一种基于谐振复位隔离的正激型swiss整流器的制作方法

文档序号:20006673发布日期:2020-02-22 03:40阅读:409来源:国知局
一种基于谐振复位隔离的正激型swiss整流器的制作方法

本发明涉及电力电子领域,具体是一种基于谐振复位隔离的正激型swiss整流器。

技术背景

随着工业技术的飞速发展,人们对使用的电能的质量要求越来越高,在能源日益危机的今天,以高效节能、优质合理使用电能为特点的电力电子装置得到了前所未有的发展。电力电子设备的使用已经非常广泛,无论是对于一个小的家庭,还是对于一个大的国家,它都已经不可或缺。但是过度的使用,同时也带来了新的问题,即谐波问题。随着谐波问题的严重化,其对电网的影响也是更加严重。所以,为了降低电能的损耗,降低谐波变得刻不容缓。

因此寻找一种新型的整流器拓扑结构显得极其重要,很多用电设备不能由电网直接供电,而需要电力电子装置将电能的形式进行变换。dc-dc变换器在电力电子装置中的应用非常广泛,其中谐振复位正激变换器,因为其复位电压可以大于输入电压而具有占空比可以大于0.5的优点。为了提高了变换器的效率和工作强度,提出一种改进型的的整流器,即一种基于谐振复位隔离的正激型swiss整流器。



技术实现要素:

为解决上述问题,本发明提供一种基于谐振复位隔离的正激型swiss整流器。,此整流器此电路具有较低的器件电压应力、宽范围降压输出、较强输入、输出电流控制能力的特点,具有高频、高效传输、全负载。

为解决上述技术问题,本发明的实施例采用如下技术方案:

一种基于谐振复位隔离的swiss正向整流器,包括由输入rc滤波电路,六个二极管构成的整流桥,由六个二极管和六个igbt组成的谐波注入电路网络,两个快速可关断开关管(t+和t),两个高频变压器和二极管d+和d-组成隔离的正激型dc-dc变换器,最后串接一个rlc输出电路。其中所述的滤波rc型滤波电路,其电容公共端接地;所述的整流桥和谐波注入电路共同构成输入电压的选择部分,其为相互并联的三相桥臂,每相桥臂包括两个串联的二极管以及桥臂的中点一侧串联两个方向不同的具有低正向压降的igbt管,另一侧经输入滤波电路与三相电压源相连。并联的各桥臂的输入端通过变压器与隔离的正激型dc-dc变换器相连接然后串接一个rlc输出电路。

其中所述的rc滤波电路,其特征是所述lc滤波电路由三个滤波电感ra、rb、rc以及三个滤波电容ca、cb、cc组成然后分别与电网对称三相电源相连接。

其中所述的三相不可控整流桥,其特征是所述的三相不可控整流桥由二极管d1、d2、d3、d4、d5、d6以及开关管t+和t-所组成。其中d1与d2,d3与d4,d5与d6串联然后再并联,开关管t+和t-分别连在上下两端。

其中所述有源三次谐波注入电路网络,其特征在于所述的输入电压的选择部分是由具有低正向压降的igbt的反并联连接组成的三次谐波注入网络sya与二极管dya1、dya2连接在a相、具有低正向压降的igbt的反并联连接组成的三次谐波注入网络syb与二极管dyb1、dyb2连接在b相、具有低正向压降的igbt的反并联连接组成的三次谐波注入网络syc与二极管dyc1、dyc2连接在c相组成。

其中所述隔离的正激型dc-dc变换器,其特征是通过两个变压器将整流二极管d+和d-与三相不可控整流器隔离,再与rlc负载相连接。

与现有技术相比,本发明的有益效果:根据swiss整流器的工作原理和谐振复位正激变换器的特点,此发明干扰能力强、提高了整流器功率密度、还使得变换器输入电流连续、输入滤波电容体积减小、输入电流纹波减小进效率高成本低、全电压范围可调的优异性能。该整流器具有很高的电压调整率和负载调整率,可靠性大大提高,减少了谐波污染,使得电能质量明显改善,应用前景非常广泛。

附图说明

为了更清楚的说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单的介绍,显而易见的,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。

图1为本发明一种基于谐振复位隔离的swiss正向整流器的结构示意图。

图2为本发明一种基于基于谐振复位隔离的swiss正向整流器中三相谐波注入网络的导通状态图。

图3为本发明一种基于零电流开关pwm变换器的三相电压整流器第一阶段t-,t+同时导通的工作状态。

图4为本发明一种基于零电流开关pwm变换器的三相电压整流器第二阶段t-截止,t+导通的工作状态。

图5为本发明一种基于零电流开关pwm变换器的三相电压整流器第三阶段t-导通,t+截止的工作状态。

图6为本发明一种基于零电流开关pwm变换器的三相电压整流器第四阶段t-,t+同时截止的工作状态。

具体实施方式

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,应当注意,在此所述的实施例仅为本发明的部分实施例,而非本发明的全部实现方式,所述实施例只有示例性。

参照图1,基于谐振复位隔离的swiss正向整流器,包括由输入rc滤波电路,六个二极管构成的整流桥,由六个二极管和六个igbt组成的谐波注入电路网络,两个快速可关断开关管(t+和t),两个高频变压器和二极管d+和d-组成隔离的正激型dc-dc变换器,最后串接一个rlc输出电路。其中所述的滤波rc型滤波电路,其电容公共端接地;所述的整流桥和谐波注入电路共同构成输入电压的选择部分,其为相互并联的三相桥臂,每相桥臂包括两个串联的二极管以及桥臂的中点一侧串联两个方向不同的具有低正向压降的igbt管,另一侧经输入滤波电路与三相电压源相连。并联的各桥臂的输入端通过变压器与隔离的正激型dc-dc变换器相连接然后串接一个rlc输出电路。

参照图2,为三相谐波注入网络的导通状态,由此网络只在电压瞬时值为中间大小对应的相导通,由t+和t-的导通情况来进行定义一种基于零电流开关pwm变换器的三相电压整流器的工作状态。

详细分析电路的工作过程,选择a相电压相角为0o-30o的扇区进行分析,此时a相电压瞬时值大于b相电压瞬时值大于c相电压瞬时值,因为b相电压的瞬时值大小位于中间,所以此时该相电流为零,但是三相注入式网络中与之对应的电流支路导通,即syb导通,进而补偿了死区电流。对于其余导通时间内的工作模态,可以根据此方法进行计算。

a相电压相角为0o-30o时各个阶段的等效电流通路。

参照图3为第一阶段,此时t+和t-导通,输出电压u0相当于uacn2/n1,电感充电,电感电流成线性上升,负载电流为idc。

参照图4为第二阶段,此时t+导通,t-截止,输出电压upn相当于uab,因为电感充的电与输入电压的大小不明确,所以无法得知电感是充电还是放电,输出电压u0相当于ubcn2/n1,负载电流为idc。

参照图5为第三阶段,此时t-导通,t+截止,输出电压upn相当于ubc,因为电感充的电与输入电压的大小不明确,所以无法得知电感是充电还是放电。输出电压u0相当于uabn2/n1,负载电流为idc。

参照图6为第四阶段,此时t+和t-都截止,输出电压u0相当于0,电感放点,ib=-ic=0,ia=0。

通过以上分析,可知通过t+和t-的通断,可以ia,ic让跟随ua,uc,根据kcl和三相对称,即ia+ib+ic=0,所以ib也跟随ub,又因其他工作区间类似于前30°的工作区间,所以把之前的分析扩展到整个周期,就可以得到三相电流的正弦控制,进而实现了功率因数调节。

以上对本发明的实施例进行了描述,上述的具体实施方式仅仅是示意性的,而不是所述技术方案的限制,所以本发明并不局限于上述的具体实施方式,所有本领域普通技术人员在不脱离本发明宗旨和构思的前提下,及其它对本发明技术方案的简单替换和各种变化,都属于本发明的保护范围。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1