型钢混凝土组合构件从损伤到失效的综合评价分析方法

文档序号:24874808发布日期:2021-04-30 12:49阅读:81来源:国知局
型钢混凝土组合构件从损伤到失效的综合评价分析方法
本发明涉及土木工程监测
技术领域
,尤其是型钢混凝土组合构件从损伤到失效的综合评价分析方法。
背景技术
:地震作用下,材料的微观损伤反映了构件抗震性能劣化的内在本质。探索材料损伤信息统计方法并确立与构件整体损伤的内在联系,是构件地震损伤研究的基础。对于型钢混凝土构件,型钢与混凝土两种材料相互作用,表现出比普通钢筋混凝土更加复杂的材料损伤特征。目前,对型钢混凝土组合构件的损伤程度主要单一地从材料层次或构件层次进行评价,缺乏结合两者的损伤信息对试件损伤程度的研究。同时,对于如何表征材料损伤与构件损伤的信息,以及建立两者之间的关联性尚不明确。现有研究存在以下缺点。1、对材料层次的损伤模型研究中,主要通过建立材料损伤本构模型对结构在地震作用下的状态进行判别,这些基于材料损伤的地震失效模型在保证高精度的同时,能较好地模拟构件失效破坏本质,但该方法具有未考虑构件破坏模式差异和只能根据各材料点的损伤水平对构件作出整体性能评价的局限性。2、对构件层次的损伤模型研究中,主要从变形、强度刚度退化、能量等宏观角度提出性态量化指标,建立地震损伤模型。这些构件的地震损伤模型主要从位移、耗能等宏观量的角度评价构件损伤程度,在宏观上能够较好地反映构件损伤的程度,但大多是基于试验结果建立,对构件复杂受力情况下的适用性将受到限制。技术实现要素:本发明提出型钢混凝土组合构件从损伤到失效的综合评价分析方法,可以建立构件损伤量化模型,实现由材料损伤微观层面过渡到构件性能劣化的宏观层面,为型钢混凝土组合构件的失效演化分析和损伤评价建立理论依据。本发明采用以下技术方案。型钢混凝土组合构件从损伤到失效的综合评价分析方法,所述方法包括以下步骤;步骤a1、针对任意型钢混凝土构件在低周往复荷载作用下的剪切型失效、弯剪型失效、弯曲型失效,根据由临界判定函数建立的型钢混凝土构件失效模式判别准则,对型钢混凝土构件的钢筋混凝土材料部分、型钢材料部分进行分析;步骤a2、在针对型钢混凝土构件中的钢筋混凝土材料部分的分析中,以混凝土的受压损伤因子表征材料的损伤;采用基于高斯积分求解的经典损伤理论,计算混凝土受压损伤因子;取构件典型损伤区域的混凝土受压损伤因子最大平均值反映钢筋混凝土的损伤程度;步骤a3、针对型钢混凝土构件中的型钢材料部分的分析,分别以型钢屈服和达到极限强度作为损伤起点和终点,确定型钢的损伤因子;取构件典型损伤区域的型钢损伤因子最大平均值反映型钢的损伤程度;步骤a4、统计两种材料的综合损伤,提出型钢混凝土组合材料的综合损伤因子;取构件典型损伤区域的混凝土-型钢综合损伤因子最大平均值作为材料损伤指标,反映型钢混凝土的损伤程度;步骤a5、根据各失效模式下型钢混凝土组合构件损伤性能等级判定标准,由材料损伤指标确定构件的损伤性能阶段。步骤a1中所述临界判定函数包括数f1(λ,n)与f2(λ,n),具体公式为:f1(λ,n)=1.2λ-n-2.9公式一;f2(λ,n)=0.5λ-n-1.3公式二;其中,λ为剪跨比,n为轴压比;剪切型损伤模式的判别准则为f1(λ,n)<0;弯剪型损伤模式的判别准则为f1(λ,n)≥0且f2(λ,n)≤0;弯曲型损伤模式的判别准则为f2(λ,n)>0。所述混凝土受压损伤因子的确定,其方法为,步骤b1、采用基于高斯积分求解的经典损伤理论获得混凝土损伤因子,表达式为式中,e0为试件初始弹性模量;ε为应变;σ=f(ε)为应力的表达式;混凝土的应力与应变由《混凝土结构设计规范(gb50010-2010)》中单轴受压应力-应变计算公式确定;步骤b2、确定对构件性能起控制作用的材料损伤区域作为典型损伤区域;弯曲型失效和弯剪型失效模式的钢筋混凝土构件,典型损伤区域位于端部;剪切型失效模式的钢筋混凝土构件,典型损伤区域位于中部;步骤b3、以构件竖向损伤信息的发展规律为主要规律来计算典型损伤区域范围内的混凝土受压损伤因子dc的平均值;逐步微调典型损伤区域边界,分别计算混凝土受压损伤因子平均值,取其最大平均值作为损伤指标,以此反映钢筋混凝土损伤程度并描述构件性能的阶段性变化。所述型钢损伤因子的确定,其方法为,拟静力试验中,型钢混凝土构件中型钢损伤准则以屈服点为损伤起始点,即无损伤点,极限点为失效点,即完全损伤点,采用插值法获得任意时刻的型钢损伤值,公式为;式中,dx表示型钢任意时刻损伤值;σb表示屈服点应力值,为损伤起始点dx=0;σc表示极限点应力值,为失效点dx=1;按步骤b2所述的方法确定型钢混凝土构件典型损伤区域,并按步骤b3所述的方法计算型钢损伤因子最大平均值。所述材料综合损伤因子的确定,其方法为,引入损伤加权系数表征型钢和混凝土之间的损伤占比,即式中,wx表示型钢损伤加权系数;dx表示型钢任意时刻损伤值;dc表示混凝土任意时刻损伤值;将型钢的损伤转化为混凝土损伤所占的比重,通过型钢和混凝土的损伤累加可获得试件任意时刻的综合损伤因子,即d=wxdx+dc公式六;按步骤b2所述的方法确定型钢混凝土构件典型损伤区域,取典型损伤区域的混凝土综合损伤因子、型钢综合损伤因子的最大平均值作为材料损伤指标。所述损伤性能等级判定标准的制定,其方法为,以试验数据绘制骨架曲线;将型钢混凝土构件在低周往复荷载作用下的骨架曲线和对应的材料综合损伤因子最大平均值曲线绘制于同一坐标系;所述骨架曲线上确定具有明确物理意义的性能临界点为混凝土弹性极限点、钢材屈服点、承载力峰值点和承载力极限点;由构件的这几个性能临界点对应确定材料综合损伤指标;所述各个性能点损伤限值分别为:混凝土开裂点对应混凝土受压损伤出现点d1、纵筋屈服点对应压损伤拐点d2、承载力峰值点对应型钢损伤出现点d3、承载力极限点对应混凝土受压损伤平缓点d4;经多个型钢混凝土构件计算分析结果统计,建立损伤性能等级判定标准;建立的损伤性能等级判定标准包括以下标准,当0≤d<d1时,判定为基本完好;当d1≤d<d2时,判定为轻微损坏;当d2≤d<d3时,判定为中度损坏;当d3≤d<d4时,判定为严重损坏;当d≥d4时,判定为试件破坏。具体判定标准见下表表1弯曲型损伤性能等级判定标准基本完好轻微损坏中度损坏严重损坏试件破坏0≤d<0.0050.005≤d<0.430.43≤d<0.840.84≤d<0.95d≥0.95表2弯剪型损伤性能等级判定标准基本完好轻微损坏中度损坏严重损坏试件破坏0≤d<0.030.03≤d<0.500.50≤d<0.890.89≤d<0.97d≥0.97表3剪切型损伤性能等级判定标准基本完好中度损坏严重损坏试件破坏0≤d<0.840.84≤d<0.920.92≤d<0.98d≥0.98本发明所述技术方案,通过型钢混凝土组合构件的拟静力试验研究其抗震性能及破坏特征,并采用临界判定函数拟合与损伤主因素相关的构件损伤模式的试验数据,划分损伤模式,分析各种损伤模式的失效演化过程,提出型钢-混凝土综合损伤信息统计方法,建立构件损伤量化模型,实现由材料损伤微观层面过渡到构件性能劣化的宏观层面,为型钢混凝土组合构件的失效演化分析和损伤评价建立理论依据。本发明突破了当前失效评价方法的技术瓶颈,提出了由材料损伤反映构件失效演化特征的科学评价方法。提出多种材料综合损伤因子的计算方法,为组合结构构件的材料损伤表征提供了新思路。按不同失效模式建立不同的损伤模型,确保失效评价的准确性和科学性。本发明将结合拟静力试验损伤发展演化过程、型钢混凝土组合构件性能变化的物理意义及大量有限元模拟结果,共同确定性能阶段临界点及其损伤指标,不仅做到试验、数值模拟与物理意义相对应,而且获得的量化指标具有统计意义和普遍适用性。附图说明下面结合附图和具体实施方式对本发明进一步详细的说明:附图1是本发明所述技术方案的流程示意图;附图2是确定损伤性能临界点的损伤临界状态损伤值的示意图;附图3是实施例中试件典型损伤区域示意图;附图4是实施例中试件的损伤指标示意图;附图5是实施例中试件各性能点损伤限值的确定的示意图。。具体实施方式如图所示,型钢混凝土组合构件从损伤到失效的综合评价分析方法,所述方法包括以下步骤;步骤a1、针对任意型钢混凝土构件在低周往复荷载作用下的剪切型失效、弯剪型失效、弯曲型失效,根据由临界判定函数建立的型钢混凝土构件失效模式判别准则,对型钢混凝土构件的钢筋混凝土材料部分、型钢材料部分进行分析;步骤a2、在针对型钢混凝土构件中的钢筋混凝土材料部分的分析中,以混凝土的受压损伤因子表征材料的损伤;采用基于高斯积分求解的经典损伤理论,计算混凝土受压损伤因子;取构件典型损伤区域的混凝土受压损伤因子最大平均值反映钢筋混凝土的损伤程度;步骤a3、针对型钢混凝土构件中的型钢材料部分的分析,分别以型钢屈服和达到极限强度作为损伤起点和终点,确定型钢的损伤因子;取构件典型损伤区域的型钢损伤因子最大平均值反映型钢的损伤程度;步骤a4、统计两种材料的综合损伤,提出型钢混凝土组合材料的综合损伤因子;取构件典型损伤区域的混凝土-型钢综合损伤因子最大平均值作为材料损伤指标,反映型钢混凝土的损伤程度;步骤a5、根据各失效模式下型钢混凝土组合构件损伤性能等级判定标准,由材料损伤指标确定构件的损伤性能阶段。步骤a1中所述临界判定函数包括数f1(λ,n)与f2(λ,n),具体公式为:f1(λ,n)=1.2λ-n-2.9公式一;f2(λ,n)=0.5λ-n-1.3公式二;其中,λ为剪跨比,n为轴压比;剪切型损伤模式的判别准则为f1(λ,n)<0;弯剪型损伤模式的判别准则为f1(λ,n)≥0且f2(λ,n)≤0;弯曲型损伤模式的判别准则为f2(λ,n)>0。所述混凝土受压损伤因子的确定,其方法为,步骤b1、采用基于高斯积分求解的经典损伤理论获得混凝土损伤因子,表达式为式中,e0为试件初始弹性模量;ε为应变;σ=f(ε)为应力的表达式;混凝土的应力与应变由《混凝土结构设计规范(gb50010-2010)》中单轴受压应力-应变计算公式确定;步骤b2、确定对构件性能起控制作用的材料损伤区域作为典型损伤区域;弯曲型失效和弯剪型失效模式的钢筋混凝土构件,典型损伤区域位于端部;剪切型失效模式的钢筋混凝土构件,典型损伤区域位于中部;步骤b3、以构件竖向损伤信息的发展规律为主要规律来计算典型损伤区域范围内的混凝土受压损伤因子dc的平均值;逐步微调典型损伤区域边界,分别计算混凝土受压损伤因子平均值,取其最大平均值作为损伤指标,以此反映钢筋混凝土损伤程度并描述构件性能的阶段性变化。所述型钢损伤因子的确定,其方法为,拟静力试验中,型钢混凝土构件中型钢损伤准则以屈服点为损伤起始点,即无损伤点,极限点为失效点,即完全损伤点,采用插值法获得任意时刻的型钢损伤值,公式为;式中,dx表示型钢任意时刻损伤值;σb表示屈服点应力值,为损伤起始点dx=0;σc表示极限点应力值,为失效点dx=1;按步骤b2所述的方法确定型钢混凝土构件典型损伤区域,并按步骤b3所述的方法计算型钢损伤因子最大平均值。所述材料综合损伤因子的确定,其方法为,引入损伤加权系数表征型钢和混凝土之间的损伤占比,即式中,wx表示型钢损伤加权系数;dx表示型钢任意时刻损伤值;dc表示混凝土任意时刻损伤值;将型钢的损伤转化为混凝土损伤所占的比重,通过型钢和混凝土的损伤累加可获得试件任意时刻的综合损伤因子,即d=wxdx+dc公式六;按步骤b2所述的方法确定型钢混凝土构件典型损伤区域,取典型损伤区域的混凝土综合损伤因子、型钢综合损伤因子的最大平均值作为材料损伤指标。所述损伤性能等级判定标准的制定,其方法为,以试验数据绘制骨架曲线;将型钢混凝土构件在低周往复荷载作用下的骨架曲线和对应的材料综合损伤因子最大平均值曲线绘制于同一坐标系;所述骨架曲线上确定具有明确物理意义的性能临界点为混凝土弹性极限点、钢材屈服点、承载力峰值点和承载力极限点;由构件的这几个性能临界点对应确定材料综合损伤指标;所述各个性能点损伤限值分别为:混凝土开裂点对应混凝土受压损伤出现点d1、纵筋屈服点对应压损伤拐点d2、承载力峰值点对应型钢损伤出现点d3、承载力极限点对应混凝土受压损伤平缓点d4;经多个型钢混凝土构件计算分析结果统计,建立损伤性能等级判定标准;建立的损伤性能等级判定标准包括以下标准,当0≤d<d1时,判定为基本完好;当d1≤d<d2时,判定为轻微损坏;当d2≤d<d3时,判定为中度损坏;当d3≤d<d4时,判定为严重损坏;当d≥d4时,判定为试件破坏。具体判定标准见下表表1弯曲型损伤性能等级判定标准基本完好轻微损坏中度损坏严重损坏试件破坏0≤d<0.0050.005≤d<0.430.43≤d<0.840.84≤d<0.95d≥0.95表2弯剪型损伤性能等级判定标准基本完好轻微损坏中度损坏严重损坏试件破坏0≤d<0.030.03≤d<0.500.50≤d<0.890.89≤d<0.97d≥0.97表3剪切型损伤性能等级判定标准基本完好中度损坏严重损坏试件破坏0≤d<0.840.84≤d<0.920.92≤d<0.98d≥0.98本例中所述的技术方法分为:①定义多种材料的综合损伤因子。对于钢材,以型钢屈服和达到极限强度作为损伤起点和终点,符合钢材塑性流动特征;对于混凝土,采用基于高斯积分求解的经典损伤理论,通过能量面积比确定损伤因子,具有充分的理论依据;以轴压分配系数作为两种材料损伤因子权重,符合损伤力学基本原理。②选取能够反映构件损伤发展特征的典型损伤截面。本发明区分型钢混凝土组合结构不同失效模式,综合考察沿轴向发展的损伤和横截面内的塑性开展,由两个维度方向上的损伤演化特点共同确定典型损伤截面,其蕴含的损伤信息能够较典型地反映构件性能退化的阶段性变化。③标定各性能阶段临界点损伤指标,使之能够表征构件性能劣化的物理意义。本发明将结合拟静力试验损伤发展演化过程、型钢混凝土组合构件性能变化的物理意义及大量有限元模拟结果,共同确定性能阶段临界点及其损伤指标,不仅做到试验、数值模拟与物理意义相对应,而且获得的量化指标具有统计意义和普遍适用性。实施例:下文以一个实施例对本发明进一步描述。实例选用截面尺寸为320mm×320mm,高度为1300mm的非对称十字配钢型钢混凝土柱来进行分析,其中,混凝土强度等级为c30,型钢均为q235钢,配箍率为1.40%,含钢率为4.67%,型钢缩进率为50%,剪跨比为4.0、轴压比为0.3。f1(λ,n)=1.2λ-n-2.9=1.2×4.0-0.3-2.9=1.6f2(λ,n)=0.5λ-n-1.3=0.5×4.0-0.3-1.3=0.4f2(λ,n)>0,属于弯曲破坏模式弯曲型失效模式下的型钢混凝土柱典型损伤区域位于柱端,典型损伤区域如图3所示。在典型损伤区域内,在距离柱根1倍柱截面高度h范围内,根据公式二,每间隔0.1h计算由柱根至该截面高度范围内的混凝土受压损伤因子dc的平均值,形成的损伤因子曲线如图4所示。该图表明:距柱根0.4h范围内混凝土受压损伤因子平均值最大,最能典型反映src柱损伤程度并描述柱性能的阶段性变化,因此取dc-0.4h作为损伤指标。根据公式三、四、五、六计算混凝土损伤因子、型钢损伤因子及材料综合损伤因子,将型钢混凝土柱在低周往复荷载作用下的骨架曲线及混凝土、型钢、材料综合损伤因子最大平均值曲线绘制于同一坐标系,如图5所示。混凝土弹性模量为2.7424×104n/mm2,计算应变为0.003时的混凝土损伤因子:以型钢(q235)屈服应力为299mpa,极限应力440mpa为例计算在应力为310mpa时的型钢损伤因子为:材料综合损伤因子为:d=0.13×0.078+0.522=0.532根据弯曲型损伤性能等级判别标准,0.45≤d<0.85,故判定为中度损坏。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1