分布式电源接入用户双向计量、监控与能效管理系统及方法

文档序号:9219268阅读:429来源:国知局
分布式电源接入用户双向计量、监控与能效管理系统及方法
【技术领域】
[0001]本发明涉及分布式发电领域,具体的讲,涉及一种分布式电源接入用户双向计量、监控与能效管理系统及方法。
【背景技术】
[0002]随着环境问题域能源问题越来越受到关注,分布式发电,尤其是可再生能源分布式发电技术发展迅速,成为各国能源供给的重点发展方向。传统的电网是由大型发电厂集中发电,通过电网将电能输送和分配到分散各用户进行使用,存在设网损大,输配电成本高等问题。而可再生能源通常具备发电功率密度小、间歇性及随机性大,采用传统的集中发电方式需要占用大量的面积,而且由于发电的间歇性使得电能的调度和输送带来很大问题,经常出现脱网或者弃电等情况发生,即对电网的安全造成影响,对可再生能源的利用效率也不高,因此可再生能源大规模利用比较适合大规模的分布式发电形式。目前世界各国在进过可再生能源集中电站发电模式以后,都在大力推广分布式发电形式。在用户侧附件根据可再生能源的形式发展分布式发电,直接给用户供电,无需经过输电和配电过程,大大降低电能输送损耗,而且能够提高供电的可靠性。
[0003]接入的分布式电源的用户具备了发电能力,使得电力流在用户和电网之间双向流动,分布式发电不足时用户继续从电网购电满足用户负荷需要,在用电低谷时刻用电量小于分布式发电时,用户可以向电网售电,也可以通过储能系统将多余的电能储存起来,在分布式发电不足时释放出来供负荷使用,或者在合适的时候卖给电网。这样就存在了用户和电网的电能结算问题,需要采用双向计量方法计量用户和电网的电能交换。目前各政府都大力支持可再生能源分布式发电,都有相关的补贴政策,因此可再生能源分布式发电需要单独精确计量以获得政府补贴。另外由于分布式电源的接入以及储能系统的配置,使得用户的发电、用电变得更加复杂,如何协调好分布式发电、储能、用电及售电将是一个非常有意义的能效管理问题,合理的能效管理方法能够提高用户的收益,降低用电成本,并能够最大化的利用可再生能源。

【发明内容】

[0004]本发明要解决的技术问题是,克服现有技术中分布式电源接入用户情况下用户与电网电能双向流动的计量问题、监控与能效管理的不足,提供一种分布式电源接入用户双向计量、监控与能效管理系统及方法。
[0005]为解决技术问题,本发明的具体解决方案如下:
[0006]提供一种分布式电源接入用户计量、监控与能效管理系统,包括处理器模块、计量与监控模块、储能充放电控制模块、负荷控制模块和通讯模块;处理器模块分别接至储能充放电控制模块、负荷控制模块和和通讯模块,且与通讯模块实现双向数据交互;
[0007]计量与监控模块接至处理器模块,用于实现三路的双向计量与三路的监控;其中,三路的双向计量是指对分布式发电设备、储能设备和负荷分别与电网间的双向电能进行计量;三路监控是指对分布式发电设备、储能设备和负荷的运行状态进行监控;
[0008]储能设备通过储能并网逆变器接至电网,储能充放电控制模块接至储能并网逆变器,用于控制储能设备的充电操作或放电操作;储能充放电控制模块可以根据处理器模块发送来的充电还是放电或是待机指令,实现对储能设备的控制,使其工作在对应的充电、放电或待机状态。
[0009]负荷被分为重要负荷和一般负荷,负荷控制模块在紧急情况和能效管理需要时切断对一般负荷的供电;重要负荷和一般负荷由使用者根据负荷自身的重要性来区分,并将其区分依据设置于负荷控制模块中,负荷控制模块根据处理器模块发送来的负荷控制指令可以对一般负荷进行供电或者是断电控制。
[0010]通讯模块通过有线或无线方式与电网公司电能采集系统实现通信,用于上传电能信息、获得实时电价信息,并将实时电价信息传送到处理器模块。通讯模块可以采用485通讯、以太网通讯等多种方式,实时接收电网公司配电系统中电能采集系统发送的实时电价信息传送到处理器模块,并将用户计量、监控与能效管理系统采集的电能数据传送到电网公司配电系统中电能采集系统。
[0011]本发明中,所述分布式发电设备是:光伏发电设备、风能发电设备、燃料电池发电设备或微型燃气发电设备中的任意一种。
[0012]本发明中,所述储能设备是:各种类型的蓄电池组或者超级电容组。
[0013]本发明进一步提供了基于前述系统的分布式电源接入用户计量、监控与能效管理方法,具体包括:处理器模块根据获得的实时电价信息、电能数据和监控数据进行能效管理计算,实现储能设备的充放电控制计算和负荷控制计算:将充放电指令发送到储能充放电控制模块,由其实现储能设备充电和放电状态的转变;将负荷控制指令发送给负荷控制模块,由其对一般负荷进行通断控制。
[0014]所述储能设备的充放电控制计算是指:处理器模块根据通讯模块从电网电能采集系统获得的实时电价P、储能充放电效率η、分布式发电上网电价Ρ2、储能上网电价Ρ3以及分布式发电功率Wl、负荷功率W2进行储能设备的充放电控制:
[0015]当分布式发电功率、负荷功率及电价信息同时满足以下式⑴和式(2)时,分布式发电设备给储能设备充电,否则储能设备处于待机状态,分布式发电设备多余电量直接上网售电;
[0016]Wl > W2(I)
[0017]Ρ2 < Ρ3Χ η (2)
[0018]当处于用电低谷时刻,当前电价和储能售电电价满足下式(3),且储能设备未充满电时,储能设备从电网购电进行充电控制;
[0019]P < Ρ3Χ η (3)
[0020]当分布式发电功率小于负荷用电功率、储能设备剩余电能>10%,且满足下式(4)时,储能设备进行放电供负荷用电,否则直接从电网购电供负荷用电:
[0021]P > Ρ3Χ η (4)。
[0022]所述负荷控制计算是指:处理器模块根据设置的负荷控制参考电价Ρ1,以及通讯模块从电网电能采集系统获得的实时电价P进行判断:当Pl多P时,打开一般负荷供电;当P1〈P时,关闭一般负荷供电;处理器模块将上述判断结果发送到负荷控制模块,控制一般负荷的供电。
[0023]本发明中,计量的分布式发电量用于获取政府财政补贴,计量的储能放电用于未来可能的储能补贴,计量的用户和电网双向电能用于用户和电网进行电价结算。三路的双向计量与三路的监控均通过传感器或测量装置的信号采集与传输实现,这是现有技术。三路监控包括分布式发电状态、储能状态、负荷状态。对分布式发电的监测包括实时有功功率、无功功率、电压、频率、分布式发电状态等,对储能的监测包括剩余电量、储能状态、充放电功率、电压等;对负荷的监测包括负荷用电有功功率、无功功率、电压等。计量与监控模块采集的计量和监控的数据传送到处理器模块。
[0024]与现有技术相比,本发明的有益效果在于:
[0025]传统的包含分布式电源和储能系统的能效管理都是基于固定电价机制,既没有考虑到未来电力市场环境下的实时电价情形和储能电池的充放电效率问题,也没有考虑项电网售电的情况以及可能的储能放电的补贴政策等问题。
[0026]采用本发明的系统和方法,可以实时的根据分布式发电信息和电价信息进行能效管理控制,并考虑了未来可能的储能独立的售电价格和储能充放电效率因素,使得能效管理控制跟具有实际意义和经济价值。
【附图说明】
[0027]图1为分布式电源接入用户计量、监控与能效管理系统示意图。
[0028]图2为计量、监控与能效管理系统功能框图。
【具体实施方式】
[0029]以下结合附图对本发明的优选实施例进行说明,应当理解,此次所描述的优选实施例仅用于说明和解释本发明,并不用于限定本发明。
[0030]首先需要说明的是,本发明涉及工业控制技术,是计算机技术在电网设备控制技术领域的一种应用。在本发明的实现过程中,会涉及到多个软件功能模块的应用。申请人认为,如在仔细阅读申请文件、准确理解本发明的实现原理和发明目的以后,在结合现有公知技术的情况下,本领域技术人员完全可以运用其掌握的软件编程技能实现本发明。前述软件功能模块包括但不限于:计量与监控模块、储能充放电控制模块、负荷控制模块等,凡本发明申请文件提及的均属此范畴,申请人不再一一列举。本发明的具体思路如下:
[0031]本发明具体实施例子如附图1和附图2所示。分布式电源接入用户计量、监控和能效管理系统主要应用与接入有分布式电源的用户,采集多路的电能数据,并根据实时电价进行能效管理。
[0032]分布式电源接入用户计量、监控与能效管理系统,包括处理器模块、计量与监控模块、储能充放电控制模块、负荷控制模块和通讯模块。具体连接关系或电信号传递关系为:处理器模块分别接至储能充放电控制模块、负荷控制模块和和通讯模块,且与通讯模块实现双向数据交互;计量与监控模块接至处理器模块,用于实现三路的双向计量与三路的监控;储能设备通过储能并网逆变器接至电网,储能充放电控制模块接至储能并网逆变器;通讯模块通过有线或无线方式与电网公司电能采集系统实现通信。其中:
[0033]计量与监控模块实现三路的双向计量与三路的监控,三路计量包括分布式发电、储能放电、用户和电网双向电能,三路监控包括分布式发电状态、储能状态、负荷状态,计量和监控的数据传送到处理器模块;储能充放电控制模块连接到储能并网逆变器,控制储能系统进行充电操作或者是放电操作;负荷控制模块将负荷分为重要负荷和一般负
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1