模块化多电平换流器四象限变频器的制作方法

文档序号:16484086发布日期:2019-01-04 22:54阅读:668来源:国知局
模块化多电平换流器四象限变频器的制作方法

本发明属于电力电子领域,具体涉及一种混合型模块化多电平拓扑结构的变频器。



背景技术:

模块化多电平换流器(modular multilevel converter,MMC)是近些年来迅速发展的一种适用于高压大功率电能变换应用场合的电力电子装置。除高压直流输电外,MMC也被应用于变频器领域。与现有的高压大容量变频器大多采用H桥型变频器相比,MMC不但保留了其高效率、多电平电压输出、模块化结构、安装维护容易的优点,并且省去了级联H桥变频器中成本高昂、损耗严重的移相变压器,可以直接连接电网并通过公共直流母线供电。MMC结构灵活简单、易于扩展的特点,也使其应用的电压/功率等级不再受限制。而MMC在高压电机变频调速中的应用存在着需要大量电容器支撑,并且低频下电容电压波动较为严重的问题。因此当MMC拖动电机大转矩低速运行时,务必要采用容量极大的电容器以保证电容电压波动在合理范围,造成了换流器成本昂贵、体积庞大的问题。

针对MMC低频运行时电容电压波动大的问题,以王宝安等人的《一种模块化多电平变换器的低频模式运行控制方法》(见专利CN103337977A)为例,目前主要方法是在MMC输出电压中注入共模电压,同时在桥臂电流中引入相同频率的环流,使MMC上下桥臂间形成高频的功率交换途径,令电容器能够以更高的频率进行充放电,继而降低电容电压的波动。然而这类方法存在两个严重的问题:一是会对电机施加幅值非常大的共模电压,严重威胁电机的绝缘安全并会带来轴电流问题影响电机寿命;另一个问题是桥臂中注入的环流会增大桥臂电流的幅值,加大MMC的损耗、增加散热要求,同时也不得不选用电流容量更大的半导体器件,大幅增加成本。周治国等人的《基于MMC结构的四象限高压变频器装置》(见专利CN104811057A)提出了将MMC应用于变频装置的方法,通过整流模块与交流电网相连接,输出直流电压到逆变模块最终连接电机类负载,实现了基于MMC的变频器的四象限运行。然而这种方法存在弊端,其整流模块产生的直流电压维持在较高水平不可调节,导致电机侧MMC运行效率降低,在低频运行时子模块电容电压波动严重,需要大容量的子模块电容器支撑,增加成本和体积;或是需要额外采用如上述高频注入的方法,仍存在弊端。



技术实现要素:

本发明针对MMC低频运行时存在的电容电压波动,以及高频注入方法会带来较大的电流冲击等问题,本发明提出了一种模块化多电平换流器四象限变频器。

本发明所述模块化多电平换流器四象限变频器,包括背靠背连接的两组模块化多电平换流器,所述两组模块化多电平换流器为网侧模块化多电平换流器和机侧模块化多电平换流器;所述网侧模块化多电平换流器的电源输入端连接交流电网,网侧模块化多电平换流器的直流母线输出端连接机侧模块化多电平换流器的直流母线输入端,机侧模块化多电平换流器的负载输出端连接电机类负载。

优选地,网侧模块化多电平换流器为三相桥式整流电路,每一相包含上下两个桥臂,每个桥臂由一个电感器L和N个结构相同的子模块堆叠而成,其中上桥臂子模块包含一个全桥功率单元和一组电容器C,下桥臂子模块包含一个半桥功率单元和一组电容器C。

优选地,网侧模块化多电平换流器的全桥功率单元或半桥功率单元的开关器件采用绝缘栅双极型晶体管IGBT、集成门极换流晶闸管IGCT或门极可关断晶闸管GTO全控型电力电子器件来实现;网侧模块化多电平换流器所需开关信号由网侧开关信号生成单元提供。

优选地,网侧开关信号生成单元的工作过程为:利用dq坐标变换和两组比例积分(PI)控制器分别控制上下桥臂的能量平衡来保证子模块电容电压与给定值相同;通过直流母线电流与给定值比较,用比例积分(PI)控制器控制直流母线电流跟随给定值。

优选地,网侧模块化多电平换流器工作在恒流源状态,由于其上桥臂是全桥子模块而下桥臂是半桥子模块,整流器实际输出电压的调节范围是0至Udc;

其中Udc是额定功率下的直流母线电压。

优选地,机侧模块化多电平换流器为三相桥式逆变电路,每一相包含上下两个桥臂,每个桥臂由一个电感器L和N个结构相同的子模块堆叠而成,每个子模块包括一个半桥功率单元和一组电容器C。

优选地,机侧模块化多电平换流器的全桥功率单元或半桥功率单元的开关器件采用绝缘栅双极型晶体管IGBT、集成门极换流晶闸管IGCT或门极可关断晶闸管GTO全控型电力电子器件来实现;机侧模块化多电平换流器所需开关信号由机侧开关信号生成单元提供。

优选地,机侧开关信号生成单元的工作过程为:在恒流源工况下,利用dq坐标变换控制交流电流以匹配输出转矩;通过将全部子模块电容电压平均值与给定值比较,利用比例积分控制器提供控制量,控制机侧模块化多电平换流器的能量平衡;通过上下桥臂电压做差输入比例积分控制器得到控制量,控制每相上下桥臂间能量平衡。

本发明的优点:本发明所述模块化多电平换流器四象限变频器提出了一种混合型模块化多电平拓扑结构,以及相应的运行控制方式,以大幅降低电容电压波动并提高换流器的运行效率。相比其他现有方案,本发明可以保证桥臂环流以及电容电压波动幅值在合理范围以内,避免了增加损耗,无需采用容量更大的半导体器件。更重要的是,本发明不会对电机造成共模电压,同时可以实现变频器的四象限运行。

附图说明

图1是本发明所述模块化多电平换流器四象限变频器的拓扑图;

图2是网侧开关信号生成单元的控制原理框图;

图3是机侧开关信号生成单元的控制原理框图;

图4是50Hz下机侧模块化多电平换流器电容电压波形图;

图5是50Hz下机侧模块化多电平换流器桥臂环流波形图;

图6是50Hz时直流母线电流的实例波形图;

图7是50Hz时直流母线电压的实例波形图;

图8是5Hz下机侧模块化多电平换流器电容电压波形图;

图9是5Hz下机侧模块化多电平换流器桥臂环流波形图;

图10是5Hz时直流母线电流的实例波形图;

图11是5Hz时直流母线电压的实例波形图;。

具体实施方式

下面结合图1~图11说明本发明所述模块化多电平换流器四象限变频器。

图1给出一个模块化多电平换流器四象限变频器的具体电路拓扑图,网侧模块化多电平换流器为三相桥式整流电路,每一相包含上下两个桥臂,每个桥臂由一个电感器L和N个结构相同的子模块SM1、SM2……SMN堆叠而成,其中上桥臂子模块SM1、SM2……SMN为全桥子模块,它包含一个全桥功率单元和一组电容器C;下桥臂子模块为半桥功率单元,它包含一个半桥功率单元和一组电容器C。所述全桥功率单元由S1、S2、S3、S4四个开关器件构成,与电容器C并联,电容器C两端电压为UC,所述半桥功率单元由S1、S2两个开关器件构成,与电容器C并联,电容器C两端电压为UC,网侧所有开关器件的开关信号由网侧开关信号生成单元提供。

机侧模块化多电平换流器为三相桥式逆变电路,每一相包含上下两个桥臂,每个桥臂由一个电感器L和N个结构相同的子模块SM1、SM2……SMN堆叠而成,每个子模块SM1、SM2……SMN均为半桥功率单元,它包括一个半桥功率单元和一组电容器C。所述半桥功率单元由S1、S2两个开关器件构成,与电容器C并联,电容器C两端电压为UC,机侧所有开关器件的开关信号由机侧开关信号生成单元提供。

参见图2来说明网侧开关信号生成单元的工作过程,利用dq坐标变换和两组比例积分(PI)控制器分别控制上下桥臂的能量平衡来保证子模块电容电压与给定值相同;通过直流母线电流与给定值比较,用比例积分(PI)控制器控制直流母线电流跟随给定值,上述控制方式生成的调制波经过载波移相调制生成开关信号。具体步骤为:

(1)检测各相上桥臂子模块的电容电压,并计算其平均值Uavg_u,将该平均值与给定电压Vc*=Udc/N比较,其差值送入比例积分(PI)调节器,调节器的输出作为上桥臂电流控制Idu的给定量Id_refu。

式中Udc为额定功率下直流母线电压,N为MMC中每个桥臂包含的子模块个数;

(2)检测各相下桥臂子模块的电容电压,并计算其平均值Uavg_d,将该平均值与给定电压Vc*=Udc/N比较,其差值送入比例积分(PI)调节器,调节器的输出作为下桥臂电流控制Idd的给定量Id_refd。

(3)将三相交流输出电流(ioA,ioB,ioC)进行dq变换得到Id和Iq的实际值(id,iq),分别与(1)(2)中得到的输出值(Id_refu,Id_refd)做差输入PI控制器,输出量经过dq反变换得到上下桥臂的调制波Uabc_u、Uabc_d。

(4)检测直流母线电流Idc,与给定直流电流Idc*做差,将其差值送入比例积分(PI)调节器,调节器的输出udi作为恒流控制的调节量;

(5)测量三相环流Icir_abc与Idc/3做差送入比例谐振(PR)调节器,得到控制量ucir用于抑制环流中二倍频波动。

其中Idc为MMC直流母线电流大小;

(6)测量三相环流Icir_abc与Idc/3做差经过比例积分(PI)控制器输出平衡三相环流的控制量ucb。

(7)将(4)(5)(6)的到的控制量udi,ucir,ucb叠加到(3)中上桥臂的调制波Uabc_u中,乘系数0.5得到上桥臂的调制波mabc_u;

(8)将(5)(6)得到的控制量ucir,ucb叠加到(3)中下桥臂的调制波Uabc_d中得到下桥臂的调制波mabc_d。

(9)将(7)(8)得到的调制波mabc_u,mabc_d利用载波移相调制生成桥臂各个子模块的控制信号,用来控制子模块中开关器件的通断。

(10)步骤(1)(2)中PI调节器的作用是保证MMC上下桥臂的能量平衡。

图2中θs为坐标变换的控制角。

参见图3说明机侧开关信号生成单元的工作过程,在恒流源工况下,利用dq坐标变换控制交流电流以匹配输出转矩;通过将全部子模块电容电压平均值与给定值比较,利用比例积分控制器提供控制量,控制机侧模块化多电平换流器的能量平衡;通过上下桥臂电压做差输入比例积分控制器得到控制量,控制每相上下桥臂间能量平衡,上述控制方式生成的调制波经过载波移相调制生成开关信号。具体步骤为:

(1)检测各个桥臂子模块的电容电压,并计算其平均值Uavg,将该平均值与给定电压Vc*=Udc/N比较,其差值送入比例积分(PI)调节器,调节器的输出作为平衡调节的控制量udi。

式中Udc为额定功率下直流母线电压,N为MMC中每个桥臂包含的子模块个数;

(2)检测上下桥臂电压UC_u,UC_d并将其差值送入比例积分(PI)调节器,调节器的输出作为桥臂平衡的控制量uab;

(3)测量三相环流Icir_abc与Idc/3做差送入比例谐振(PR)调节器,得到控制量ucir用于抑制环流中二倍频波动。

其中Idc为MMC直流母线电流大小;

(4)将输出电流ioABC(ioA,ioB,ioC)进行dq坐标变换得到Id和Iq的实际值(id,iq),,分别将其与给定值Id_ref*,Iq_ref*做差输入比例积分(PI)控制器,输出d轴、q轴电压的初始量usd,usq,经过解耦后得到d轴、q轴电压的控制量uod,uoq,再经过dq反变换得到三相交流调制波Uabcm。本步骤最终目的是控制交流输出电流恒定,其幅值可以由给定值id_ref*,iq_ref*计算得到,使电机电流可以根据转矩匹配设定;

(5)将dq控制得到的调制波Uabcm符号变换,并将(1)(2)(3)中的控制量ud,uab,ucir相加生成总控制量Delta,调制波Uabcm与Delta叠加得到最终上下桥臂的调制波mabcu,mabcd,利用载波移相调制生成桥臂各个子模块的控制信号,用来控制子模块中开关器件的通断。

步骤(2)中PI调节器的作用是保证MMC总的能量平衡;

步骤(3)中PI调节器的作用是保证MMC每一相中上下桥臂的能量均衡。

图3中θs为坐标变换的控制角。

图4~7为所述模块化多电平换流器四象限变频器运行在电机恒转矩状态下、50Hz时的实施实例。其中交流电网电压Uac=4.16kV,子模块个数N=10,子模块电容4mF,桥臂电感1mH,串联开关采用IGBT。图4和图5所示为本发明工作在额定频率50Hz时的波形,此时电容电压波动峰峰值为70V。图6和图7本发明工作在50Hz时直流母线电压电流的实例波形图,可见电网侧MMC可以控制直流电流保持稳定不变,电压根据功率自动灵活调节,有利于提高换流器的工作效率,同时,降低直流母线电压可以有效减小电容电压的波动。

图8~11为所述模块化多电平换流器四象限变频器运行在电机恒转矩状态下、5Hz时的实施实例。其中交流电网电压Uac=4.16kV,子模块个数N=10,子模块电容4mF,桥臂电感1mH,串联开关采用IGBT。图8和图9为本发明工作在低频5Hz时的波形,此时可见电容电压波动峰峰值约为60V,在允许范围内,换流器可以平稳正常运行。

图10和11所示为本发明工作在5Hz时直流母线电压电流的实例波形图,可见电网侧MMC可以控制直流电流保持稳定不变,电压根据功率自动灵活调节,有利于提高换流器的工作效率,同时,降低直流母线电压可以有效减小电容电压的波动;同时可见,在各个频率下的环流波动幅值大体相同,有效地降低了电力电子器件的电流应力。

以上列举的仅是本发明的若干具体实施例,本发明不限于以上实施例,还可以有许多变形,本领域的普通技术人员能从本发明公开的内容直接导出或联想到的所有变形,均应认为是本发明的保护范围。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1