标记相比较以确定雷达图像整形器114的各种特征(例如,与特定材料、形状、角形、边缘、表面或其组合相关联的雷达数据的特性),能够对所检测到的特征进行分析以确定与基准雷达标记的对应已知特征的匹配。如参考图1所指出的,在一些实施方式中,雷达标记管理器可以将所检测到的雷达标记与和雷达图像整形器的不同特性配置相对应的多个基准雷达标记相比较。例如,标记管理器106可以将所检测到的雷达标记与多个基准雷达标记(例如,被存储在诸如标记库108的存储器定位中的基准雷达标记)相比较。

在914处,基于所检测到的雷达标记与基准雷达标记的比较,确定了雷达标记与基准雷达标记匹配(或不匹配)。例如,标记管理器106能够确定所检测到的雷达标记与基准雷达标记匹配。

在916处,响应于确定雷达标记与基准雷达标记匹配,基于与所匹配的基准雷达标记相对应的雷达图像整形器的特性配置来确定雷达场中的对象的特性配置。例如,标记管理器106能够基于与所匹配的基准雷达标记相对应的雷达图像整形器114的特性配置来确定雷达场中的对象的特性配置。如指出的,标记管理器106可以参考电子设备102来确定雷达图像整形器114的特定特性配置。例如,使用能够存储包括对象112的与雷达图像整形器114的特性配置相对应的特性配置的数据的诸如标记库108的标记库,标记管理器106还能够确定对象112的特性配置。

在一些实施方式中,雷达标记管理器还能够使用雷达数据的一个或多个子集来确定雷达场中的对象的特性配置的变化(例如,通过使用雷达数据来确定对象随着时间的推移的特性配置)。雷达标记管理器还能够基于对象的特性配置中的一个或多个变化来确定由对象做出的手势。雷达标记管理器然后能够(例如,使用三维(3d)手势库,诸如下述3d手势模块116)确定电子设备的与手势相对应的功能并且使电子设备提供与手势相对应的功能。

考虑例如图11至图13,图11至图13图示能够实现用于基于雷达的应用的雷达图像整形器的附加细节的对象和设备的示例实施方式。图11描绘能够用于与电子设备(诸如电子设备102)交互的对象112(在这种情况下,手写笔1102)的示例实施方式1100。如图11中所示,手写笔1102具有外壳并包括集成在手写笔内的雷达图像整形器(例如,雷达图像整形器114)。雷达图像整形器114具有雷达标记(例如,来自雷达场110或另一源的雷达信号的反射),雷达系统104能够使用所述雷达标记来确定雷达图像整形器114的特性配置,从而确定手写笔1102的特性配置。如指出的,在一些实施方式中,另一数目的雷达图像整形器114(例如,两个或三个)可以被附接到对象112,并且雷达图像整形器114可以在位于手写笔1102上或内的其它定位中。

例如,图12图示对象112(在这种情况下为另一手写笔1202)的另一示例实施方式1200。手写笔1202包括外壳并具有集成在手写笔1202的外壳内的两个雷达图像整形器(例如,两个雷达图像整形器114)。如所示,手写笔1202包括更靠近手写笔外壳的一端集成的雷达图像整形器1204和更靠近手写笔外壳的另一端集成的另一雷达图像整形器1206。在一些实施方式中,雷达图像整形器可以是由不同的材料制成的不同的形状,或兼而有之。如图12中所示,雷达图像整形器1204是具有浅凹的球形,而另一个雷达图像整形器1206由被布置为与参考图7描述的雷达图像整形器114类似的八面体(例如,由八个三面角形反射器制成的八面体)的角形反射器制成。虽然手写笔1102和1202被示出为通常圆柱形的,但是可以使用其它形状和横截面(例如,椭圆形)。

在具有多个雷达图像整形器的一些实施方式中,雷达图像整形器基于雷达信号(例如,雷达场110)的波长间隔开。例如,多个雷达图像整形器之间的距离可以基于波长的倍数(例如,波长的两倍、四倍或六倍)。在其它情况下,多个雷达图像整形器之间的距离可以是固定的,诸如三厘米(cm)、五cm、七cm或十cm。另外,雷达图像整形器的数目能够影响特性配置的什么方面或与特性配置有关的细节量能够由雷达系统检测到。因此,单个雷达图像整形器允许雷达系统检测点并确定其特性配置,两个雷达图像整形器允许雷达系统检测分段并确定其特性配置,依此类推。

图13描绘能够用于与电子设备(诸如电子设备102)交互的对象112(在这种情况下,为游戏控制器1302)的另一示例实施方式1300。如图13中所示,游戏控制器1302具有外壳并且包括集成在该外壳内的两个雷达图像整形器1304和1306(例如,雷达图像整形器114中的两个)。雷达图像整形器1304是由八个三面角形反射器制成的八面体,而雷达图像整形器1306是具有浅凹的球体。因为它们是不同的形状,所以雷达图像整形器1304和雷达图像整形器1306具有不同的雷达标记(例如,来自雷达场110或另一源的雷达信号的反射)。具有不同的雷达标记允许雷达系统104区分雷达图像整形器1304和雷达图像整形器1306,并且雷达系统104能够使用不同的雷达标记来确定雷达图像整形器1304和1306的特性配置,从而确定游戏控制器1302的特性配置。对象112(未示出)的其它示例实施方式包括智能电话壳体(例如,其中雷达图像整形器114在一个或多个定位中)、用于设备或电器的遥控器等。

附加地,因为雷达系统104(和标记管理器106)能够确定对象112(例如,手写笔1102、手写笔1202和游戏控制器1302)的特性配置,所以能够使用对象112来做出3d手势,如关于图1所描述的。考虑例如手写笔(诸如手写笔1102或1202中的任何一个)和使用雷达信号(例如,雷达场110)来检测能够用于控制电子设备102或提供附加功能性的3d手势的电子设备(例如,电子设备102)。在此示例中,用户可以做出提供附加功能性或者使现有功能性变得更容易且更直观的各种手势。例如,在基于雷达的绘图应用中,用户可以使手写笔在拇指与手指之间或在两个手指之间旋转,以增加或减小线厚度或画笔大小。用户可以使用“摇动”手势来拾取不同的画笔或者从一画笔或笔改变为橡皮擦。类似地,在基于雷达的绘图应用中,用户可以在21/2d中或在完全3d中绘图或画草图。另外,在具有编辑功能的基于雷达的应用中,用户可以在屏幕或其它表面上绘图并且与手写笔一起使用3d手势来从2d绘图创建3d体积(例如,选择2d正方形或圆上的角形或其它周边点并且将手写笔从屏幕上抬起以创建立方体或球体。一旦存在3d对象,就可以使用3d手势来使3d对象旋转,切割或以其它方式操纵3d对象。

应该注意的是,所描述的用于基于雷达的应用的雷达图像整形器的技术和装置也具有其它用途。例如,用户可以能够使用3d打印机或另一设备来创建具有特定预定义雷达标记的定制控件。考虑能够(例如,被用户以有限强度或技巧)用作用于基于雷达的家庭自动化系统、视频/音频设备等的模拟控件的定制旋钮或拨号控件。以这种方式,用户能够具有能够在无需附加电子装置的情况下控制不同的硬件、软件和应用的定制遥控器。

另外,定制手写笔或其它控件可以被用于认证目的。例如,用户可以具有能够用于做出对用户进行认证的3d手势的定制钥匙扣或其它设备。应该注意的是,用于基于雷达的应用的雷达图像整形器的这些技术可以比其它技术更私密且安全。不仅3d手势通常不可由未经授权的人员获得(与例如密码不同),而且是因为用户的雷达图像(即使它包括用户的身体或面部)不会像相片或视频一样在视觉上识别用户(例如,当使用相机来跟踪并检测控制器或手势时)。

即便如此,除了上述描述之外,还可以给用户提供允许用户做出关于本文献中描述的系统、程序、模块或特征中的任一个是否且何时可以使得能够收集用户信息(例如,关于用户的社交网络、社交动作或活动、职业、用户的偏好或用户的当前定位的信息)且用户是否从服务器发送了内容或通信的选择的控件。此外,某些数据可以在它被存储或使用之前被以一种或多种方式处理,使得个人可识别的信息被去除。例如,可以处理用户的身份,使得对该用户来说不能确定个人可识别的信息,或者可以在获得定位信息的情况下使用户的地理定位一般化(诸如为城市、邮政编码或州级别),使得不能够确定用户的特定定位。因此,用户可以控制关于用户收集什么信息、如何使用该信息以及向用户或关于用户提供什么信息。

示例计算系统

图14图示示例计算系统1400的各种组件,所述示例计算系统1400能够作为如参考先前的图1至图13所描述的任何类型的客户端、服务器和/或电子设备被实现以实现用于基于雷达的应用的雷达图像整形器。

计算系统1400包括通信设备1402,所述通信设备1402能够实现设备数据1404(例如,雷达数据、3d手势数据、认证数据、参考数据、接收到的数据、正在接收的数据、为广播而调度的数据和数据的数据分组)的有线和/或无线通信。设备数据1404或其它设备内容能够包括设备的构造设定、存储在设备上的媒体内容和/或与设备的对象或用户相关联的信息(例如,雷达场内的人员的身份、定制手势数据或雷达图像整形器的雷达标记等)。存储在计算系统1400上的媒体内容能够包括任何类型的雷达、生物计量、音频、视频和图像数据。计算系统1400包括能够用来接收任何类型的数据、媒体内容和/或输入的一个或多个数据输入1406,诸如人类发言、与雷达场的交互、触摸输入、用户可选输入(显式的或隐式的)、消息、音乐、电视媒体内容、录制视频内容以及从任何内容和/或数据源接收的任何其它类型的音频、视频和/或图像数据。数据输入1406可以包括例如标记管理器106、标记库108或3d手势模块116。

计算系统1400还包括通信接口1408,其能够作为串行和/或并行接口、无线接口、任何类型的网络接口、调制解调器并作为任何其它类型的通信接口中的任何一个或多个被实现。通信接口1408提供计算系统1400与通信网络之间的连接和/或通信链路,其它电子、计算和通信设备通过所述通信网络来与计算系统1400一起传送数据。

计算系统1400包括一个或多个处理器1410(例如,微处理器、控制器或其它控制器中的任一个),所述处理器1410能够处理各种计算机可执行指令以控制计算系统1400的操作并启用能够实现用于基于雷达的应用的雷达图像整形器的技术。替换地或附加地,计算系统1400能够用连同通常在1412处识别的处理和控制电路一起实现的硬件、固件或固定逻辑电路中的任何一个或组合来实现。尽管未示出,但是计算系统1400能够包括耦合设备内的各种组件的系统总线或数据转移系统。系统总线能够包括不同总线结构中的任何一种或组合,诸如存储器总线或存储器控制器、外围总线、通用串行总线,和/或利用各种总线架构中的任一种的处理器或本地总线。

计算系统1400还包括计算机可读介质1414,诸如能够实现持久和/或非暂时性数据存储(即,与仅信号传输相反)的一个或多个存储设备,其示例包括随机存取存储器(ram)、非易失性存储器(例如,只读存储器(rom)、闪速存储器、eprom、eeprom等中的任何一种或多种)和磁盘存储设备。可以将磁盘存储设备实现为任何类型的磁或光学存储设备,诸如硬盘驱动器、可记录和/或可重写紧致盘(cd)、任何类型的数字通用盘(dvd)等。计算系统1400还能够包括大容量存储介质设备(存储介质)1416。

计算机可读介质1414提供用于存储设备数据1404以及各种设备应用1418和与计算系统1400的操作方面有关的任何其它类型的信息和/或数据的数据存储机制。例如,操作系统1420能够作为计算机应用用计算机可读介质1414维护并在处理器1410上执行。设备应用1418可以包括设备管理器,诸如任何形式的控制应用、软件应用、信号处理和控制模块、特定设备本机的代码、抽象模块、手势辨识模块和其它模块。设备应用1418还可以包括用于实现用于基于雷达的应用的雷达图像整形器的系统组件、引擎或管理器,诸如雷达系统104、标记管理器106、标记库108或3d手势模块116。计算系统1400还可以包括或者能够访问一个或多个机器学习系统。

在以下段落中描述若干示例。

示例1:一种电子设备,包括:至少部分地用硬件实现的雷达系统,所述雷达系统被构造成:提供雷达场;感测来自所述雷达场中的对象的反射;对来自所述雷达场中的所述对象的所述反射进行分析;并且基于对所述反射的分析来提供雷达数据;一个或多个计算机处理器;和上面存储有指令的一个或多个计算机可读介质,所述指令响应于由所述一个或多个计算机处理器的执行而实现雷达标记管理器,所述雷达标记管理器被构造成:基于所述雷达数据的第一子集来检测所述雷达场中的所述对象的雷达图像整形器的雷达标记;将所检测到的雷达标记与和所述雷达图像整形器的特性配置相对应的基准雷达标记相比较;基于所述比较来确定所检测到的雷达标记与所述基准雷达标记匹配;并且响应于确定所检测到的雷达标记与所述基准雷达标记匹配,基于与所匹配的基准雷达标记相对应的所述雷达图像整形器的特性配置来确定所述雷达场中的所述对象的特性配置。

示例2:根据示例1所述的电子设备,其中,所述雷达标记管理器还被构造成:基于所述雷达数据的第二子集来确定所述雷达场中的所述对象的特性配置的变化;基于所述雷达场中的所述对象的特性配置的所述变化,确定由所述雷达场中的所述对象做出的手势;确定所述电子设备的与所述手势相对应的功能;并且使所述电子设备提供所述功能。

示例3:根据示例1或2所述的电子设备,其中,所述雷达标记管理器还被构造成将所检测到的雷达标记与所述基准雷达标记相比较,所述比较包括:基于所述雷达数据的第一子集来确定所述雷达图像整形器的特征;并且对所确定的特征进行分析以确定与所述基准雷达标记的已知特征的匹配。

示例4:根据示例1至3中的任一项所述的电子设备,其中,所述雷达标记管理器还被构造成通过所检测到的雷达标记与多个基准雷达标记的比较来将所检测到的雷达标记与所述基准雷达标记相比较,所述多个雷达标记中的每个基准雷达标记与所述雷达图像整形器的不同特性配置相对应。

示例5:根据前述示例中的任一项所述的电子设备,其中,所述雷达图像整形器是角形反射器。

示例6:根据示例5所述的电子设备,其中,所述角形反射器是包括八个三面角形反射器的八面体。

示例7:根据前述示例中的任一项所述的电子设备,其中,所述雷达图像整形器是不对称的。

示例8:根据前述示例中的任一项所述的电子设备,其中:所述雷达图像整形器包括由第一材料制成的第一部分和由第二材料制成的第二部分;所述第一材料吸收第一频率范围内的雷达信号;而所述第二材料吸收第二频率范围内的雷达信号,所述第二频率范围的至少一部分未被包括在所述第一频率范围中。

示例9:根据前述示例中的任一项所述的电子设备,其中,所述雷达图像整形器的最长边缘的长度介于1毫米与10毫米之间。

示例10:根据前述示例中的任一项所述的电子设备,其中,所述雷达系统还包括数字波束形成器和角度估计器,并且所述雷达系统被构造成监视视场中的约-90度与约90度之间的角度。

示例11:一种由包括雷达系统的电子设备实现的方法,所述方法包括:由所述雷达系统提供雷达场;由所述雷达系统感测来自所述雷达场中的对象的反射;对来自所述雷达场中的所述对象的所述反射进行分析;基于对所述反射的分析来提供雷达数据;基于所述雷达数据的第一子集来检测所述对象的雷达图像整形器的雷达标记;将所检测到的雷达标记与基准雷达标记相比较,所述基准雷达标记与所述雷达图像整形器的特性配置相对应;基于所述比较来确定所检测到的雷达标记与所述基准雷达标记匹配;以及响应于确定所检测到的雷达标记与所述基准雷达标记匹配,基于与所匹配的基准雷达标记相对应的所述雷达图像整形器的特性配置来确定所述雷达场中的所述对象的特性配置。

示例12:根据示例11所述的方法,还包括:基于所述雷达数据的第二子集来确定所述雷达场中的所述对象的特性配置的变化;基于所述雷达场中的所述对象的特性配置的所述变化,确定由所述雷达场中的所述对象做出的手势;确定所述电子设备的与所述手势相对应的功能;以及使所述电子设备提供所述功能。

示例13:根据示例11或12所述的方法,其中,将所检测到的雷达标记与所述基准雷达标记相比较还包括:基于所述雷达数据的第一子集来确定所述雷达图像整形器的特征;以及对所确定的特征进行分析以确定与所述基准雷达标记的已知特征的匹配。

示例14:根据示例11至13中的任一项所述的方法,其中,将所检测到的雷达标记与所述基准雷达标记相比较还包括:将所检测到的雷达标记与多个基准雷达标记相比较,所述多个雷达标记中的每个基准雷达标记与所述雷达图像整形器的不同特性配置相对应。

示例15:一种控制器,包括:控制器外壳;和与所述控制器外壳集成在一起的雷达图像整形器,所述雷达图像整形器被构造成提供可由雷达系统检测的雷达标记,所述雷达标记有效使得所述雷达系统能够确定所述控制器外壳的特性配置。

示例16:根据示例15所述的控制器,其中,所述雷达图像整形器是角形反射器。

示例17:根据示例16所述的控制器,其中,所述角形反射器是包括八个三面角形反射器的八面体。

示例18:根据示例15至17中的任一项所述的控制器,其中,所述雷达图像整形器是不对称的。

示例19:根据示例15至18中的任一项所述的控制器,其中:所述雷达图像整形器包括由第一材料制成的第一部分和由第二材料制成的第二部分;所述第一材料吸收第一频率范围内的雷达信号;而所述第二材料吸收第二频率范围内的雷达信号,所述第二频率范围的至少一部分未被包括在所述第一频率范围中。

示例20:根据示例15至19中的任一项所述的控制器,其中,所述雷达图像整形器的最长边缘的长度介于1毫米与10毫米之间。

示例21:根据示例15至20中的任一项所述的控制器,还包括另一雷达图像整形器,并且其中:所述雷达图像整形器更靠近所述外壳的第一端被集成;并且所述另一雷达图像整形器更靠近所述外壳的第二端被集成。

示例22:根据示例21所述的控制器,其中,所述雷达图像整形器和所述另一雷达图像整形器由不同的材料制成。

示例23:根据示例21或22所述的控制器,其中,所述雷达图像整形器和所述另一雷达图像整形器是不同的形状。

示例24:根据示例15至23中的任一项所述的控制器,其中,所述外壳具有圆柱形或椭圆形的横截面。

示例25:根据示例15至24中的任一项所述的控制器,其中,所述雷达图像整形器提供唯一雷达反射。

示例26:根据示例15至25中的任一项所述的控制器,其中,所述控制器是包括手写笔外壳的手写笔,所述雷达图像整形器与所述手写笔外壳被集成在一起。

示例27:一种系统,所述系统包括根据示例1至10中的任一项的至少一个电子设备和根据权利要求15至26中的任一项的至少一个控制器。

结论

尽管已经以特定于特征和/或方法的语言描述了用于基于雷达的应用的雷达图像整形器的技术和能够实现用于基于雷达的应用的雷达图像整形器的装置的实施方式,但是应当理解的是,所附权利要求书的主题不一定限于所描述的具体特征或方法。相反,这些具体特征和方法作为能够实现用于基于雷达的应用的雷达图像整形器的示例实施方式被公开。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1