一种能抑制高共模电压的直流电压放大器的制造方法

文档序号:10615636阅读:502来源:国知局
一种能抑制高共模电压的直流电压放大器的制造方法
【专利摘要】本发明涉及一种能抑制高共模电压的直流电压放大器,包括输入线圈、反馈线圈、输出线圈、斩波开关、交流带通放大器、解调器、低通滤波放大器、反馈电阻以及控制器;输入线圈通过输入信号斩波开关与输入信号相连接;反馈线圈通过反馈信号斩波开关与反馈电阻R2相连接;输出线圈的同名端与交流带通放大器的正向输入端连接,输出线圈的另一端与交流带通放大器的负向输入端连接;交流带通放大器的输出端与解调器的输入端连接,解调器的输出端与低通滤波放大器的输入端连接,输出电压Vo经过反馈电阻R1和反馈电阻R2分压后与反馈线圈相连接;本发明利用光耦合和磁耦合,使得放大器具有很高的共模电压承受能力和很高的共模电压抑制能力。
【专利说明】
-种能抑制高共模电压的直流电压放大器
技术领域
[0001] 本发明设及放大器技术,特别是一种高共模电压抑制技术,电压放大电路具有很 高的共模电压承受能力和很高的共模电压抑制能力。
【背景技术】
[0002] 在火箭发动机试验等现场测试环境,测试设备距离被测信号距离长,共模电压高, 要求测量设备和校准设备具有很高的共模电压适应能力和抑制能力。在航天液体火箭发动 机现场试验系统的校准装置研制中,要求放大器的直流共模电压适应能力为400V,直流共 模电压抑制比达到180地;要求放大器的交流共模电压适应能力为200V,交流共模电压抑制 比达到150dB。而一般放大器的共模电压抑制能力约为IOOdB,-些高共模抑制放大器的直 流共模电压抑制比可W达到120~150dB,交流共模电压抑制比可W达到100~120dB,共模 电压只能达到几伏,不能满足航天液体火箭发动机现场试验系统的校准需求。
[0003] 如图1所示为现有的一种放大器结构示意图,该放大器采用仪用运算放大器的差 分放大模式,具有较高的共模抑制能力,共模电压抑制比可W达到100地,但是共模电压适 应范围不能超过供电电源电压范围,一般为十几伏。
[0004] 如图2所示,现有的一些运算放大器,采用差分输入、用恒流源替代高值电阻的方 法W及激光调整对称性的工艺方法,虽然大大提高了放大器的共模抑制比,最高直流共模 电压抑制比可W达到150地,但是共模电压适应范围不能超过供电电源电压范围,一般为十 几伏。
[0005] 总之,现有放大器的共模电压适应能力和共模电压抑制能力,均不能满足航天液 体火箭发动机现场试验系统的校准需求。

【发明内容】

[0006] 为了解决现有放大器的共模电压适应能力和共模电压抑制能力不能满足航天液 体火箭发动机现场试验系统的校准需求的问题,本发明提供一种高共模电压抑制比放大 器。
[0007] 本发明的技术方案如下:
[000引一种能抑制高共模电压的直流电压放大器,其特殊之处在于:包括输入线圈4、反 馈线圈5、输出线圈6、环形高磁导率磁忍15、输入信号斩波开关(SI, S2)、反馈信号斩波开关 (S3,S4)、交流带通放大器9、解调器11、低通滤波放大器12、反馈电阻RU反馈电阻R2W及控 制器7,所述输入线圈4通过高绝缘材料隔离,绕制在高磁导率磁忍15上;输入线圈通过输入 信号斩波开关(Sl,S2)与输入信号相连接;
[0009] 所述反馈线圈通过高绝缘材料隔离,绕制在高磁导率磁忍上;反馈线圈通过反馈 信号斩波开关(S3,S4)与反馈电阻R2相连接;
[0010] 所述输入线圈和反馈线圈的应数相等,均为m应,输入线圈4的同名端与输入信号 斩波开关Sl连接,反馈线圈的同名端与反馈信号斩波开关S3连接;
[0011] 所述输出线圈通过高绝缘材料隔离,绕制在高磁导率磁忍上,输出线圈的应数为 m应,n2>m,所述输出线圈的同名端与交流带通放大器9的正向输入端连接,所述输出线圈 4的另一端与交流带通放大器9的负向输入端连接;所述交流带通放大器9的输入端与输出 线圈相连接,所述交流带通放大器9的输出端与解调器11的输入端连接,所述解调器11的输 出端与低通滤波放大器12的输入端连接,所述低通滤波放大器12的输出端输出电压V。,输 出电压V。经过反馈电阻Rl和反馈电阻R2分压后与反馈线圈相连接;
[0012] 所述控制器产生3个控制信号,控制信号一控制输入信号斩波开关Sl和反馈信号 斩波开关S4同步动作;控制信号二与控制信号一反相,控制输入信号斩波开关S2和反馈信 号斩波开关S3同步动作;控制信号=与控制信号一同相,控制解调器工作。
[0013] 交流带通放大器9的通带中屯、频率与斩波开关工作频率相同。
[0014] 输入信号斩波开关控制电源由光电池一提供;光电池一的低端与输入线圈的中点 连接。
[0015] 反馈信号斩波开关控制电源由光电池二提供;光电池二的低端与反馈线圈的中点 连接。
[0016] 3个控制信号均采用光禪或者磁禪进行隔离。
[0017] 上述交流带通放大器9和解调器11之间还设置有隔直电容C。
[001引本发明的技术效果如下:
[0019] 1、本发明利用光禪合和磁禪合,进行输入信号、控制信号、反馈信号能量的传递, 实现输入回路与其它多路的高度绝缘,使得放大器具有很高的共模电压承受能力和很高的 共模电压抑制能力。
[0020] 2、采用本发明的技术方案,具有很好的共模电压适应能力和共模电压抑制能力。 共模电压>l〇〇V,共模电压抑制比>150地。
【附图说明】
[0021] 图1为现有仪用运算放大器的差分放大器。
[0022] 图2为现有放大器提高共模电压抑制能力原理图。
[0023] 图3为实施本发明的电路结构原理图。附图标记列示如下:1-仪用运算放大器的差 分放大模式;2-差分输入端;3-恒流源;4-输入线圈;5-反馈线圈;6-输出线圈;7-光电隔离 模块;9-交流带通放大器;11-解调器;12-低通滤波放大器;15-环形高磁导率磁忍;16-放大 器输入端;17-放大器输出端,18-光电池一,19-光电池二。
【具体实施方式】
[0024] 下面结合附图3对本发明进行说明。
[0025] -种能抑制高共模电压的直流电压放大器,包括放大器输入端16、输入线圈4、反 馈线圈5、输出线圈6、环形高磁导率磁忍15、输入信号斩波开关(SI, S2)、反馈信号斩波开关 (S3,S4)、交流带通放大器9、解调器11、低通滤波放大器12、反馈电阻RU反馈电阻R2和低通 滤波放大器输出端17。
[0026] 输入线圈4通过高绝缘材料隔离,绕制在高磁导率磁忍上;输入线圈通过输入输入 信号斩波开关(SI, S2)与输入信号相连接,输入信号斩波开关控制电源由光电池一提供;光 电池一的低端与输入线圈的中点连接。
[0027] 反馈线圈通过高绝缘材料隔离,绕制在高磁导率磁忍上;反馈线圈通过反馈信号 斩波开关(S3,S4)与反馈电阻R2相连接,反馈信号斩波开关控制电源由光电池二提供;光电 池二的低端与反馈线圈的中点连接。
[0028] 控制器发出3个控制信号,控制信号一控制输入信号斩波开关Sl和反馈信号斩波 开关S4同步动作(同时闭合或同时断开);控制信号二与控制信号一反相,控制输入信号斩 波开关S2和反馈信号斩波开关S3同步动作。控制信号=与控制信号一同相,控制解调器工 作。3个控制信号均采用光禪或者磁禪进行隔离。
[0029] 输入线圈和反馈线圈的应数相等,均为m应,*号为同名端。
[0030] 输出线圈通过高绝缘材料隔离,绕制在高磁导率磁忍上,输出线圈应数为m应,ri2 >ni,n2/ni = ki,*号为同名端。
[0031] 交流带通放大器9的输入端与输出线圈相连接,交流带通放大器9的通带中屯、频率 与斩波开关工作频率相同。交流带通放大器則尋输出线圈输出的交流电压放大k2倍,k2为交 流带通放大器的放大系数,交流带通放大器的输出端经过隔直电容与解调器11的输入端相 连接。
[0032] 解调器与控制器7同步工作,将双极性交流信号转换为单极性的脉动信号。
[0033] 低通滤波放大器12的输入端与解调器11的输出端相连接,将单极性的脉动电压信 号转换为直流电压信号,并放大k3倍;k3为低通滤波放大器的放大系数。
[0034] 低通滤波放大器12输出端与反馈电阻Rl和放大器输出端OUT相连接。放大器输出 端的输出电压经过反馈电阻Rl和反馈电阻R2分压后与反馈线圈相连接。
[0035] 能抑制高共模电压的放大器,经过负反馈自动调节后,进入稳定状态,放大器输出 端输出电压为:
[0036]
[0037] 图3为实施本发明的电路结构原理图。如图3所示,所发明的能抑制高共模电压的 放大器包括放大器输入端、输入线圈、反馈线圈、输出线圈、环形高磁导率磁忍、输入信号斩 波开关、反馈信号斩波开关、交流带通放大器、解调器、低通滤波放大器、反馈电阻RU反馈 电阻R2和放大器输出端。输入线圈通过高绝缘材料隔离,绕制在高磁导率磁忍上,并通过斩 波开关与输入信号相连接,斩波开关控制电源由电池提供,电池的低端与输入线圈的中点 连接。反馈线圈通过高绝缘材料隔离,绕制在高磁导率磁忍上,并通过斩波开关与反馈电阻 R2相连接,反馈线圈的斩波开关控制电源由另一个电池提供,电池的低端与反馈线圈的中 点连接。输入线圈和反馈线圈的应数相等,均为m应,*号为同名端。控制器发出3个控制信 号,控制信号Xl控制斩波开关Sl和S4同步动作(同时闭合或同时断开);控制信号x2与控制 信号Xl反相,控制斩波开关S2和S3同步动作。控制信号x3与控制信号1同相,控制解调器工 作。3个控制信号均采用光禪(或者磁禪)进行隔离。输出线圈通过高绝缘材料隔离,绕制在 高磁导率磁忍上,斩波器控制电源由光电池二提供,光电池二的低端与反馈线圈的中点连 接;输出线圈应数为m应,n2>m,n2/m = ki,*号为同名端。控制器与斩波开关利用光电禪合 器(磁禪合器)传递控制信号,实现电路隔离。交流带通放大器的输入端与输出线圈相连接, 通带中屯、频率与斩波开关工作频率相同。交流带通放大器将输出线圈输出的交流电压放大 k2倍。交流带通放大器的输出端经过隔直电容与解调器的输入端相连接。控制器控制解调 器与斩波器同步工作,将双极性交流信号转换为单极性的脉动信号,并通过相位控制实现 输出端与输入端同相。低通滤波放大器的输入与解调器的输出端相连接,将单极性的脉动 电压信号转换为直流电压信号,并放大k3倍;低通滤波放大器输出端与反馈电阻Rl和放大 器输出端OUT相连接。放大器输出端的输出电压经过反馈电阻Rl和反馈电阻R2分压后与反 馈线圈相连接。发明的能抑制高共模电压的放大器,经过负反馈自动调节后,进入稳定状 态,放大器输出端输出电压为
[0038] 对本发明的进一步详细说明如下:
[0039] 如图3所示,在本实施例中输入线圈和反馈线圈为2000应,输出线圈为10000应,电 感量160mH,斩波开关工作频率为100曲Z,输入阻抗1 OOk Q。输出线圈与输入线圈的应比kl 为10,交流放大器的噪声降低10倍。交流带通放大器在中屯、频率附近的传输系数为IO3;解 调器的电压传递系数为0.5;低通滤波放大器对于直流电压传递系数为IO5;前向通道的电 压传递系数为5X IO8;反馈电阻R2采用精密金属锥电阻,阻值为9.99kQ ;反馈电阻Rl采用 精密金属锥电阻,阻值为IOQ ;放大器放大倍数为1+999 = 1000。
[0040] 开环增益对闭环放大倍数的影响2X1(T9,可W忽略不计;
[0041] 输入阻抗对闭环放大倍数的影响为:R2/Ri = 10 Q AOOkQ=IO-4;考虑到输入阻抗 与线圈电感量和工作频率有关,其值相对比较稳定。因此,通过放大倍数校准后,只有输入 阻抗的变化量影响闭环放大倍数。输入阻抗的相对变化量《5/100,输入阻抗变化对闭环放 大倍数的影响为R2/Ri X 5/100 = 5 X 10-6。
[0042] 交流放大器的共模抑制比为100地,供电电压为±15V时的最大共模电压为±14V。
[0043] 本实施方案中,输入线圈与其它线圈的绝缘采用聚四氣乙締材料,直流绝缘电阻 >1〇12〇,耐压>lkV;输入线圈与其它线圈的交流绝缘阻抗^SXlO8Q,交流耐压>500V; 直流共模电压经过绝缘电阻和反馈电阻R2的分压,通过R2上的压降对放大器产生共模影 响,因此,直流共模电压抑制比为:
[0044] CMRRDC = 20Xlog(l〇i2/l〇) = 220(地)
[0045] 直流共模电压适应能力为化V;
[0046] 直交流共模电压经过绝缘交流阻抗和反馈电阻R2的分压,通过R2上的交流电压压 降,对放大器产生交流共模影响。因此,交流共模电压抑制比为:
[0047] CMRRac = 20 X log(3 X 10^/10) = 150(地)
[0〇4引交流共模电压适应能力为500V。
【主权项】
1. 一种能抑制高共模电压的直流电压放大器,其特征在于:包括输入线圈(4)、反馈线 圈(5)、输出线圈(6)、环形高磁导率磁芯(15)、输入信号斩波开关S1、输入信号斩波开关S2、 反馈信号斩波开关S3、反馈信号斩波开关S4、交流带通放大器(9)、解调器(11)、低通滤波放 大器(12)、反馈电阻R1、反馈电阻R2以及控制器(7),所述输入线圈(4)通过高绝缘材料隔 离,绕制在高磁导率磁芯(15)上;输入线圈通过输入信号斩波开关(S1,S2)与输入信号相连 接; 所述反馈线圈通过高绝缘材料隔离,绕制在高磁导率磁芯上;反馈线圈通过反馈信号 斩波开关S3、反馈信号斩波开关S4与反馈电阻R2相连接; 所述输入线圈和反馈线圈的匝数相等,均为m匝,输入线圈(4)的同名端与输入信号斩 波开关S1连接,反馈线圈的同名端与反馈信号斩波开关S3连接; 所述输出线圈通过高绝缘材料隔离,绕制在高磁导率磁芯上,输出线圈的匝数为n2匝, n2>m,所述输出线圈的同名端与交流带通放大器(9)的正向输入端连接,所述输出线圈(4) 的另一端与交流带通放大器(9)的负向输入端连接;所述交流带通放大器(9)的输出端与解 调器(11)的输入端连接,所述解调器(11)的输出端与低通滤波放大器(12)的输入端连接, 所述低通滤波放大器(12)的输出端输出电压V。,输出电压V。经过反馈电阻R1和反馈电阻R2 分压后与反馈线圈相连接; 所述控制器产生3个控制信号,控制信号一控制输入信号斩波开关S1和反馈信号斩波 开关S4同步动作;控制信号二与控制信号一反相,控制输入信号斩波开关S2和反馈信号斩 波开关S3同步动作;控制信号三与控制信号一同相,控制解调器工作。2. 根据权利要求1所述的能抑制高共模电压的直流电压放大器,其特征在于:所述交流 带通放大器(9)的通带中心频率与斩波开关工作频率相同。3. 根据权利要求1或2所述的能抑制高共模电压的直流电压放大器,其特征在于: 输入信号斩波开关控制电源由光电池一提供;光电池一的低端与输入线圈的中点连 接。4. 根据权利要求3所述的能抑制高共模电压的直流电压放大器,其特征在于:反馈信号 斩波开关控制电源由光电池二提供;光电池二的低端与反馈线圈的中点连接。5. 根据权利要求4所述的能抑制高共模电压的直流电压放大器,其特征在于: 3个控制信号均采用光耦或者磁耦进行隔离。6. 根据权利要求5所述的能抑制高共模电压的直流电压放大器,其特征在于: 所述交流带通放大器(9)和解调器(11)之间还设置有隔直电容C。
【文档编号】H03F3/45GK105978517SQ201610431302
【公开日】2016年9月28日
【申请日】2016年6月16日
【发明人】张建斌, 张海飞, 史玮强, 张攀, 郑显锋, 张婧
【申请人】西安航天计量测试研究所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1