开关电源电路的制作方法

文档序号:11925170阅读:591来源:国知局

本实用新型涉及电源领域,特别是涉及一种开关电源电路。



背景技术:

目前,家用电器的电源前级多采用二极管全桥整流方式,其为非线性电路,会使得电网测输入电流和输入电压间存在较大相位差,谐波分量高,功率因素下降,供电线路中有用功率利用率不高,造成电能的浪费。功率因素校正电路可以将交流电源的输入电流变换为与输入电压同相位的正弦波,从而提高设备的功率因素,减少对电网的谐波污染,提高电能的利用率。

由于升压式功率因素校正电路的电感电流连续,同时可以作为滤波器抑制干扰和噪声,并防止电网对主电路的高频瞬态冲击等,使得升压式功率因素校正电路成为典型的功率因素校正电路。高频工作特性的功率因素校正电路,升压二极管的逆向恢复速度能力非常重要,速度过慢会造成较大的交换损耗,并且升压式功率因素校正电路中的升压二极管需要承受较高的逆向电压,同时为了保留余量,一般采用耐压值较高的快恢复二极管或是昂贵的碳化硅肖特基二极管作为升压二级管,而满足条件的快恢复二极管逆向恢复速度不够快,且损耗大,导致整个开关电源电路的转换效率不够高,满足条件的碳化硅肖特基二极管逆向恢复速度够快,但成本高昂。



技术实现要素:

基于此,有必要提供一种开关电源电路,其电压转换速率高,损耗低,结构简单,成本低廉。

一种开关电源电路,包括桥式整流器和功率因素校正电路,所述功率因素校正电路包括开关电路、第一升压二极管、第二升压二极管、电感和电容,所述桥式整流器的输入端连接交流电源,所述电感的一端连接所述桥式整流器的正极输出端,所述电感的另一端分别连接所述第一升压二极管的阳极和所述开关电路的一端,所述第一升压二极管与所述第二升压二极管串联,所述第二升压二极管的阴极连接所述电容的正极,所述电容的负极和所述开关电路的另一端接地。

在其中一个实施例中,所述第一升压二极管和第二升压二极管为硅肖特基二极管。

在其中一个实施例中,所述第一升压二极管和第二升压二极管可以承受的最大反向电压相同。

在其中一个实施例中,所述第一升压二极管和第二升压二极管可以承受的最大反向电压不同。

在其中一个实施例中,所述功率因素校正电路还包括保护二极管,所述保护二极管的阳极连接所述电感与所述桥式整流器连接的一端,所述保护二极管的阴极连接所述第二升压二极管的阴极。

在其中一个实施例中,所述开关电路包括开关管和驱动芯片,所述开关管的漏极连接所述第一升压二极管的阳极,所述开关管的源极接地,所述开关管的栅极连接所述驱动芯片。

在其中一个实施例中,还包括电流检测电阻和滤波电容,所述滤波电容的一端连接所述桥式整流器的正极输出端,所述电流检测电阻的一端连接所述桥式整流器的负极输出端,所述电流检测电阻的另一端和滤波电容的另一端接地。

在其中一个实施例中,还包括脉冲调制电路,所述脉冲调制电路的正极输入端连接所述电容的正极,负极连接所述电容的负极,所述脉冲调制电路的输出端连接负载。

上述开关电源电路,包括桥式整流器和功率因素校正电路,所述功率因素校正电路包括开关电路、第一升压二极管、第二升压二极管、电感和电容,所述桥式整流器的输入端连接交流电源,所述电感的一端连接所述桥式整流器的正极输出端,所述电感的另一端分别连接所述第一升压二极管的阳极和所述开关电路的一端,所述第一升压二极管与所述第二升压二极管串联,所述第二升压二极管的阴极连接所述电容的正极,所述电容的负极和所述开关电路的另一端接地;在功率因素校正电路中采用两个二极管串联共同承受较高的逆向电压,使得该开关电源电路的电压转换速率高,损耗低,结构简单,成本低廉。

附图说明

为了更清楚地说明本实用新型实施例或现有技术中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本实用新型的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他实施例的附图。

图1是一实施例中开关电源电路的结构图。

具体实施方式

为了使本实用新型的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本实用新型进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本实用新型,并不用于限定本实用新型。

除非另有定义,本文所使用的所有的技术和科学术语与属于本实用新型的技术领域的技术人员通常理解的含义相同。本文中在本实用新型的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本实用新型。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。

参见图1,图1是一实施例中开关电源电路的结构图。

在本实施例中,该开关电源电路包括桥式整流器10和功率因素校正电路20,所述功率因素校正电路20包括开关电路21、第一升压二极管D1、第二升压二极管D2、电感L和电容C2,所述桥式整流器10的输入端连接交流电源,所述电感L的一端连接所述桥式整流器10的正极输出端,所述电感L的另一端分别连接所述第一升压二极管D1的阳极和所述开关电路21的一端,所述第一升压二极管D1与所述第二升压二极管D2串联,所述第二升压二极管D2的阴极连接所述电容C2的正极,所述电容C2的负极和所述开关电路21的另一端接地。

该功率因素校正电路为升压式功率因素校正电路,在升压式功率因素校正电路中,对升压二极管的逆向恢复时间能力要求极高,并需要承受一定的逆向电压,上述交流电源包括115VAC~277VAC,该逆向电压应该大于交流电源的幅值,且保留一定余量,一般的,选取该600V作为升压二极管可以承受的逆向电压,可以满足交流电源在上述范围内的开关电源电路进行升压式功率因素校正。

本方案通过两个升压二极管串联来分担较高的逆向电压,每个升压二极管承受的逆向电压较单独使用一个升压二极管时其承受的逆向电压减小了一半左右。由于二极管的成本与其可以承受的逆向电压,即耐压值相关,耐压值越高,二极管的成本越高。且同类型的二极管,耐压值较低的逆向恢复时间比较短,功耗较低。通过这样的分压处理,使得该功率因素校正电路20的电压转换速度加快,功耗变低,进而提高了该开关电源电路的电压转换速率和转换效果,降低了成本。

在其中一个实施例中,第一升压二极管D1和第二升压二极管D2为硅肖特基二极管。硅肖特基二极管为逆向恢复速度能力极强的非碳化硅二极管,较快恢复二极管其逆向恢复时间更短,硅肖特基二极管的逆向恢复时间小于15ns,而快恢复二极管管的逆向恢复时间需35ns左右,且其功耗低,成本较碳化硅肖特基二极管低廉,有效的控制了该功率因素校正电路20的成本,并保障了其转换效率。

在其中一个实施例中,所述第一升压二极管D1和第二升压二极管D2可以承受的最大反向电压相同。在实际的电路中,两个升压二极管可能受压不均,若其中一个升压二极管受压较高,为了保障其安全性,可以将串联的两个升压二极管的耐压值均设置为大于上述单个升压二极管耐压值的一半,若该单个升压二极管的耐压值为600V,选取耐压值为350V的两个二极管,保障整个开关电源电路的安全,提高其可靠性。

在其中一个实施例中,所述第一升压二极管D1和第二升压二极管D2可以承受的最大反向电压不同。由于两个升压二极管可能受压不均,可以根据实际的应用场景,在保障两个升压二极管安全性的同时,选择耐压值不同的两个升压二极管串联分压。

以输出功率为90W的开关电源为例,其功率因素校正电路中的升压二极管实际承受的最大逆向电压为400V,为了保留一定余量,一般的,仍采用耐压值为600V的二极管。本实施例选取两个硅肖特基二极管串联分压,其耐压值均为300V~350V,相对于只使用一个耐压值为600V的快恢复二极管,减小了电路的功耗,提高了转换效率。且经过测试发现第一升压二极管D1实际承受的最大逆向电压为244V,第二升压二极管D2实际承受的最大逆向电压为56V,根据该测试结果重新选取耐压值为200V~250V的硅肖特基二极管作为第二升压二极管D2,进一步减小了功耗,提高了转换效率。

上述情况适用于其他输出功率的开关电源,如输出功率为70W~1000W的开关电源。此外,也可以根据功率因素校正电路的各种不同模式运用,包括连续模式(CCM)、不连续模式(DCM)以及临界模式(CRM)等,通过具体测试结果选择第一升压二极管D1和第二升压二极管D2的耐压值,在保障两个升压二极管安全性的同时,最大化优化电路,减小损耗,提高转换效率。

在其中一个实施例中,所述开关电路21包括开关管M和驱动芯片211,所述开关管M的漏极连接所述第一升压二极管D1的阳极,所述开关管M的源极接地,所述开关管M的栅极连接所述驱动芯片211。该功率因素校正电路20为有源功率因素校正电路,通过驱动芯片211控制开关管M的导通关断的频率,进而对功率因素校正电路20的输出电流进行相位的调节,使得其输出电流的相位和输出电压的相位一致,进而提高该开关电源电路的功率因素。

在其中一个实施例中,还包括电流检测电阻R1和滤波电容C1,所述滤波电容C1的一端连接所述桥式整流器10的正极输出端,所述电流检测电阻R1的一端连接所述桥式整流器10的负极输出端,所述电流检测电阻R1的另一端和滤波电容C1的另一端接地。滤波电容C1对桥式整流器10输出的电流进行高频滤波,电流检测电阻R1用于对该电流进行检测。

在其中一个实施例中,还包括脉冲调制电路30,所述脉冲调制电路30的正极输入端连接所述电容C2的正极,负极连接所述电容C2的负极,所述脉冲调制电路30的输出端连接负载R2。

功率因素校正电路20将桥式整流器10输出的电流和电压的相位调节一致,保证电路的功率因素。

上述中开关电源电路,设置两个逆向恢复速度快且成本低廉的硅肖特基二极管串联共同分担升压式功率因素校正电路中的逆向电压,同时可以根据电路的不同情况在保障两个升压二极管安全性的同时,选择耐压值不同的两个升压二极管,极大的提高了该开关电源电路的电压转换速率,损耗低,结构简单,成本低廉。

以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。

以上所述实施例仅表达了本实用新型的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对实用新型专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本实用新型构思的前提下,还可以做出若干变形和改进,这些都属于本实用新型的保护范围。因此,本实用新型专利的保护范围应以所附权利要求为准。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1