一种智能变电站二次系统状态估计方法及装置与流程

文档序号:13738706阅读:168来源:国知局
一种智能变电站二次系统状态估计方法及装置与流程

本发明涉及电力领域,尤其涉及一种智能变电站二次系统状态估计方法及装置。



背景技术:

真实智能变电站二次系统是保障电网安全稳定运行的重要保障。目前,变电站二次系统的状态缺乏有效的监测手段,由于设备缺陷、二次回路故障、时钟失步、定值及逻辑错误等造成二次系统异常时有发生,给电网的安全稳定带来极大风险,另一方面,电网一次系统的事故分析往往需要多个二次专业系统的协同工作。

现有技术中,智能变电站二次系统是按照特定的功能设计的,数据采集独立、功能单一,为了综合运用各系统的数据信息,经常需要大量人工参与和实际经验,导致了费时费力,效率低下,限制了电网事故处理能力和恢复速度的技术问题。



技术实现要素:

本发明提供了一种智能变电站二次系统状态估计方法及装置,用于解决现有技术中,智能变电站二次系统是按照特定的功能设计的,数据采集独立、功能单一,为了综合运用各系统的数据信息,经常需要大量人工参与和实际经验,导致了费时费力,效率低下,限制了电网事故处理能力和恢复速度的技术问题。

本发明提供的一种智能变电站二次系统状态估计方法,包括:

解析智能变电站二次系统对应的scd文件获取逻辑节点采样数据发送矩阵和逻辑节点采样数据接收矩阵,其中,所述逻辑节点采样数据发送矩阵为:

其中,m为具有收发采样数据功能的逻辑节点数量,n为采样数据种类;

所述逻辑节点采样数据接收矩阵为:

根据所述逻辑节点采样数据发送矩阵和所述逻辑节点采样数据接收矩阵构造逻辑节点关联模型矩阵,其中,所述逻辑节点关联模型矩阵具体为:

根据一次设备采样数据种类和采样设备配置数量构造采样数据发送关联关系矩阵,其中,所述采样数据发送关联关系矩阵具体为:

获取到采样数据的真值矩阵,所述真值矩阵具体为:

xq×1=[x1…xq]t

获取到逻辑节点实际获取的m维采样接收值矩阵,所述采样接收值矩阵具体为:

zm×1,i=[z1,i…zm,i]t

其中,zj,i表示第j个逻辑节点对采样数据i的采样接收值大小;

构造逻辑节点理论获取的m维采样接收值矩阵,所述采样接收值矩阵具体为:

h(x)m×1,i=[h(x)1,i…h(x)m,i]t

根据所述逻辑节点采样数据发送矩阵、所述逻辑节点采样数据接收矩阵和所述采样数据发送关联关系矩阵构造二次系统状态估计量测传递矩阵,所述二次系统状态估计量测传递矩阵具体为:

构造所述逻辑节点理论采样接收值与所述采样数据真值之间的第一关系式,所述第一关系式具体为:

h(x)m×1,i=cm×1,i×xi;

构造所述逻辑节点理论采样接收值与逻辑节点实际采样接收值之间的第二关系式,所述第二关系式具体为:

zm×1,i=h(x)m×1,i+vm×1,i;

其中,vm×1,i为实际采样接收值大小与理论采样接收值大小之间的误差;

将所述逻辑节点理论采样接收值作为量测方程,构造整体误差最小目标函数,所述整体误差最小目标函数具体为:

minj(h(x)m×1,i)=(zm×1,i-h(x)m×1,i)tr-1(zm×1,i-h(x)m×1,i);

其中,r为权重矩阵;

根据所述整体误差最小目标函数获得线性状态估计解式,所述线性状态估计解式具体为:

根据所述线性状态估计解式获取到采样接收值估计矩阵,所述采样接收值估计矩阵具体为:

优选地,所述解析智能变电站二次系统对应的scd文件获取逻辑节点采样数据发送矩阵和逻辑节点采样数据接收矩阵,其中,所述逻辑节点采样数据发送矩阵具体为:

其中,m为具有收发采样数据功能的逻辑节点数量,n为采样数据种类具体包括:

解析智能变电站二次系统对应的scd文件获取逻辑节点采样数据发送矩阵和逻辑节点采样数据接收矩阵,其中,所述逻辑节点采样数据发送矩阵具体为:

当逻辑节点j发送采样数据i时,将pij赋值为1,当逻辑节点j不发送采样数据i时,将pij赋值为0,其中,m为具有收发采样数据功能的逻辑节点数量,n为采样数据种类。

优选地,所述逻辑节点采样数据接收矩阵为:具体包括:

所述逻辑节点采样数据接收矩阵为:

当逻辑节点j接收采样数据i时,将rij赋值为1,当逻辑节点j不接收采样数据i时,将rij赋值为0。

优选地,所述采样数据发送关联关系矩阵具体为:具体包括:

所述采样数据发送关联关系矩阵具体为:

当逻辑节点i发送采样数据j时,将bij赋值为1,当逻辑节点i不发送采样数据j时,将bij赋值为0,其中,q为采样数据数目。

优选地,所述根据所述整体误差最小目标函数获得线性状态估计解式具体包括:

根据所述整体误差最小目标函数通过加权最小二乘法获得线性状态估计解式。

本发明提供的一种智能变电站二次系统状态估计装置,包括:

解析模块,用于解析智能变电站二次系统对应的scd文件获取逻辑节点采样数据发送矩阵和逻辑节点采样数据接收矩阵,其中,所述逻辑节点采样数据发送矩阵为:

其中,m为具有收发采样数据功能的逻辑节点数量,n为采样数据种类;

所述逻辑节点采样数据接收矩阵为:

第一构造模块,用于根据所述逻辑节点采样数据发送矩阵和所述逻辑节点采样数据接收矩阵构造逻辑节点关联模型矩阵,其中,所述逻辑节点关联模型矩阵具体为:

第二构造模块,用于根据一次设备采样数据种类和采样设备配置数量构造采样数据发送关联关系矩阵,其中,所述采样数据发送关联关系矩阵具体为:

第一获取模块,用于获取到采样数据的真值矩阵,所述真值矩阵具体为:

xq×1=[x1…xq]t

第二获取模块,用于获取到逻辑节点实际获取的m维采样接收值矩阵,所述采样接收值矩阵具体为:

zm×1,i=[z1,i…zm,i]t

其中,zj,i表示第j个逻辑节点对采样数据i的采样接收值大小;

第三构造模块,用于构造逻辑节点理论获取的m维采样接收值矩阵,所述采样接收值矩阵具体为:

h(x)m×1,i=[h(x)1,i…h(x)m,i]t

第四构造模块,用于根据所述逻辑节点采样数据发送矩阵、所述逻辑节点采样数据接收矩阵和所述采样数据发送关联关系矩阵构造二次系统状态估计量测传递矩阵,所述二次系统状态估计量测传递矩阵具体为:

第五构造模块,用于构造所述逻辑节点理论采样接收值与所述采样数据真值之间的第一关系式,所述第一关系式具体为:

h(x)m×1,i=cm×1,i×xi;

第六构造模块,用于构造所述逻辑节点理论采样接收值与逻辑节点实际采样接收值之间的第二关系式,所述第二关系式具体为:

zm×1,i=h(x)m×1,i+vm×1,i;

其中,vm×1,i为实际采样接收值大小与理论采样接收值大小之间的误差;

第七构造模块,用于将所述逻辑节点理论采样接收值作为量测方程,构造整体误差最小目标函数,所述整体误差最小目标函数具体为:

minj(h(x)m×1,i)=(zm×1,i-h(x)m×1,i)tr-1(zm×1,i-h(x)m×1,i);

其中,r为权重矩阵;

第三获取模块,用于根据所述整体误差最小目标函数获得线性状态估计解式,所述线性状态估计解式具体为:

第四获取模块,用于根据所述线性状态估计解式获取到采样接收值估计矩阵,所述采样接收值估计矩阵具体为:

优选地,所述解析模块具体用于:

解析智能变电站二次系统对应的scd文件获取逻辑节点采样数据发送矩阵和逻辑节点采样数据接收矩阵,其中,所述逻辑节点采样数据发送矩阵具体为:

当逻辑节点j发送采样数据i时,将pij赋值为1,当逻辑节点j不发送采样数据i时,将pij赋值为0,其中,m为具有收发采样数据功能的逻辑节点数量,n为采样数据种类;

所述逻辑节点采样数据接收矩阵为:

优选地,所述解析模块具体用于:

解析智能变电站二次系统对应的scd文件获取逻辑节点采样数据发送矩阵和逻辑节点采样数据接收矩阵,其中,所述逻辑节点采样数据发送矩阵具体为:

当逻辑节点j发送采样数据i时,将pij赋值为1,当逻辑节点j不发送采样数据i时,将pij赋值为0,其中,m为具有收发采样数据功能的逻辑节点数量,n为采样数据种类;

所述逻辑节点采样数据接收矩阵为:

当逻辑节点j接收采样数据i时,将rij赋值为1,当逻辑节点j不接收采样数据i时,将rij赋值为0。

优选地,所述第二构造模块,具体用于:

根据一次设备采样数据种类和采样设备配置数量构造采样数据发送关联关系矩阵,其中,所述采样数据发送关联关系矩阵具体为:

当逻辑节点i发送采样数据j时,将bij赋值为1,当逻辑节点i不发送采样数据j时,将bij赋值为0,其中,q为采样数据数目。

优选地,所述第三获取模块,具体用于:

根据所述整体误差最小目标函数通过加权最小二乘法获得线性状态估计解式,所述线性状态估计解式具体为:

从以上技术方案可以看出,本发明具有以下优点:

本发明提供的一种智能变电站二次系统状态估计方法,包括:解析智能变电站二次系统对应的scd文件获取逻辑节点采样数据发送矩阵和逻辑节点采样数据接收矩阵;根据所述逻辑节点采样数据发送矩阵和所述逻辑节点采样数据接收矩阵构造逻辑节点关联模型矩阵;根据一次设备采样数据种类和采样设备配置数量构造采样数据发送关联关系矩阵;获取到采样数据的真值矩阵;获取到逻辑节点实际获取的m维采样接收值矩阵;构造逻辑节点理论获取的m维采样接收值矩阵;根据所述逻辑节点采样数据发送矩阵、所述逻辑节点采样数据接收矩阵和所述采样数据发送关联关系矩阵构造二次系统状态估计量测传递矩阵;构造所述逻辑节点理论采样接收值与所述采样数据真值之间的第一关系式;构造所述逻辑节点理论采样接收值与逻辑节点实际采样接收值之间的第二关系式;将所述逻辑节点理论采样接收值作为量测方程,构造整体误差最小目标函数;根据所述整体误差最小目标函数获得线性状态估计解式;根据所述线性状态估计解式获取到采样接收值估计矩阵。

本发明中,通过二次设备之间的物理关联以及逻辑节点之间的关联关系,对二次监测系统的采样值进行状态估计,其中针对变电站scd文件获得二次系统逻辑节点之间的关联关系,针对采样值数据传输通道和对象获得了二次系统报文传输关系;然后根据所述整体误差最小目标函数获得线性状态估计解式,将实际采样接收值大小与理论采样接收值大小之间的误差进行状态估计,从而还原二次系统真实采样数据,解决了现有技术中,智能变电站二次系统是按照特定的功能设计的,数据采集独立、功能单一,为了综合运用各系统的数据信息,经常需要大量人工参与和实际经验,导致了费时费力,效率低下,限制了电网事故处理能力和恢复速度的技术问题。

附图说明

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。

图1为本发明提供的一种智能变电站二次系统状态估计方法的一个实施例的流程示意图;

图2为本发明提供的一种智能变电站二次系统状态估计方法的另一个实施例的流程示意图;

图3为本发明提供的一种智能变电站二次系统状态估计装置的一个实施例的结构示意图。

具体实施方式

本发明实施例提供了一种智能变电站二次系统状态估计方法及装置,解决了现有技术中,智能变电站二次系统是按照特定的功能设计的,数据采集独立、功能单一,为了综合运用各系统的数据信息,经常需要大量人工参与和实际经验,导致了费时费力,效率低下,限制了电网事故处理能力和恢复速度的技术问题。

为使得本发明的发明目的、特征、优点能够更加的明显和易懂,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,下面所描述的实施例仅仅是本发明一部分实施例,而非全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。

请参阅图1,本发明实施例提供的一种智能变电站二次系统状态估计方法,包括:

101:解析智能变电站二次系统对应的scd文件获取逻辑节点采样数据发送矩阵和逻辑节点采样数据接收矩阵,其中,逻辑节点采样数据发送矩阵为:

其中,m为具有收发采样数据功能的逻辑节点数量,n为采样数据种类;

逻辑节点采样数据接收矩阵为:

102:根据逻辑节点采样数据发送矩阵和逻辑节点采样数据接收矩阵构造逻辑节点关联模型矩阵,其中,逻辑节点关联模型矩阵具体为:

103:根据一次设备采样数据种类和采样设备配置数量构造采样数据发送关联关系矩阵,其中,采样数据发送关联关系矩阵具体为:

104:获取到采样数据的真值矩阵,真值矩阵具体为:

xq×1=[x1…xq]t

105:获取到逻辑节点实际获取的m维采样接收值矩阵,采样接收值矩阵具体为:

zm×1,i=[z1,i…zm,i]t

其中,zj,i表示第j个逻辑节点对采样数据i的采样接收值大小;

106:构造逻辑节点理论获取的m维采样接收值矩阵,采样接收值矩阵具体为:

h(x)m×1,i=[h(x)1,i…h(x)m,i]t

107:根据逻辑节点采样数据发送矩阵、逻辑节点采样数据接收矩阵和采样数据发送关联关系矩阵构造二次系统状态估计量测传递矩阵,二次系统状态估计量测传递矩阵具体为:

108:构造逻辑节点理论采样接收值与采样数据真值之间的第一关系式,第一关系式具体为:

h(x)m×1,i=cm×1,i×xi;

109:构造逻辑节点理论采样接收值与逻辑节点实际采样接收值之间的第二关系式,第二关系式具体为:

zm×1,i=h(x)m×1,i+vm×1,i;

其中,vm×1,i为实际采样接收值大小与理论采样接收值大小之间的误差;

110:将逻辑节点理论采样接收值作为量测方程,构造整体误差最小目标函数,整体误差最小目标函数具体为:

minj(h(x)m×1,i)=(zm×1,i-h(x)m×1,i)tr-1(zm×1,i-h(x)m×1,i);

其中,r为权重矩阵;

111:根据整体误差最小目标函数获得线性状态估计解式,线性状态估计解式具体为:

112:根据线性状态估计解式获取到采样接收值估计矩阵,采样接收值估计矩阵具体为:

本发明提供的一种智能变电站二次系统状态估计方法,包括:解析智能变电站二次系统对应的scd文件获取逻辑节点采样数据发送矩阵和逻辑节点采样数据接收矩阵;根据逻辑节点采样数据发送矩阵和逻辑节点采样数据接收矩阵构造逻辑节点关联模型矩阵;根据一次设备采样数据种类和采样设备配置数量构造采样数据发送关联关系矩阵;获取到采样数据的真值矩阵;获取到逻辑节点实际获取的m维采样接收值矩阵;构造逻辑节点理论获取的m维采样接收值矩阵;根据逻辑节点采样数据发送矩阵、逻辑节点采样数据接收矩阵和采样数据发送关联关系矩阵构造二次系统状态估计量测传递矩阵;构造逻辑节点理论采样接收值与采样数据真值之间的第一关系式;构造逻辑节点理论采样接收值与逻辑节点实际采样接收值之间的第二关系式;将逻辑节点理论采样接收值作为量测方程,构造整体误差最小目标函数;根据整体误差最小目标函数获得线性状态估计解式;根据线性状态估计解式获取到采样接收值估计矩阵。

本发明中,通过二次设备之间的物理关联以及逻辑节点之间的关联关系,对二次监测系统的采样值进行状态估计,其中针对变电站scd文件获得二次系统逻辑节点之间的关联关系,针对采样值数据传输通道和对象获得了二次系统报文传输关系;然后根据整体误差最小目标函数获得线性状态估计解式,将实际采样接收值大小与理论采样接收值大小之间的误差进行状态估计,从而还原二次系统真实采样数据,解决了现有技术中,智能变电站二次系统是按照特定的功能设计的,数据采集独立、功能单一,为了综合运用各系统的数据信息,经常需要大量人工参与和实际经验,导致了费时费力,效率低下,限制了电网事故处理能力和恢复速度的技术问题。

以上是对一种智能变电站二次系统状态估计方法的一个实施例进行的描述,下面将对一种智能变电站二次系统状态估计方法的另一个实施例进行详细的描述。

请参阅图2,本发明实施例提供的一种智能变电站二次系统状态估计方法,包括:

201:解析智能变电站二次系统对应的scd文件获取逻辑节点采样数据发送矩阵和逻辑节点采样数据接收矩阵,其中,逻辑节点采样数据发送矩阵具体为:

当逻辑节点j发送采样数据i时,将pij赋值为1,当逻辑节点j不发送采样数据i时,将pij赋值为0,其中,m为具有收发采样数据功能的逻辑节点数量,n为采样数据种类;

逻辑节点采样数据接收矩阵为:

当逻辑节点j接收采样数据i时,将rij赋值为1,当逻辑节点j不接收采样数据i时,将rij赋值为0;

202:根据逻辑节点采样数据发送矩阵和逻辑节点采样数据接收矩阵构造逻辑节点关联模型矩阵,其中,逻辑节点关联模型矩阵具体为:

203:根据一次设备采样数据种类和采样设备配置数量构造采样数据发送关联关系矩阵,其中,采样数据发送关联关系矩阵具体为:

当逻辑节点i发送采样数据j时,将bij赋值为1,当逻辑节点i不发送采样数据j时,将bij赋值为0,其中,q为采样数据数目;

204:获取到采样数据的真值矩阵,真值矩阵具体为:

xq×1=[x1…xq]t

205:获取到逻辑节点实际获取的m维采样接收值矩阵,采样接收值矩阵具体为:

zm×1,i=[z1,i…zm,i]t

其中,zj,i表示第j个逻辑节点对采样数据i的采样接收值大小;

206:构造逻辑节点理论获取的m维采样接收值矩阵,采样接收值矩阵具体为:

h(x)m×1,i=[h(x)1,i…h(x)m,i]t

207:根据逻辑节点采样数据发送矩阵、逻辑节点采样数据接收矩阵和采样数据发送关联关系矩阵构造二次系统状态估计量测传递矩阵,二次系统状态估计量测传递矩阵具体为:

208:构造逻辑节点理论采样接收值与采样数据真值之间的第一关系式,第一关系式具体为:

h(x)m×1,i=cm×1,i×xi;

209:构造逻辑节点理论采样接收值与逻辑节点实际采样接收值之间的第二关系式,第二关系式具体为:

zm×1,i=h(x)m×1,i+vm×1,i;

其中,vm×1,i为实际采样接收值大小与理论采样接收值大小之间的误差;

210:将逻辑节点理论采样接收值作为量测方程,构造整体误差最小目标函数,整体误差最小目标函数具体为:

minj(h(x)m×1,i)=(zm×1,i-h(x)m×1,i)tr-1(zm×1,i-h(x)m×1,i);

其中,r为权重矩阵;

211:根据整体误差最小目标函数通过加权最小二乘法获得线性状态估计解式,线性状态估计解式具体为:

212:根据线性状态估计解式获取到采样接收值估计矩阵,采样接收值估计矩阵具体为:

以上是对一种地形建模和网格生成方法的另一个实施例进行的描述,下面将对一种智能变电站二次系统状态估计装置的一个实施例进行详细的描述。

请参阅图3,本发明实施例提供的一种智能变电站二次系统状态估计装置,包括:

解析模块301,用于解析智能变电站二次系统对应的scd文件获取逻辑节点采样数据发送矩阵和逻辑节点采样数据接收矩阵,其中,逻辑节点采样数据发送矩阵为:

其中,m为具有收发采样数据功能的逻辑节点数量,n为采样数据种类;

逻辑节点采样数据接收矩阵为:

第一构造模块302,用于根据逻辑节点采样数据发送矩阵和逻辑节点采样数据接收矩阵构造逻辑节点关联模型矩阵,其中,逻辑节点关联模型矩阵具体为:

第二构造模块303,用于根据一次设备采样数据种类和采样设备配置数量构造采样数据发送关联关系矩阵,其中,采样数据发送关联关系矩阵具体为:

第一获取模块304,用于获取到采样数据的真值矩阵,真值矩阵具体为:

xq×1=[x1…xq]t

第二获取模块305,用于获取到逻辑节点实际获取的m维采样接收值矩阵,采样接收值矩阵具体为:

zm×1,i=[z1,i…zm,i]t

其中,zj,i表示第j个逻辑节点对采样数据i的采样接收值大小;

第三构造模块306,用于构造逻辑节点理论获取的m维采样接收值矩阵,采样接收值矩阵具体为:

h(x)m×1,i=[h(x)1,i…h(x)m,i]t

第四构造模块307,用于根据逻辑节点采样数据发送矩阵、逻辑节点采样数据接收矩阵和采样数据发送关联关系矩阵构造二次系统状态估计量测传递矩阵,二次系统状态估计量测传递矩阵具体为:

第五构造模块308,用于构造逻辑节点理论采样接收值与采样数据真值之间的第一关系式,第一关系式具体为:

h(x)m×1,i=cm×1,i×xi;

第六构造模块309,用于构造逻辑节点理论采样接收值与逻辑节点实际采样接收值之间的第二关系式,第二关系式具体为:

zm×1,i=h(x)m×1,i+vm×1,i;

其中,vm×1,i为实际采样接收值大小与理论采样接收值大小之间的误差;

第七构造模块310,用于将逻辑节点理论采样接收值作为量测方程,构造整体误差最小目标函数,整体误差最小目标函数具体为:

minj(h(x)m×1,i)=(zm×1,i-h(x)m×1,i)tr-1(zm×1,i-h(x)m×1,i);

其中,r为权重矩阵;

第三获取模块311,用于根据整体误差最小目标函数获得线性状态估计解式,线性状态估计解式具体为:

第四获取模块312,用于根据线性状态估计解式获取到采样接收值估计矩阵,采样接收值估计矩阵具体为:

在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或模块的间接耦合或通信连接,可以是电性,机械或其它的形式。

所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。

另外,在本发明各个实施例中的各功能模块可以集成在一个处理模块中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。

以上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1