一种直流侧电压不对称的三电平逆变器调制方法与流程

文档序号:15276277发布日期:2018-08-28 23:00阅读:366来源:国知局

本发明涉及三电平逆变器的调制方法,更具体地说是涉及一种直流侧电压不对称情况下的三电平逆变器调制方法。



背景技术:

随着电力电子技术的发展,尤其在大容量、高电压场合,三电平拓扑的应用越来越广泛,每个功率管承受的电压为直流侧电压的一半。此外,三电平拓扑还具有输出波形的谐波含量低、效率高的优点。但由于功率管数量的增多,控制算法复杂,伴随着中点电位偏移等问题。

三电平逆变器的调制方法一般有基于零序电压注入的载波调制方法和空间矢量调制方法。载波调制方法时通过将调制波和载波进行比较,输出三相开关序列,其关键在于生成特定的调制波,包括零序电压的计算等;空间矢量调制方法是通过计算每一个基本电压矢量的作用时间,从而合成特定的电压矢量,再按照规定顺序输出逆变器的三相开关序列。

载波调制方法中零序电压的计算、空间矢量调制方法中矢量合成规则的复杂性等均导致控制算法的计算复杂度大大提升。此外,上述两种调制方法均建立在直流侧上下电容电压对称的基础上,若出现直流侧电压不对称、不平衡的情况,上下电容电压不再是直流侧电压的一半,传统的三电平方法将不再适用。

因此,需要提供一种在直流侧电压不对称情况下依然能够实现正常发波的三电平逆变器的调制方法。



技术实现要素:

本发明是为了解决上述现有技术存在的不足之处,提出一种直流侧电压不对称的三电平逆变器调制方法,以期能在直流侧电压不对称情况下正常运行,提高三电平逆变器的运行可靠性,从而实现三电平逆变器的优化控制。

为了解决上述技术问题,本发明采用如下技术方案:

本发明一种直流侧电压不对称的三电平逆变器调制方法的特点按如下步骤进行:

步骤1、利用电压传感器采集所述三电平逆变器直流侧的上电容电压uC1和下电容电压uC2,以及所述三电平逆变器的输出三相电压uA、uB、uC;

步骤2、所述三电平逆变器的输出侧通过采用星形连接方式,使得所述三电平逆变器的输出三相电压uA、uB、uC加和为零,并根据三电平逆变器的占空比调制模型,得到如式(1)所示的线电压方程:

式(1)中:uAB,uCA分别表示所述三电平逆变器的AB两相线电压和CA两相线电压;uDC为正母线电压,且uDC=uC1+uC2;DxP、DxO、DxN分别表示所述三电平逆变器的x相P电平、O电平、N电平的占空比,其中,x=A、B、C;

步骤3、比较所述三电平逆变器的输出三相电压uA、uB、uC的大小,得到最大电压所对应的相,记为max相;最小电压所对应的相,记为min相;以及中间电压所对应的相,记为mid相;

步骤4、令最大电压所对应的max相由P电平和O电平组成,令最小电压所对应的min相由O电平和N电平组成,令max相的P电平的作用时间和min相的N电平的作用时间相同;从而得到如式(2)所示的max相和min相的P电平、O电平、N电平的占空比表达式:

式(2)中,umin、umax分别表示所述三电平逆变器的输出三相电压uA、uB、uC的中最小电压和最大电压;

步骤5、当满足时,令中间电压所对应的mid相由P电平和O电平组成,从而得到如式(3)所示的mid相的P电平、O电平、N电平的占空比表达式:

当满足时,令中间电压所对应的mid相由O电平和N电平组成;从而得到如式(4)所示的mid相的P电平、O电平、N电平的占空比表达式:

步骤6、利用式(2)和式(3)或者式(2)和式(4)得到所述三电平逆变器的开关序列,从而实现对所述三电平逆变器的调制。

与传统的三电平逆变器的调制方法相比,本发明的有益效果体现在:

1.本发明根据三电平逆变器的占空比调制模型,得到在直流侧电压不对称的情况下,每相桥臂P、O、N电平的占空比,从而在直流侧电压不对称情况下,三电平逆变器依然能够正确输出开关序列,从而扩大了直流侧电压的利用率,并实现了调制和控制。

2.本发明每相桥臂仅输出两个电平,从而降低了功率器件的开关损耗;

3.本发明与传统的调制方法相比,仅需根据逆变器输出三相电压的关系计算每个电平的作用时间,无需计算各个矢量的作用时间和零序电压的大小,在一定程度上降低了控制算法计算的复杂程度。

4.本发明无需增加任何外设,系统成本低,控制方法简单,易于实现。

附图说明

图1为现有技术中中点钳位型三电平逆变器的主电路图;

图2为本发明控制算法流程图;

图3a为本发明三电平逆变器工作在k=0,m=1状况下的实验结果图;

图3b为本发明三电平逆变器工作在k=0,m=0.6状况下的实验结果图;

图3c为本发明三电平逆变器工作在k=0,m=0.2状况下的实验结果图;

图4a为本发明三电平逆变器工作在k=0.4,m=1状况下的实验结果图;

图4b为本发明三电平逆变器工作在k=0.4,m=0.6状况下的实验结果图;

图4c为本发明三电平逆变器工作在k=0.4,m=0.2状况下的实验结果图;

图5a为本发明三电平逆变器工作在k=0.8,m=1状况下的实验结果图;

图5b为本发明三电平逆变器工作在k=0.8,m=0.6状况下的实验结果图;

图5c为本发明三电平逆变器工作在k=0.8,m=0.2状况下的实验结果图。

具体实施方式

本实施例中,一种直流侧电压不对称的三电平逆变器调制方法是检测三电平逆变器的输出相电压,并判断三相输出电压的大小关系。计算出每相P、O、N电平的占空比,进而获得对应的开关序列,具体的说,如图2所示,是按如下步骤进行:

步骤1、利用电压传感器采集所述三电平逆变器直流侧的上电容电压uC1和下电容电压uC2,以及所述三电平逆变器的输出三相电压uA、uB、uC;

步骤2、所述三电平逆变器的输出侧通过采用星形连接方式,使得所述三电平逆变器的输出三相电压uA、uB、uC加和为零,并根据三电平逆变器的占空比调制模型,得到如式(1)所示的线电压方程:

式(1)中:uAB,uCA分别表示所述三电平逆变器的AB两相线电压和CA两相线电压;uDC为正母线电压,且uDC=uC1+uC2;DxP、DxO、DxN分别表示所述三电平逆变器的x相P电平、O电平、N电平的占空比,其中,x=A、B、C;

步骤3、比较所述三电平逆变器的输出三相电压uA、uB、uC的大小,得到最大电压所对应的相,记为max相;最小电压所对应的相,记为min相;以及中间电压所对应的相,记为mid相;

步骤4、令最大电压所对应的max相由P电平和O电平组成,令最小电压所对应的min相由O电平和N电平组成,令max相的P电平的作用时间和min相的N电平的作用时间相同;从而得到如式(2)所示的max相和min相的P电平、O电平、N电平的占空比表达式:

式(2)中,umin、umax分别表示所述三电平逆变器的输出三相电压uA、uB、uC的中最小电压和最大电压;

步骤5、当满足时,令中间电压所对应的mid相由P电平和O电平组成,从而得到如式(3)所示的mid相的P电平、O电平、N电平的占空比表达式:

当满足时,令中间电压所对应的mid相由O电平和N电平组成;从而得到如式(4)所示的mid相的P电平、O电平、N电平的占空比表达式:

具体实施中,根据中间电压与最大电压、最小电压的关系,计算出mid相P电平、O电平、N电平的占空比,确保每一相各电平的占空比均满足0≤DxP,DxO,DxN≤1。

步骤6、利用式(2)和式(3)或者式(2)和式(4)得到三电平逆变器的开关序列,从而实现对所述三电平逆变器的调制。

实施例中:分别选取不同的调制度m以及不对称度k进行实验,验证本发明调制方法的正确性和良好的谐波特性,其中u为输出线电压峰值;

对比图3a、图4a、图5a;图3b、图4b、图5b;以及图3c、图4c、图5c可以看出,同一调制度下,不对称度发生较大变化时,逆变器输出电流波形依然保持较好的正弦度且未发生偏移。结果表明:本发明的调制方法在直流侧电压不对称时依然能够使逆变器正常工作;

由图3a、图4a、图5a可以看出,当逆变器的调制度m=1时,输出电压、电流波形没有明显的过调制现象,表明该调制方法提高了直流侧电压的利用率;

由图3a-图3c;图4a-图4c;图5a-图5c可以看出,低频频谱分析结果显示输出电压基本不含低频谐波,高频频谱分析结果显示输出电压只含有开关频率倍数次的谐波,表明该调制方法下输出电压具有较好的低频谐波特性。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1