一种三电平整流器静止坐标系控制方法与流程

文档序号:12728353阅读:317来源:国知局
一种三电平整流器静止坐标系控制方法与流程

本发明涉及一种三电平整流器,尤其涉及一种三电平整流器静止坐标系控制方法。



背景技术:

现在对于三电平整流器控制算法的研究较多,然而这些方法大多是基于电网电压平衡的条件。在实际电网中,负载不平衡及单相、两相对地短路等不对称故障将引起电网电压不对称。在电网电压不平衡条件下,如果用传统的电网电压平衡时的控制策略控制脉宽调制(pulse width modulation,PWM)整流器,会使系统出现不正常的运行状态。电网电压不平衡时,常规的整流器控制方法基于对称分量理论,将不平衡电压分为正负序分量进行分别控制。常用的方法如采用双比例–积分(proportional-integral,PI)电流调节器的控制策略,分别用于控制电流的正、负序分量,从而实现稳态零误差控制。但是这种方法算法复杂,需要调节的参数很多。基于三相瞬时功率理论,提出虚拟导纳控制三相交流电流的幅值,在静止坐标系下采用广义积分器实现正弦交流信号的无静差控制;在静止坐标系中采用内模控制的三相不平衡控制方案,实现了电网不平衡时三相电压源型整流器(voltage source rectifier,VSR)有功、无功功率的独立控制。基于广义积分器的比例谐振控制器(proportion resonant,PR)可实现交流信号的无静差控制,可以用作静止坐标系下的电流调节器,目前也得到了很多学者的青睐。



技术实现要素:

为了克服电网电压不平衡时三电平整流器性能下降的难题,本发明提出一种三电平整流器静止坐标系控制方法。

本发明解决其技术问题所采用的技术方案是:

对不平衡电压下整流器的输入输出瞬时功率进行分析,得到静止坐标系下的电流指令值。外环仍采用传统的电压环,内环采用比例谐振控制器作为电流调节器。

三电平整流器静止坐标系控制方法包括三电平PWM整流器主电路、静止坐标系控制、带通滤波器和比例谐振控制器四个部分。

所述三电平PWM整流器主电路采用二极管钳位式三电平结构,使用了3对12个IGBT开关管。

所述静止坐标系控制不需要进行旋转变换,同时也不需要计算正负序分量。

所述带通滤波器是通过一个基于二阶广义微分环节的带通滤波器用来求延迟变量。

所述比例谐振控制器能够实现电流环调节的动态快速响应和稳态时零跟踪误差。

本发明的有益效果是:本发明外环为电压环,采用传统的PI控制器,内环为电流环,基于静止坐标系计算电流指令值,采用PR控制器。该方案不需要对电网电压进行旋转变换和相位检测,控制简单。采用含谐波抑制的PR 控制系统,有效地抑制了交流侧电流的谐波分量。本发明实现了三电平PWM 整流器在电网电压发生单相跌落和有谐波时输出直流电压稳定及输入电流正弦。

附图说明

图1 三电平PWM整流器主电路。

图2 系统控制框图。

图3 带通滤波器结构。

图4 谐振控制器结构。

具体实施方案

图1中,为整流器交流侧电压;和 R\* MERGEFORMAT 分别为每相的滤波电感和等效串联电阻;C1和C2为直流分压电容;RL为整流器负载;PIN和PIN分别表示电网输入端和整流器端的瞬时功率。电网输入端瞬时有功功率的直流分量和交流分量可由瞬时和延迟量表示。同理,可算出电网输入端瞬时无功功率QIN和整流器端有功功率POUT在稳态时的直流分量和纹波分量。

本发明采用的控制算法在静止坐标系中实现的,因此不需要进行旋转变换,同时也不需要计算正负序分量。图2中,电流指令值由计算得到,延迟90均采用基于二阶广义微分环节(second order generalized integrator,SOGI)的带通滤波器算得,静止坐标系下的电流调节器采用比例谐振控制器。内环电流参考值在保证直流母线电压稳定和交流侧单位功率因数的前提下来计算。

图3中,当选取合适的0(电网角频率)和k时,输出信号y和z几乎为正弦,其中输出信号y与输入信号V的基波分量有相同的幅值和相角,而另一个输出信号z则为y的延迟90。这种方法对电压谐波不敏感并且可以无误差的跟踪输入电压的基波分量。该模型来获取输出信号y作为输入信号的正序分量,而本文用其来求取延迟90。

在静止坐标系中无误差跟踪电流指令,本发明电流环调节器采用比例谐振控制器来实现动态快速响应和稳态时零跟踪误差。比例谐振控制器表达式GPR。图4中,比例谐振调节器对交流信号的调节作用相当于直流信号系统中的PI 调节器。另外,修改广义积分项中的(h=3、5、7 等),可得到含 h 次谐波补偿的PR 控制器,KIN为h次谐波的谐振系数。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1