占用感测系统和感测方法与流程

文档序号:15575707发布日期:2018-09-29 05:28阅读:139来源:国知局

本发明涉及一种占用感测系统,特别是用于对空间中的个体占用者与该空间中的多个占用者进行区分。



背景技术:

人的健康状况、身体能力、精神能力或受伤后的康复、住院和处置的机能评估或监测是大多数医学分支的主要关注点,包括老年病学、康复和物理治疗、神经病学和整形外科、护理和老年护理。

研究己经发现,个体的机能能力实际上是环境特定的,因为由于减少了迷惑,当人处于熟悉的环境中时机能增强。此外,一次性机能评估不允许评估一天或几天的时期内机能表现的变异性,也不允许评估变化,所述变化在确定机能丧失之后特定临床服务和处置(例如康复)是否充分方面是重要的。

因此,一致意见认为,最好是评估或监测一个人在其家中或在熟悉的环境中的独立机能。

独立机能的水平通常由执行日常生活活动(adl)的质量来指示。adl指的是人们在一天中进行的最常见的活动。因此,adl的质量下降可以成为需要照顾的指标。例如,一个或多个adl的常规机能异常可以用作针对特殊护理的警告。

已经开发了设备和系统来在个人独立生活在自己的家中或熟悉的环境中时来对他们的adl进行监测。例如,一种用于检测人系统的日常生活活动的这种已知系统包括三个主要部件:(i)收集关于所述人的活动和行为的信息的传感器系统;(ii)解读传感器信号以确定adl行为的智能(或信息处理)系统;以及(iii)使得护理者能够检查解释(处理)的信息的用户接口系统。所述智能系统通常利用本领域已知的如人工智能的计算技术。所述系统可以由针对数据采集、传输和存储的传统技术支持。

通常,这些活动模式被显示在仪表板类型的环境中。该系统的目的是验证一切进展顺利,或者在出现警报的情况下,取得在触发警报的事件之前并且直到该事件时发生了什么的第一印象。

该监测方法使得能够提供远程护理,其继而使得需要护理的人能够继续在自己的家中生活,而无需转移到护理机构。

这样的监测系统中的一个问题是将感兴趣的活动(即护理接受者的活动)与住在其中的其他人的活动区分开来。当这些人出现在不同的房间时,可以通过确定感兴趣的人在哪个房间来解决该问题。存在多个人的事实可能是已知的,并且系统仅需要识别护理接受者所在的房间。

如果不知道是否存在多个人,则需要检测系统。这种检测系统可以基于测试不同房间中的同时存在。然而,当多个人在同一房间中时,该检测系统失败。

因此,需要一种利用简单的硬件并使用具有有限信号处理的简单方法来检测同一房间中多个人的存在的方法。这将使得能够在感兴趣的活动(即护理接受者的活动)与在场的其他人的活动之间进行更加可靠地区分。



技术实现要素:

通过如独立权利要求所限定的本发明解决了上述需求。从属权利要求提供了有利的实施例。

根据本发明的一个方面的示例,提供了一种占用检测系统,包括:

-输入部,其用于接收来自在区域中和/或在区域附近间隔开安装的至少两个传感器的传感器输出,每个传感器被配置为在处于静态模式时生成传感器信号,所述传感器信号取决于存在于所述区域中的感测到的对象到传感器的距离,或者取决于存在于所述区域中的多个感测到的对象到传感器的距离,并且每个传感器被配置为基于所述传感器信号来生成传感器输出;以及

-处理器,其用于处理接收到的传感器输出。

所述处理器适于(被配置为):

-基于传感器输出的组合来导出测试度量,所述测试度量表示距离的组合;并且

-根据所述测试度量随时间的演变来确定所述区域中是存在单个对象还是多个对象。

实现了使用安装在区域中和/或区域附近的多个传感器来检测该区域中(优选地居住的)对象(例如,区域中的诸如人或宠物的用户或占用者)的存在。传感器具有在区域中和/或区域附近的不同的位置,使得每个传感器生成具有朝向每个传感器的一个或多个对象的距离数据的传感器信号。

每个传感器处于静态或静止模式(或状态),使得它们具有覆盖感兴趣区域的静态视场,在所述静态视场中将执行占用检测。因此传感器具有宽的视场。这意味着系统易于实施,无需复杂的传感器类型。出于本发明的目的,“静态模式”意味着传感器的输入-输出功能的时间特性不随时间改变,或者不随时间显著改变;换句话说,“静态模式”意味着针对由相同的目标或对象在相同位置移动的相同输出。

在一个实施例中,这样的传感器可以是静态传感器,因此持续地处于静态模式。替代地,本文中还预见到可旋转或可移动的传感器,其不时地采用静态模式以实现根据本发明的检测。

在根据本发明的实施例中,提供了一种占用检测系统,所述系统包括:i)输入部,其用于接收来自在区域中和/或在区域附近间隔开安装的至少两个静态传感器的传感器输出,每个静态传感器被配置为在处于静态模式时用于生成传感器信号,所述传感器信号取决于存在于所述区域中的感测到的对象到传感器的距离,或者取决于存在于所述区域中的多个感测到的对象到传感器的距离,并且用于基于所述传感器信号来生成传感器输出;ii)处理器,其用于处理接收到的传感器输出,其中,所述处理器适于:a)基于传感器输出的组合来导出测试度量,所述测试度量表示距离的组合;并且b)根据测试度量随时间的演变来确定所述区域中是存在单个对象还是多个对象。

每个传感器以传感器输出的形式输出传感器信号,并将其传输到系统的输入端,使得其可以由处理器处理。传感器信号按原样被直接传输(例如原始数据),或者以变换或转换的形式传输(部分处理为例如距离数据)。该系统通过组合来自不同传感器的输出并且随时间监测测试度量(传感器输出的组合)来操作。测试度量随时间的演变可以被认为包括针对该区域中存在单个对象的(空)假设的测试。当存在单个对象时,测试度量以第一可预测的方式变化,而当存在多个对象时,测试度量以不同的方式变化。例如,存储和分析测试度量的时间序列,以便能够分析测试度量随时间的演变。

可以将每个传感器信号转换为相应的距离度量,并且然后测试度量是距离度量的组合。

每个传感器可以包括被动红外(pir)传感器。这使得系统具有低功耗,例如适合于电池操作。然后,传感器检测到的信号是辐射的身体或反射的身体的接近度的函数。如果存在多个这样的身体,则感测的信号涉及这些反射或发射的组合。

处理器可以适于根据每个传感器信号强度的倒数来获得距离度量,例如传感器信号强度的倒数的平方根。在pir传感器的情况下,针对来自身体的给定辐射或反射的检测信号随着距离的平方而减小。结果,通过获得传感器信号的倒数的平方根,获得与距离成比例的度量。对于单个对象,其涉及传感器与该对象的距离。对于多个对象,其表示距离的组合。

测试度量可以包括距离度量的组合,例如距离度量的总和。对于在两个传感器之间间隔开的单个对象,当对象沿着两个传感器之间的线移动时,总和保持恒定,并且对于离开该线的运动以已知的方式变化。当该区域中存在多个对象时,总和将显示随时间的更多变化。

处理器可以适于根据基线水平设置针对测试度量的变化的阈值,其中,从测试度量偏离超过阈值指示该区域中存在多个对象。阈值可以例如包括针对该区域中存在的单个对象的测试度量的预定数量的标准差的加和,例如两个或四个标准差。以这种方式,可以基于针对区域中存在的单个对象收集的数据来学习房间几何形状对预期测试度量变化的影响。可以在特定时间窗口上应用阈值。

该系统还可以适于:

-根据传感器信号来确定呼吸,并且由此检测单个或多个呼吸频率;和/或

-根据传感器信号来确定总热辐射水平,并且由此检测该区域中存在的单个或多个对象。

呼吸和/或热辐射水平的确定可以由具有专用处理单元的传感器完成,但也可以由处理器完成。在第一种情况下,处理器可以仅使用相应的确定的呼吸速率和/或总辐射水平,其为传感器的输出并由输入部和随后的处理器接收。

通过检测呼吸,可以识别单个或多个呼吸模式。可以使用总热辐射水平来检测个体或多个对象,特别是当辐射水平突然跳跃时,对应于进入或离开区域的对象。

该系统或处理器可以适于在呼吸速率彼此之间或与参考速率进行比较,以区分它们是源于人类还是其他生物,例如动物(宠物)。参考数据可以预先记录,或者可以在仅存在人或仅存在动物的校准期间确定。可以以此方式来确定人和动物的数量。

传感器不必是系统的一部分。因此,可以在没有传感器的情况下提供根据本发明的系统并且利用现有传感器(例如,已经在该区域中和/或其附近出于其他初始目的而被提供)。因此,该系统可以被应用于处理来自不是系统一部分的现有传感器的传感器输出。

替代地,所述系统可以还包括所述至少两个传感器,用于在要被监测的区域中间隔开地安装。此外,可以在传感器本身和处理器之间划分处理。例如,传感器可以将它们的传感器信号本地地转换为距离度量用于传感器输出,而中央处理器可以组合距离度量。

根据本发明另一方面的实施例提供了一种检测一个或多个对象在区域中的存在的方法,包括:

-接收来自在区域中和/或在区域附近间隔开安装的至少两个传感器(10、12)的传感器输出,每个传感器被配置为在处于静态模式时生成传感器信号,所述传感器信号取决于存在于所述区域中的感测到的对象到传感器的距离,或者取决于存在于所述区域中的多个感测到的对象到传感器的距离,并且每个传感器被配置为基于所述传感器信号来生成传感器输出;

-处理所述传感器输出以:

-基于传感器输出的组合来导出测试度量,所述测试度量表示距离的组合;并且

-根据测试度量随时间的演变来确定所述区域内是否存在多个对象。

每个传感器可包括pir传感器或其他被动辐射传感器。

该方法可以包括根据每个传感器信号强度的倒数获得距离度量,例如传感器信号强度的倒数的平方根。这适用于测量辐射水平的传感器,其遵循相对于距离的平方反比函数。然后,测试度量可以包括距离度量的组合,例如加和。

可以根据基线水平来设置针对测试度量的变化的阈值,其中,测试度量偏差超过阈值指示多个占用者。

当确定热辐射水平时,优选地使用相同的传感器来进行此。优选地,这样的传感器是ir或被动ir传感器,因为这些已经确定热辐射。

该方法中使用的处理可以由计算机程序或计算机程序产品来实现。

对于本发明,区域可以是建筑物、运输设备(例如船、飞机、汽车或其他)之内的空间。所述区域可以是房间。所述区域可以是开放区域或诸如房间的由墙壁围成的区域。优选地,所述区域是例如老年人或需要监测的其他人的起居环境中的房间。

要被监测的对象优选地是活体对象,例如人或动物(宠物)。该人可以是老年人或需要随时间监测的任何其他人。

附图说明

现在将参考随附的示意性附图来详细描述本发明的范例,其中:

图1示出了在被监测的空间的相对侧的两个传感器;

图2示出了用于被监测的空间的三个传感器;

图3示出了校准如何实现确定距每个传感器的距离;

图4示出了占用感测系统的示例;并且

图5示出了用于实现由图4的系统所使用的方法的计算机的示例。

具体实施方式

本发明提供了一种占用检测系统(也称为存在检测系统),其中,至少两个传感器间隔开地安装在要监测的区域中和/或其附近。形成测试度量,其基于针对至少两个传感器的距离的组合。随着时间的推移测试度量的演变使得能够确定在要监测的区域中是存在单个占用者还是多个占用者。

所述两个或更多传感器监测相同的区域空间,但是从不同的位置或从不同的侧。每个传感器具有覆盖感兴趣区域的视场。己知的是,两个这样的传感器信号之间的强度比率提供了目标相对于两个传感器的位置的位置的指示。对于诸如被动红外(pir)传感器的辐射传感器,接收强度,在一阶中,与红外辐射物体(发射者)到传感器的距离的平方成反比。当辐射物体移动为更靠近一个传感器并且更远离另一个传感器时,接收的强度在第一传感器处增加并且在另一传感器处减小。

图1示出了在被监测空间14的相对侧的两个传感器10、12。每个传感器具有基本上覆盖空间14的视场。视场的角度例如是80度或更大(例如,可以在在空间的角落中安装具有接近90度视场的传感器),并且视场可以超过150度(例如,可以在空间的侧壁上安装具有接近180度视场的传感器)。每个传感器提供与空间中的检测有关的单个(一维)信号值,特别是强度水平。两个传感器信号的组合使得能够在一维度上确定占用者15的位置。换句话说,可以确定沿两个传感器之间延伸的方向(即平行于轴16)的位置。

例如,通过以已知方式取传感器信号输出之间的比率,抵消了所发射信号的总体水平。例如,如果比率为1,则这将指示对象(即人)处于两个传感器之间的中间。这并没有给出针对这个人一个唯一的位置;相反,人可以在沿着垂直于轴线16的线的某处。对于具有反平方信号强度关系的pir传感器,如果比率为4,则这将指示到最近传感器的距离是x,而到另一传感器的距离是2x。在这种情况下,人可能在沿着曲线的某个地方。

通常,如果比率是y,到最近传感器的距离是x,并且到另一个传感器的距离是x*√y。使用此,以及两个传感器之间的距离的先验知识,用户可以精确地在一维空间中进行定位,并且可以定位为沿着二维空间中的路径的某处。

利用如图2所示的三个传感器10、11、12,可以使用相同的原理来确定二维中的位置。然后该位置在三个成对的一维解的交叉点处。

代替(或者也)使用来自传感器的信号强度的比率,可以对传感器信号应用加权。这提供了一种形式的传感器校准。对于这样的经校准的传感器,可以确定距每个个体传感器的距离。该距离定义了围绕传感器的位置的如图3所示的圆18的半径(或者如果考虑3d体积则为球形)。如果两个传感器的确定的半径之和小于传感器之间的距离d,则检测到第二人的存在。校准还使得能够沿垂直轴(垂直于轴16)识别两个可能的特定位置:例如,圆18的交点或圆与垂直于方向矢量16的分割线的交点。

通过使用至少三个传感器,在存在单个人的情况下,三个圆的交点应该重合,否则检测到另外的人的存在。

注意,以上解释基于一阶建模。实际上会有房间反射和不均匀的辐射模式。这将使系统较不鲁棒。而且,如果系统需要校准,则必须针对特定家庭或感测区域中的特定用户执行校准。因此,将希望避免对校准的需要。

现在将提供如何使用两个(或更多个)传感器来确定单个或多个占用者的存在并且不需要根据每个传感器信号或实际上根据传感器信号的组合来确定准确位置信息的示例。该方法基于对度量的随时间的观察,以简化或避免校准操作,并且使系统更鲁棒,例如对房间波动更不敏感。

出于解释的目的,传感器可以表示为左传感器10(下标l)和右传感器12(下标r)。当然,这完全是任意的,并且所需要的只是传感器间隔开安装,占用者至少部分地位于传感器位置之间(它们需要处于传感器的感测的场中)。

为了解释,假设传感器具有相同的响应。如果不是,则可以将该不平衡建模为确定的人的位置的移位。然而,本发明不关注精确定位,而仅关注单个和多个占用者之间的区分。这使得系统鲁棒并且无需准确校准。对于被监测区域内的单个人,传感器将提供输出强度:

il=i0/r2

ir=i0/(d-r)2

其中,il、ir分别是由左(l)和右(r)传感器测量的信号强度。i0是参考强度(例如,在距离1m处),r是距左传感器的距离,并且d是传感器之间的距离(因此,(d-r)是距右传感器的距离)。距离d和r如图1中所示。

其遵循:

il/ir=((d-r)/r)2

使得:

r=d/(1+√(il/ir))(公式1)

因此,可以根据强度的比率来估计位置,即il/ir。这是如上所述的已知方法。

该比率可以用作测试度量,然后随时间对其进行观察。然而,即使在存在单个占用者的情况下,也会随着时间推移产生非恒定值。

替代地,可以根据强度的平方根的加和来选择测试度量:

t1=√(il)+√(ir)=√(i0)*(1/r+1/(d-r))

这给出了:

t1=√(i0)*d/(r(d-r))(公式2)

其中t1是测试度量。再次,即使在单个人在场的情况下,该测试度量也不会随时间变化。

用上面的表达式代替r(公式1)得到:

r(d-r)=d/(1+√(il/ir))*d/(1+√(ir/il))

=d2/(2+√(il/ir)+√(ir/il))

这给出了:

t1=√(i0)(2+√(il/ir)+√(ir/il))/d

因此,可以基于传感器信号的比率来表达度量t1。如上所述,该测试度量对于实际位置r不是恒定的。

优选的测试度量,并且形成用于在本发明的系统和方法中使用的一个示例的度量是强度的倒数的平方根的和,使得测试度量与距离相关:

t2=1/√(il)+1/√(ir)

通过对这些额外的传感器的倒数平方根信号求和,该测试度量可以扩展到三个或更多个传感器信号。

当房间里有一个人时,测试度量演变为:

t2=1/√(il)+1/√(ir)=r/√(i0)+(d-r)/√(i0)=d/√(i0)

换句话说,t2与到左传感器的距离+到右传感器的距离成比例。对于沿着两个传感器之间的线的人,这对应于r+(d-r)=d。

以此方式,测试度量基于至少两个传感器的传感器信号的组合,并且测试度量表示距离的组合。

对于二维空间中的其他位置的人,当远离恰在两个传感器之间的线移动时,测试度量t2将增加。

优选地,传感器被校准,因此它们具有相同的i0值。但是,如果没有校准,则会产生位置误差,并且r中的项不会抵消。然而,在单个人的情况下,测试度量t2将随时间仅具有小的变化,而在多个人的情况下,其将随时间具有更大的变化。如同依赖于i0的实际值,也存在对d的值的依赖。两者都假设随时间不变(在一阶的程度上),并且该属性用于避免校准的需要。因此,可以通过监测测试度量随时间的演变来避免校准。

还应注意,由于人不均匀地辐射,因此项i0也不是恒定的,并且例如当人转身时改变。可以对系统进行增强以学习这些因素,即通过使用在使用时的较早的实际数据而不是来自专用校准流程的校准数据进行校准。以此方式,至少从用户的角度简化了校准。该学习是为了导出关于应用于两个信号的因子的信息,使得t2保持恒定(或最小化t2的变化)。

对于二维中的运动,测试变量t2将变化。然而,其将以已知方式并且在取决于空间尺寸的边界内变化。

为了在二维空间对运动进行建模,到左传感器的距离变为并且到右传感器的距离变为其中,当人的位置被垂直投射到在两个传感器之间延伸的线上时,r和d-r保持被定义为到传感器的距离。角度是连接传感器和人的位置的线与所述两个传感器之间的线之间的角度。

依赖性可以被并入到比上述模型更复杂的模型中。如果人沿着垂直于传感器之间的线的线移动,则两个传感器将接收减小的信号(或者增加的,取决于移动的位置和方向)。相反,当沿着线的方向移动时,一个传感器信号将增加,另一个将减小。

第一简单的补偿可以如下。假设il和ir两者在强度上都降低了。然后,il和ir两者都乘以一个量,使得它们中的一个返回其原始值(并且另一个仍然减小)。换句话说,在距离r和距离(d-r)的加和中,两者都不允许减小或增加。如果发生这种情况,则对值进行缩放,使其中一个保持其原始值。这意味着测试度量(其然后是基于缩放值的加和)保持基本恒定。该方法实质上涉及缩放和求和。然而,测试度量仍然是距离的组合的表示,但是在这种情况下,距离在组合之前被有效地缩放。距离大致缩放回投影在矢量线16上的距离。

当房间里有两个占用者时,各自的强度加和:

il=i0/r02+i1/r12

ir=i0/(d-r0)2+i1/(d-r1)2

其中:

r0=人0到左传感器的距离;

r1=人1到左传感器的距离;

i0=来自人0的辐射强度;

i1=来自人1的辐射强度;

d=传感器之间的距离。

可以假设i0=i1以简化表达式,并且因此下面仅使用i0。然后,测试度量t2(对于上面解释的简单文本度量的示例,没有重新缩放以补偿)变为:

t2=1/√(il)+1/√(ir)

=((r0*r1)/√{i0(r02+r12)})+((d-r0)*(d-r1))/√{i0((d-r0)2+(d-r1)2)}

可以考虑不同的情况。在第一种情况下,r0=r1。这意味着两个占用者一起朝向或远离左传感器移动。在该情况下:

t2=d/(√2*√i0)

在第二种情况下,r0=ε,r1=d-ε,其中ε接近0。这意味着d>>ε,因此在针对t2的公式中,取d的项相对于取ε的项是主导的。在该场景中,人0已移动到左传感器,并且人1已移动到右传感器。在该情况下,使用假设d>>ε,测试参数简化为:

t2~r0/√i0+d-r1/√i0=2*ε/√i0

因此,可以看出,测试度量值强烈地取决于两个占用者的位置,与到每个传感器的最短距离ε成比例(在这种情况下其是相同的距离)。对于两个占用者自由移动的更一般场景,再次存在对从每个传感器到多个占用者中的一个的最短距离的依赖。

在第三种情况下,r0=ε,r1=ε,其中ε接近0。这是第一种情况的特殊形式,其中两个占用者都靠近一个传感器。然后:

t2=d/(√2*√i0)

上述三种情况表明,当两个人并排移动时,测试度量t2仅显示随时间的小的变化。如果它们以不同的方式移动,则测试度量将比单个人更多地改变值,在值上变得更小。这对应于总体强度变大。值i0是常量(如值d),因此当被监测的测试度量值发生变化时,可以忽略它。

通过测试测试度量t2随时间的变化,可以确定房间中是否存在多个占用者。测试度量随时间的微小变化(或如上所述的修改的测试度量以减小角度的影响)指示单个人。随时间的较大变化和/或随时间的更快速变化指示多个人。

为了考虑即使对于单个占用者而言预期的测试度量的变化,可以针对基线中的测试度量的可允许变化设置阈值。然后,基线是一个占用者被识别的时段的平均值,并且阈值可以是针对单个占用者观察到的数据集的设定数目的标准差。例如,超过两个标准差,可以得出结论,存在多个占用者。

针对房间中存在单个人的数据集可以通过训练获得,例如通过在校准流程期间让单个占用者在房间周围走动。替代地,系统可以从随时间收集的初始数据中学习。一旦获得了足够的数据集,即使存在具有一个占用者的时段和具有多个占用者的时段,也可以在稍后的时间区分不同的条件,并设置合适的阈值。这主要涉及在迭代学习过程中使用实时数据作为校准数据集。

如上所述,可以针对两个传感器导出权重因子,以便最小化总体变化。这可以通过回归技术来完成。基于收集的数据集,确定权重因子以最小化其总和的变化。

除了测试度量的变化量的阈值之外,还可以设置时间窗口的持续时间。然后可以在不同的时间段(例如几分钟或一小时)上确定测试度量的变化。

该系统可以具有存储器,用于存储基线信息和/或权重因子和/或针对测试度量的变化量的阈值,例如以查找表的形式。存储的信息部分地或完全地可以在各种使用阶段中使用。

上述示例利用了测试度量,其形式为感测信号强度的倒数的平方根的加和。但是,这仅是一个选项。更一般地,该方法是创建测试度量。该测试度量可以基于加和或比率或传感器信号强度的任何其他合适组合,并且将取决于传感器信号的性质。但是,测试度量将基于距离度量的组合。因此,首先将原始传感器信号转换为距离度量(在pir传感器的情况下。通过取倒数的平方根),然后针对多个传感器组合距离度量以创建测试度量。在上面的示例中,组合是求和。

为了确定是存在单个还是多个占用者,可以确定测试度量是否随时间保持足够恒定。这是空假设。如果存在单个占用者,则测试度量总和在已知的变化范围内是恒定的。如果有多个人在场,合理地假设他们不会一直左右移动,并且因此测试指标会随着时间的推移而变化。

可以包括的另一个特征是使用pir传感器来检测呼吸。在v.hers等人的以下文章中公开了这种方法:“newconceptusingpassiveinfrared(pir)technologyforacontactlessdetectionofbreathingmovement:apilotstudyinvolvingacohortof169adultpatients”,j.clin.monit.comput.(2013)27:521–529。

如果存在更多的人,则可能会观察到多于一个的呼吸频率。被监测的频率范围可以限于典型的呼吸频率。在这种情况下,进一步的测试可以是确定呼吸频谱是否是多模式的(对于存在多个人)。对应的空假设是光谱是单模式的。原则上,可以使用单个pir传感器来实现该额外的功能。

观察呼吸速率的另一个好处是,只能检测到活体的生物,并且移动的物体或具有超出观察的频谱的呼吸速率的物体不会造成伪迹。

如上所述,测试度量避免了提供校准传感器的需要,特别是因为不需要精确定位。然而,可以校准传感器,并且这可以改善测试度量计算。由于感测的强度不完全遵循平方关系但实际上具有其他非线性,因此信号处理可以适应这种非线性依赖性。类似地,可以补偿对方向(视角)的依赖性,作为校准的一部分。例如,可以修改传感器的塑料盖以改变关于传感器覆盖的灵敏度。

许多类型的pir传感器具有阈值,针对其测试测量强度,并且当测量的强度穿过阈值时发出on或off事件。这样的设备不提供模拟信号输出。然而,可以使用这样的传感器来测量强度水平,如形成测试度量所需的,例如通过改变检测阈值并观察何时触发pir。触发开始发生的阈值,或触发电平两侧的两个(邻近地间隔开的)阈值电平的识别提供了对强度的估计。

在上述分析中,为了便于说明,假设参考强度i0是恒定的。如果传感器使用其自己的辐射源并且正在测量反射,并且假设经校准的辐射源和传感器以及被辐照的物体的均匀反射特性,则该假设是正确的。这样的传感器的示例在下面给出,并且可以例如是雷达或超声传感器。pir传感器是被动的并且测量环境中的(一个或多个)物体发射的辐射功率。这意味着i0不是完全恒定的,而是随着(存在的)人的辐射强度而变化。优选地,校准房间中的传感器,使得它们的i0值针对给定的辐射源是相等的。

人也不会均匀地发射辐射。衣服可能会吸收,并且脸部可能会更强烈地辐射。体温和尺寸也可能影响总体强度。该系统可以考虑相应的变化,例如当用户转身时,或者当源和传感器之间存在吸收的家具时。当在房间中的多个位置处存在传感器时,实现了更好的覆盖,使得如上所述的所有传感器的加和对不均匀的辐射模式不太敏感。

给定每人的辐射功率,多个人的存在也可通过总辐射水平检测到。特别地,当人进入或离开房间(观看区域)时,可以检测到总水平的突然变化,除了简单检测多个占用者之外,其也可以用于估计存在的人数。

这改变了感测信号的总水平,但是这个总水平如上所示在任何情况下都会变化,即使是单个人的移动也是如此。但是,进入或离开空间的用户表示为突然的变化(相对于行走时的变化速度是突然的)。因此,可以监测总强度的变化和测试度量的变化(倒数强度的总和),以检测它们中的任一个的变化。可以组合结果以对多个占用者进行更鲁棒的确定。

以上基于pir传感器描述了本发明。但是,也可以使用其他传感器。特别地,辐射传感器是合适的,因为它们可以在没有接触的情况下进行感测,即从一距离处.示例包括电磁辐射传感器(例如雷达)。其他传感器包括声音传感器,诸如,例如超声传感器。

然后,用于导出距离度量并且然后导出理想恒定测试度量的信号处理将取决于用于生成传感器信号的传感器模态而变化。雷达和超声传感器可以基于对返回能量的测量,使得再次适用平方反比定律(但是基于针对向外和返回路径的距离的两倍)。但是,可以替代地使用飞行时间方法。在该情况下,发出脉冲或啁啾信号,并且测量返回脉冲之前的持续时间,或与返回的啁啾的相关性(以找到相关性最大的延迟)。然后将飞行时间乘以传播速度以获得(双倍)距离。

图4示出了系统的示例,其中来自两个传感器10、12的输出被提供给控制器40,控制器40以上述方式处理传感器信号,以得到输出42,其指示是存在单个还是多个占用者。然后,日常生活活动(adl)系统可以使用该信息来帮助解读传感器数据,例如使得能够对被监测的患者或对象的活动与访问患者或对象的其他护理者或客人的活动进行分离。

该方法由控制器中的软件来实现。

图5图示了用于实现上述控制器或处理器的计算机50的示例。

计算机50包括但不限于pc、工作站、膝上型计算机、pda、掌上设备、服务器、存储器,等等。通常,就硬件架构而言,计算机50可以包括一个或多个处理器51、存储器52、以及经由本地接口(未示出)通信地耦合的一个或多个i/o设备53。本地接口可以是,例如但不限于,一个或多个总线或其他有线或无线连接,如本领域中已知的。本地接口可以具有额外的元件,例如控制器、缓冲器(高速缓存)、驱动器、中继器和接收器,以实现通信。此外,本地接口可以包括寻址、控制和/或数据连接,以实现上述部件之间的适当通信。

处理器51是用于运行可以存储在存储器52中的软件的硬件设备。替代地,软件可以在另一个处理器上远程运行。处理器51实际上可以是与计算机50相关联的若干处理器中的任何定制或商用处理器、专用本地设备处理器、中央处理单元(cpu)、数字信号处理器(dsp)或辅助处理器,并且处理器51可以是基于半导体的微处理器(以微芯片的形式)或微处理器。

存储器52可包括易失性存储器元件(例如,随机存取存储器(ram),例如动态随机存取存储器(dram),静态随机存取存储器(sram)等)和非易失性存储器元件(例如,rom,可擦除可编程只读存储器(eprom),电子可擦除可编程只读存储器(eeprom),可编程只读存储器(prom),磁带,光盘只读存储器(cd-rom),磁盘,软盘,卡盘,盒式磁带等)中的任何一个或其组合。此外,存储器52可以包含电子、磁、光和/或其他类型的存储介质。注意,存储器52可以具有分布式架构,其中各种组件彼此远离,但是可以由处理器51访问。

存储器52中的软件可以包括一个或多个单独的程序,每个程序包括用于实现逻辑功能的可执行指令的有序列表。根据示例性实施例,存储器52中的软件包括合适的操作系统(o/s)54、编译器55、源代码56和一个或多个应用程序57。

应用程序57包括许多功能部件,例如计算单元、逻辑、功能单元、过程、操作、虚拟实体和/或模块。

操作系统54控制计算机程序的执行,并提供调度、输入-输出控制、文件和数据管理、储器管理以及通信控制和相关服务。

应用程序57可以是源程序、可执行程序(目标代码)、脚本或包括要执行的一组指令的任何其他实体。在为源程序时,则程序通常通过编译器(例如编译器55)、汇编器、解释器等进行转译,其可以包括或不包括在存储器52中,以便与操作系统54一起正确地操作。此外,应用程序57可以被编写为面向对象的编程语言,其具有数据和方法的类,或者流程编程语言,其具有例程、子例程和/或函数,例如但不限于c,c++,c#,pascal,basic,api调用,html,xhtml,xml,asp脚本,javascript,fortran,cobol,perl,java,ada,.net等。

i/o设备53可以包括输入设备,例如但不限于鼠标、键盘、扫描仪、麦克风、相机等。此外,i/o设备53还可以包括输出设备,例如但不限于打印机、显示器等。最后,i/o设备53还可以包括传送输入和输出两者的设备,例如,但不限于网络接口控制器(nic)或调制器/解调器(用于访问远程设备、其他文件、设备、系统或网络),射频(rf)或其他收发器、电话接口、桥接器、路由器等。i/o设备53还包括用于通过在各种网络(例如internet或intranet)上进行通信的部件。

当计算机50在操作中时,处理器51被配置为运行存储在存储器52内的软件,以将数据传送到存储器52和从存储器52传送数据,并且通常根据软件来控制计算机50的操作。应用程序57和操作系统54全部或部分地由处理器51读取,可能在处理器51内缓冲,并且然后被运行。

当应用程序57以软件实现时,应该注意,应用程序57可以存储在几乎任何计算机可读介质上,以供任何计算机相关系统或方法使用或与之结合使用。在本文件的上下文中,计算机可读介质可以是电子、磁、光学或其他物理设备或器件,其可以包含或存储计算机程序以供计算机相关的系统或方法使用或与其结合使用。

本领域技术人员通过研究附图、公开内容以及权利要求书,在实践请求保护的本发明时能够理解并且实现对所公开的实施例的其他变型。在权利要求中,“包括”一词不排除其他元件或步骤,并且词语“一”或“一个”不排除多个。尽管在互不相同的从属权利要求中记载了特定措施,但是这并不指示不能有利地使用这些措施的集合。权利要求书中的任何附图标记不应被解释为对范围的限制。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1