使用一个声光可调谐滤波器(aotf)和多个窄带双折射滤波器的级联滤波器的制作方法

文档序号:7898326阅读:285来源:国知局
专利名称:使用一个声光可调谐滤波器(aotf)和多个窄带双折射滤波器的级联滤波器的制作方法
技术领域
本发明涉及一种级联窄带滤波器,它使用一个用于宽带识别的声光可调谐滤波器(AOTF)和多个用于窄带识别的双折射滤波器。
一种可供选择的获得光谱的方法是依赖于一个声光可调谐滤波器(AOTF)的使用。声光可调谐滤波器(AOTF)受控于一个可调谐的射频(RF)源,根据波长来调节光的折射。所述的声光可调谐滤波器相对于光栅具有许多优点,包括扫描速度和可以被集成小尺寸集成块的可能性。但不理想的是声光可调谐滤波器(AOTF)因其较差的光谱分辨率和精度而受到限制。例如,目前声光可调谐滤波器的典型分辩率为大约100GHz(半峰全宽度FWHM为60GHz),而温度漂移为大约100pm/℃。当用根据波分复用(WDM)或密集波复用(DWDM)标准所限定的通道对光远程通讯系统进行监控时,如此低的分辨率只可被用来确定通道的光强度。
现有技术告诉我们一些对声光可调谐滤波器(AOTF)的精度和分辨率作改进的方法,例如,Paek叙述了一种用光栅辅助的声光可调谐滤波器(AOTF)及其方法(见美国专利US 5,946,128)。其滤波器将一个衍射光栅和声光可调谐滤波器(AOTF)结合在一起来消除通道串扰的问题,并且,提供了一个快速可调谐性。另一方面,Paek滤波器的窄带宽允许在掺铒光纤放大器(EDFA)的通带中存在大量的波长通道。
在别的著作中探讨了用一个声光可调谐滤波器(AOTF)与一个法布里—珀罗干涉仪相结合以实现较高分辨率的光谱学。相应的内容有作者I.C.陈及其他合著者发表于《Proceedings of the SPIE》第268卷第167页至第170页(1981年2月10-11)的论文“用于高分辨率光谱分析的‘声-光’可调谐滤波器”,以及作者D.P.Baldwin及其他合著人发表于《应用光谱学》,第50卷、第4号、第498-503页(1996年4月)的论文“使用‘声-光’可调谐滤波器和纤维光学法布里—珀罗干涉仪的高分辨率光谱学”。
美国专利US6,330,255和6,330,254(专利权Hung)讲述了一种用于光波长选择的集成光学装置,它使用一个声光可调谐滤波器作为宽带可调谐滤波器,并且其后跟随一个窄带可调谐滤波器。专利权人Hung告知,窄带可调谐滤波器可与一个(Mach-Zhender)马赫—曾德尔干涉仪或者别的窄带滤波器包括偏振型滤波器组合在一起。该系统因需要两个可调谐滤波器而变得复杂,并因此牺牲了波长和带宽的测量精度。
现有技术讲述了某些应用场合双折射滤波器的使用,如王金山等在其论文“近红外双折射滤波系统的光学设计和方解石双折射率的测量”《Proceedings of the SPIE》第4093卷第481-489页(2000年)中讲述了使用双折射滤波系统来观察太阳光谱。该系统使用一个前置滤波器,一个分析器和作为一个末级窄带滤波器的双折射滤波器。在PCT专利国际公开文献WO01/84196中专利权人李(Li)讲述了在一个光学波长交错复用器(interleaver)中,包含有双折射波片的波长滤波器的使用。在WO 01/57487专利中专利权人Imaki Masao及其他发明人也讲述了使用一个双折射晶体作为一个波长滤波器用于监控激光束的波长。该波长检测电路使用两个光电探测器,一个用来探测S-偏振光,而另外一个探测P-偏振光。
尽管现有技术讲述了光学光谱分析仪和多种波长滤波技术,但并没有提供一个可用于光波波长监控的可靠、小型和快速的光通道监控器(OCM),更具体地说,在现有技术中设计一个可用于光纤通信系统中的光通道监控的光通道监控器就是一种技术上的进步,而提供一个可以测量光通道的中心频率、带宽和光强度的光通道监控器(OCM)将是显著的进步。
本发明的目的和优点是通过使用一个光通道监控器(OCM)得以实现的。该光通道监控器(OCM)用于对带有许多窄带信号通道的入射光进行分析。通常说来,这些信号通道可以代表入射光线光谱频带范围中的任何窄带部分。例如入射光可能包含光通信网络中的波分复用(WDM)通道或者密集波分复用(DWDM)通道的信号通道。
该光通道监控器(OCM)具有一个声光可调谐滤波器(AOTF),用来接收入射光并从中折射出一个折射光,该折射光包含有具有中心频率vo的众多窄带信号通道之一或一个测试通道。一个第一双折射元件被提供用于从该折射光中滤出一个第一偏振光和一个第二偏振光,所述的第二偏振光与所述的第一偏振光垂直正交,第一偏振光和第二偏正光的透射曲线一般均呈周期性且相互异相。无论是第一偏振光还是第二偏振光其透射均在最大透射率(transmission level)和最小透射率之间变化,因此,第一和第二偏振光的光强度也在相应的最大值和最小值之间变动。根据本发明,透射曲线被如此设计,即在测试通道的中心频率vo处,第一偏振光和第二偏振光的透射基本相等。换而言之,在中心频率vo处,各透射曲线具有相同的透射值。
该光通道监控器(OCM)有一个第二双折射元件,用于从第一偏振光中滤出一个第一偏振部分和一个第二偏振部分。第一偏振部分与第二偏振部分再一次相互垂直正交。所述的第二双折射元件的透射曲线被这样设置,即在相对于中心频率vo的第一偏移δ1v处,第一和第二偏振部分的透射基本相等。一套光电探测器用来测量第一偏振光的强度及第一和第二滤出部分的光强度。一个分析装置,也就是一个以处理器为基础的计算装置,它与光电探测器相连接,从光强得出测试通道的中心频率vo和带宽Δvo。
所述的光通道监控器(OCM)使用偏振光分离器,也就是偏振光分束器或者偏振光逸散元件(walk-off elements),根据光的偏振态来分离和导向光线。一个第一偏振光分离器被用来将第一偏振光导向第二双折射元件。一个第二偏振光分离器被置于第二双折射元件的后面,用来把第一和第二偏振部分导向多个光电探测器中的第一对,也就是将第一偏振部分导向第一对光电探测器中的一个光电探测器,而将第二偏振部分导向第一对光电探测器中的另一个光电探测器。
在本发明的光通道监控器(OCM)的较佳实施例中,提供了一个第三双折射元件,用于从所述的第二偏振光中滤出一个第三和一个第四偏振部分。这些部分的偏振相互垂直正交。所述的第三双折射元件设计成这样,即在相对于中心频率vo的第二偏移δ2v处,第一和第四偏振部分的透射基本相等。在本实施例中,提供一个第三偏振光分离器用来把第三和第四偏振部分导向多个光电探测器中的第二对。
本发明的另外一个实施例中没有使用第三双折射元件,而是让第一偏振光分离器将第二偏振光导向一个单一的光电探测器。在该实施例中,光电探测器提供较小的光强度数据给分析装置用于确定所述的测试通道的中心频率vo和带宽Δvo。
本发明的原理可以用于光学滤波器,用来从波分复用(WDM)或密集波分复用(DWDM)通道中滤出一个测试通道。
在某些实施例中,折射光中可能包含了一个以上的信号通道。在那些实施例中,需要附加的偏振光分离器和双折射元件来对信号通道的中心频率和带宽进行分析。
光通道监控器(OCM)或滤波器的设计可以包括一些附加光学元件,在波长监控或滤波过程中的任一阶段用来聚焦和/或准直折射光和/或偏振部分。根据本发明,任何为稳定工作所需的其它元件(如使双折射元件保持恒温的温度控制机构)可以被集成在光通道监控器(OCM)或滤波器里。本发明的详细内容将在以下结合附图一同讨论。
与现有技术相比,本发明的优点在于提供一个光通道监控器,它采用这样的级联滤波器设计,通过测量其中心频率、带宽和光强度来监控通信系统中的波长通道。


图1描述了一个本发明的光通道监控器(OCM)10的较佳实施例,光通道监控器(OCM)10具有一个声光可调谐滤波器(AOTF)12,它被用于接收入射光14,入射光14的光谱18是待确定或待监控的,而其偏振是预先设定的。例如,入射光14可以从一待测试的光源(未显示)或从一个光路中获得。在本实施例中,光14得自一个光通信网络,它包含有许多在光谱18范围内的窄带信号通道16。信号通道16可以用任何形式来定义。例如,信号通道16可以是波分复用(WDM)通道或密集波分复用(DWDM)通道。所述的通道间隔和形式是由这些复用标准来定义的。在另外的实施例中,这些形式规定了光谱18的宽度(也就是光通信的常规波段c-band)以及中心频率、通道间隔和通道带宽。本技术领域的技术人员可领会到,一般来讲,通道16可以代表入射光14所具有的光谱18的任一窄带部分。
声光可调谐滤波器(AOTF)12具有一个受射频(RF)源22控制的传感器20。射频(RF)源22设定的频率决定了通过传感器20施加到声光可调谐滤波器(AOTF)12上的声波的频率。接着,根据公知的原理,该声波被施加到声光可调谐滤波器(AOTF)12上来设置入射光14的波长相关折射。具体的做法就是,当射频(RF)源22开启时,入射光14以未折射光24和折射光26的形式通过声光可调谐滤波器(AOTF)12。所述的折射光26具有一个频带28,它是一个光谱18的子集。本实施例中,频带28包含有众多信号通道之一16或一个测试通道16A,它被定中于中心频率vo并且具有一个以半峰全宽度(FWHM)定义的带宽Δvo(见图2)。
一个第一双折射元件30被置于折射光26的光路上。双折射元件30被设计用于从折射光26中滤出一个第一偏振光34和一个第二偏振光38。具体说来,双折射元件30使第一偏振光34以寻常偏振态传播(或称为寻常光)。元件30还使第二偏振光38以非寻常偏振态传播(或称为非寻常光)。寻常光与非寻常光的偏振垂直正交,这样,第一偏振光34相对于第二偏振光38呈正交偏振。
在光通道监控器(OCM)10中,双折射元件30中最好是由两个具有不同热特性的双折射晶体,也就是一片钒酸钇(YVO4)和一片二氧化钛(TiO2)组成,晶体的晶轴Z平行于晶面,并与折射光26的偏振方向成45°的夹角。当然,另外的双折射晶体(诸如KTP、KDP、LiNbO2,方解石,PbMoO3)或另外的一些双折射元件同样的可以被使用。不过,为了使光通道监控器(OCM)10的尺寸呈最小化,双折射元件30最好呈现大的双折射率μ。为了获取更多的关于双折射材料和元件选择方面的信息以及双折射滤波器总体设计方面的信息,读者可以参见一下在王金山(jingshanWang)及其他作者的论文《近红外双折射滤波系统的光学设计和方解石的双折射率的测量》SPIE汇编(proceedings)第4093卷第481-489页(2000年)、M.Bron和E.wolf的《光学原理》以及其它公开文献和教科书中所阐述的有关“双折射滤波系统的应用”的内容。
寻常光和非寻常光体现的折射率no和ne之差为双折射率μ。双折射率μ一般来说与折射光26的波长λ和元件30的温度T有关,其关系可用以下公式表示μ(λ,T)=ne-no根据公知的光学原理,双折射率μ和元件30的长度在寻常光或光34与非寻常光或光38之间导入了一个延迟(相位差)。在寻常光和非寻常光之间的干涉产生了透射曲线,这个透射曲线决定了通过元件30透射的光34、38的光强度。具体说来,以寻常光偏振态从元件30出射的第1偏振光34的透射在最大值和最小值之间呈现周期性的波动。同样,以非寻常光偏振态出射的第二偏振光38的透射也在最大值与最小值之间呈现周期性的波动,总的说来,光34和光38的最大透射和最小透射具有180°的相位差。这些公知原理在本发明中被使用,并在下文中叙述。
特别是如图2所示,晶体30具有一个选定的长度,用以产生第一偏振光34的透射曲线70和第二偏振光38的透射曲线72。透射曲线70、72呈周期性,也就是它们在图2的特性曲线所示的频率范围以外重复,并且相互间具有180°的相位差。更进一步说,第一和第二偏振光34、38的透射曲线70、72在最大值1(全透射)和最小值0(不透射)之间变化。因为透射曲线70、72分别决定了偏振光34、38的强度,因而偏振光34、38的强度相应也可以在最大值1和最小值0之间变化。一个本技术领域的技术人员会明白,事实上这些最大值和最小值与理想值1和0之间稍有不同。
根据本发明,对于具有双折射率μ的预选晶体,透射曲线70、72是通过调节晶体30的长度来设计的,即在测试通道的中心频率vo处,第一和第二偏振光34、38的光强度基本相等。换句话说,在中心频率vo处,透射曲线具有几乎相等并且最好是相等的透射值。事实上,由于双折射率μ随温度发生变化,而晶体30的长度同样也随温度发生变化,要在中心频率vo处维持透射值相等是困难的。因此,最好采用某些合适的方法对晶体30作温度变化方面的补偿。例如,无热晶体的设计,电子温度平衡或热—电元件可以用于补偿目的。
一个第一偏振光分离器32,在本实施例中为一个偏振光分束器(PBS),被置于偏振光34、38的光路中。可以这样理解,即,任何种类的光束分束装置(包括分束器立方体、偏振光逸散元件、定向耦合器和别的以光纤为基础的装置或者自由空间装置均可用作偏振光分离器32。偏振光分离器32以偏振态为基础将光线分束和定向。本发明的实施例中,偏振光分离器(PBS)32将第一偏振光34导向一个第二双折射元件36,将第二偏振光38导向一个第三双折射元件40。
第二双折射元件36被设计从第一偏振光34中滤出一个第一偏振部分48和一个与第一偏振部分48垂直正交第二偏振部分50。元件36的工作原理是与元件30的工作原理相同的。元件36被设计用来产生一个第一偏振部分48的透射曲线74和一个第二偏振部分50的透射曲线76,如图3所示。根据本发明,晶体36的透射曲线74、76被这样设置,即,第一和第二偏振部分48、50的透射在相对于中心频率vo的第一偏移δ1v处基本相等。
再回头参见图1,一个第二偏振光分离器46(在本实施例中也是一个偏振光分束器PBS),被设置在元件36的后面,以便将第一和第二偏振部分48、50导向第一对光电探测器58、60。第一偏振部分48是导向光电探测器58,而第二偏振部分50则是导向光电探测器60。光电探测器58、60可以是任何合适的光电探测装置,诸如电荷耦合器件,CCD,光电倍增管,光电晶体管,光电二极管或者别的光敏电-光元件。
现在,偏振光分离器(PBS)32也将第二偏振光38导向一个第三双折射元件40。元件40也是一个双折射晶体,它被设计用来从第二偏振光38中滤出一个第三偏振部54和一个第四偏振部56。第三和第四偏振部分54、56是相互垂直正交的。晶体40被设计成具有一个偏振部分54的透射曲线78和一个偏振部分56的透射曲线80,如图3所示。根据本发明,透射曲线78,80被这样设计,使第三和第四偏振部分54、56的透射在一个相对于中心频率vo的第二偏移δ2v处基本相等。
一个偏振光分束器(PBS)形式的第三偏振光分离器52被提供用来把第三和第四偏振部分54、56分别导向第二对光电探测器62、64,第三偏振部分54被导向光电探测器62,第四偏振部分56被导向光电探测器64。第二对光电探测器62、64与第一对光电探测58、60一起形成一组用于测量第一、第二、第三和第四偏振部分48、50、54、56的光强度的光电探测器组。由于所有在所述的光电探测器组中的光电探测器58、60、62、64是同种类型并且呈现相同灵敏度,所以使用非常方便。
光电探测器58、60、62和64的输出是与一个分析装置66相连接的。该分析装置66最好是一个配备有处理器的装置,也就是一个数字信号处理器(DSP)或者用于接收、比较和分析获自于光电探测器58、60、62和64的光强度值的其它逻辑装置。最佳方案是,装置66是一个程序化的计算机,用以从被测的光强导出测试通道16A的中心频率vo和带宽Δvo。
当光通道监控器(OCM)10进行工作时,声光可调谐滤波器(AOTF)12接收来自于一个光通信网络的光14。光14具有一个光谱18,它包含有以波长λ1、λ2……λn为中心或者具有相应的中心频率v1、v2……vn的许多信号通道16。射频源22的频率被调节成这样,传感器20在声光可调谐滤波器(AOTF)12中设定一个声波来折射出具有有益频带28的光26。
声光可调谐滤波器(AOTF)12是一个粗糙的但却是非常快速的波长选择装置。因此,虽然声光可调谐滤波器(AOTF)12不允许频带28被设定得足够窄以执行对按波分复用(WDM),尤其是密集波分复用(DWDM)形式定义的信号通道16所希望的监控功能,但是借助于射频(RF)源22和传感器20,它可以被非常快速的调节。
在所示的实施例中,声光可调谐滤波器(AOTF)12中的声波的波长被设定从光14中折射出包含有以vo为中心频率的一个信号通道或者测试通道16A的频带28。例如,测试通道16A可以是以常规波段中的193.1THz为中心频率的一个密集波分复用(DWDM)通道。图2描述了在进入双折射元件30前的折射光26的频带28。十分明显,以vo为中心频率的测试通道16A不足以被声光可调谐滤波器(AOTF)12所分辨。这是因为声光可调谐滤波器(AOTF)12呈现接近于高斯带通T,该带通可以被表达成一个频率v的函数TAOTF(v)=exp-(v-vo)2σ2]]>在此, 是声光可调谐滤波器(AOTF)12的半峰全宽度(FWHM)线宽。目前,典型的声光可调谐滤波器(AOTF)12的半峰全宽度(FWHM)是60GHz或0.5nm级别的,它不足以分辨测试通道16A。
再回头参见图1,包含有以vo为中心频率的测试信道16A的折射光26通过晶体30并且被滤波成为第一和第二偏振光34、38。偏振光分离器(PBS)32将偏振光34分束并导向晶体36并将偏振光38垂直地分束导向晶体40。晶体36对光34进行滤波来获得偏振部分48、50。同时,晶体40对光38进行滤波来获得偏振部分54、56。偏振光分离器(PBS)46和偏振光分离器(PBS)52分别传送偏振部分48、50、54、56至光电探测器58、60、62、64。光电探测器58、60、62和64测量偏振部分48、50,54、56的光强,并将结果传送到装置66。
以光电探测器58、60、62,64所获的光强度值为基础,装置66首先导出测试通道16A的中心频率vo和总的光强度。光电二极管58、60、62和64测出的光强的累加值给出一个测试通道16A的总光强。导出中心频率vo所执行的程序参照图2将会有更清楚的理解。具体说来,装置66通过累加算出测得的偏振部分48、50的光强度来确定偏振光34的强度。然后,通过累加测得的偏振部分54、56的光强,装置66确定出偏振光38的光强。因为透射曲线70、72被设计成在中心频率vo处基本相等,也就是在中心频率处相交,当测试通道16A的实际中心频率vo与标准中心频率vo相一致的时候,光34和38的光强将相等。可以理解,实际上,热效应可以引起光强度值的偏差,尽管测试通道16A事实上是以标准中心频率vo为中心频率的。本技术领域的技术人员将会明白如何使用如上所述的标准电子校正技术以及温度控制机构来补偿这些偏差。
为了确定测试通道16A的带宽Δvo,装置66必须确定单个偏振部分48、50、54、56的光强值。参照附图3将更好地理解在导出过程中所执行的程序。具体来说,偏振部分48、50的测量得出两个光强值,这两个光强值是根据在测试通道16A的频带宽度内透射曲线74、76下的面积得出的。同样,根据透射曲线78、80还可以得出测得的偏振部分54、56的两个光强值。获得的光强值最好归一为总光强值。
这样,装置66就有四个有用的独立的光强值,从中确定测试通道16A的参数,即,中心频率vo、总光强和频带宽度Δvo。这就是用四个方程解三个未知数的事例。这些方程利用这样一个优点,即,两对光电二极管之比是一个线宽的函数,这是因为特性曲线74、76、78和80的非线性之缘故。这样,根据任何公知的数学技巧(也就是线性代数),可以解出答案。
本实施例中,来自光电探测器58、60、62、64的光强作为一个测试通道16A的参数之函数由装置66计算出来。其结果在图4和图5中被标绘出来。图4描述出测得的光强为测试通道16A的中心频率vo的一个函数。所有光强值之和得出总光强并被标绘为最上面的虚线曲线,这条特性曲线是由声光可调谐滤波器(AOTF)12确定的。从各单个光电探测器58、60、62、64所得到的光强被归一化为一个和。光电探测器58、60、62、64各自的光强分别用实线、虚线、点划线和双点划线来描绘。在本实施例中,相对于中心频率vo,所得的归一化光强信号典型的灵敏度大约是0.02/GHz,这意味着1GHz的分辨率是很容易被光通道监控器(OCM)10获得的。
图5表示作为测试通道16A的带宽Δvo的函数,光电探测器58、60、62、64测得的光强之比的标绘图。实线曲线代表被光电探测器58和60测得的光强之比。虚线曲线代表被光电探测器62和64测得的光强之比。这样得到的带宽Δvo的测量灵敏度典型的大约是0.01/GHz。这意味着一个大约为0.1GHz典型分辨率被光通道监控器(OCM)10获得。
光通道监控器(OCM)10具有提供高灵敏度的优点,因为它在计算中探测和使用所有的信号光强度。因为上面所述的透射曲线是周期的曲线,它们可以被设置在所有被监控的信号通道16的中心频率处相交。因此,光通道监控器(OCM)10可以被用来监控所有信号通道16的中心频率和频带宽度,这些信号通道使用相同的双折射元件30、36和40。只有声光可调谐滤波器(AOTF)12的频带28必须被调节用来选择任何给定的信号通道16用于监控。这样的调节可以快速地被进行并且允许每个通道的监控速率小于1μs。任何的由于波长和温度的改变引起的漂移可以用电子技术手段或者通过一个合适的热控制机构加以补偿,这些都是本技术领域的专业人员所知道的。
通过光通道监控器(OCM)10所获得的功能使其适合用于监控波分复用(WDM)以及密集波分复用(DWDM)应用中的信号通道16。而且,光通道监控器(OCM)10可以方便地集成为一个小型而又价廉的封装块。还应当注意的是光通道监控器(OCM)10可以包括附加的光学元件,诸如透镜、光纤和准直仪作为对测试通道16A的光进行整形所必不可少的元件。一般说来,光通道监控器(OCM)10可以用作一个集成的通道滤波器和监控器。
图6描述了一个可二者择一的光通道监控器(OCM)100的实施例,它类似于光通道监控器(OCM)10,并且在图中用相同的标号来标明相应的部分。事实上,除了没有第三双折射元件40和偏振光分离器(PBS)32,光通道监控器(OCM)100与光通道监控器(OCM)10相似,不同的是用偏振光分离器(PBS)32把第二偏振光38直接导向光电探测器62。
在工作过程中,光通道监控器(OCM)100接收三个光强值,即,第二偏振光38的光强及第一部48和第二部分50的光强。由于这三个光强值得到三个方程式,人们可以从中确定测试通道16A的参数,也就是中心频率vo、总光强和频带宽度Δvo。这是用三个方程解三个未知数的情况。根据任何公知的数学技巧,即,线性代数就可以解出结果。
图7描述一个光通道监控器(OCM)110的另一个实施例的一个部分。同样的附图标号被用来表示与光通道监控器(OCM)10相对应的部分。在此,声光可调谐滤波器(AOTF)12被设定用来在折射光26中折射出含有两个相邻测试通道16A、16B的频带112。频带112在图8中被较好地作了描述。
声光可调谐滤波器(AOTF)12没有足够的分辨力来对测试通道16A、16B作分辨。这样,要用一个前置滤波器114来对测试通道16A、16B进行分离。前置滤波器114最好是一个双折射元件,它被设计将测试通道16A滤波成偏振光束116,而将测试通道16B滤波成垂直正交的偏振光束118。一个偏振光分离器120被用来将光束116和118进行分束,并将它们导向作独立的监控。
例如,光束116、118中的任一光束可被传送至一个光通道监控器(OCM)10的分束滤波器30。
图9描述了光通道监控器(OCM)110的可供选择的实施例的一部分,这个光通道监控器(OCM)110使用一个偏振光逸散元件122来分离光束116和118。逸散元件122的使用允许人们使用光通道监控器(OCM)10的双折射元件30来滤出光束116和118,也就是说,在这个实施例中,双折射元件30可以共用。应该注意的是任何上述的实施例都可以利用如122这样的偏振光逸散元件的优点来保持恒定的间隔(space)并允许光通道监控器(OCM)或者滤波器能被集成为一个小型的封装块。事实上,本技术领域的专业人员将知道,本发明实施例的许多延展和变化都是可能的,并且本发明的全部范围是由本专利的权利要求的范围及其法律意义上的等同物来限定的。
权利要求
1.一种用于分析包含有窄带信号通道的入射光的光通道监控器,所述的光通道监控器包含有a)一个声光可调谐滤波器,用于从所述的入射光折射出包含有一个具有中心频率vo的测试通道的折射光,所述的测试通道是从所述的窄带信号通道中选出的;b)一个第一双折射元件,用于从所述的折射光中滤出一个第一偏振光和一个第二偏振光,第二偏振光与所述的第一偏振光垂直正交,这样,所述的第一偏振光和所述的第二偏振光的透射在所述的中心频率vo处基本相等;c)一个第二双折射元件,用于从所述的第一偏振光中滤出一个第一偏振部分和一个第二偏振部分,第二偏振部分与所述的第一偏振部分相垂直正交,这样,所述的第一偏振部分和所述的第二偏振部分的透射在相对于所述中心频率vo的第一偏移δ1v处基本相等;d)一套光电探测器,用于测量所述的第一偏振光、所述的第一滤出部分和所述的第二滤出部分的光强;和e)一个分析装置,用于从所述的各光强值中导出所述测试通道的中心频率vo、总光强值和带宽Δvo。
2.如权利要求1所述的光通道监控器,其特征是它进一步包含有一个第一偏振光分离器,用于将所述的第一偏振光导向所述的第二双折射元件。
3.如权利要求2所述的光谱分析仪,其特征是它进一步包含有一个第二偏振光分离器,用于将所述的第一偏振部分和所述的第二偏振部分导向一个属于所述一套光电探测器的第一对光电探测器。
4.如权利要求2所述的光通道监控器,其特征在于它进一步包含有一个第三双折射元件,用于从所述的第二偏振光中滤出一个第三偏振部分和一个第四偏振部分,第四偏振部分与所述的第三偏振部分垂直相交,这样,所述的第三偏振部分和所述的第四偏振部分的透射在相对于所述的中心频率vo的第二偏移δ2v处基本相等。
5.如权利要求4所述的光通道监控器,其特征在于它进一步包含有一个第三偏振光分离器用于将所述的第三偏振部分和所述的第四偏振部分导向属于所述的一套光电探测器的第二对光电探测器。
6.如权利要求2所述的光通道监控器,其特征在于所述的第一偏振光分离器将所述的第二偏振光导向一个属于所述的一套光电探测器的一个光电探测器。
7.如权利要求1所述的光通道监控器,其特征在于所述的窄带信号通道包含有从由波分复用通道和密集波分复用通道组成的通道组中选择出来的通信通道。
8.一种光学滤波器,用于对包含有窄带信号通道的入射光进行滤波,所述的光学滤波器包含有a)一个声光可调谐滤波器,用于从入射光中折射出一个包含有一个测试通道的折射光,所述的测试通道具有一个中心频率vo,所述的测试通道是从所述的窄带信号通道中被选出的;b)一个第一双折射元件,用于从所述的折射光中滤出一个第一偏振光和一个第二偏振光,第二偏振光与所述的第一偏振光垂直正交,这样,所述的第一偏振光和所述的第二偏振光的透射在所述的中心频率vo处基本相等;c)一个第二双折射元件,用于从所述的第一偏振光中滤出一个第一偏振部分和一个第二偏振部分,第二偏振部分与所述的第一偏振部分垂直正交,这样,所述的第一偏振部分和所述的第二偏振部分的透射在所述的相对于所述的中心频率vo的第一偏移δ1v处基本相等;d)一套光电探测器,用于测量所述的第一偏振光、所述的第一滤出部分和所述的第二滤出部分的光强;和e)一个分析装置,用于从所述的光强中导出所述测试通道的中心频率vo和带宽Δvo。
9.如权利要求8所述的光学滤波器,其特征是它进一步包含有一个第一偏振光分离器,用于将所述的第一偏振光导向所述的第二双折射元件。
10.如权利要求9所述的光学滤波器,其特征是它进一步包含有一个第二偏振光分离器,用于将所述的第一偏振部分和所述的第二偏振部分导向一个属于所述的一套光电探测器的第一对光电探测器。
11.如权利要求10所述的光学滤波器,其特征是它进一步包含有一个第三双折射元件,用于从所述的第二偏振光中滤出一个第三偏振部分和一个第四偏振部分,第四偏振部分与所述的第三偏振部分垂直正交,这样,所述第三偏振部分和所述的第四偏振部分的透射在相对于所述的中心频率vo的第二偏移δ2v处基本相等。
12.如权利要求11所述的光学滤波器,其特征在于它进一步包含有一个第三偏振光分离器,用于将所述的第三偏振部分和所述的第四偏振部分导向属于所述的一套光电探测器的第二对光电探测器。
13.如权利要求9所述的光学滤波器,其特征在于所述的第一偏振光分离器将所述的第二偏振光导向属于所述的一套光电探测器的一个光电探测器。
14.如权利要求9所述的光学滤波器,其特征在于所述的第一偏振光分离器是从由偏振光逸散元件和偏振光分束器所组成的组合中选出的。
15.如权利要求8所述的光学滤波器,其特征在于所述的窄带信号通道包含有从波分复用通道和密集波分复用通道组成的通道组中选出的通信通道。
全文摘要
本发明公开了一种光通道监控器(OCM)或用于分析入射光的滤波器,这种入射光载有许多诸如波分复用(WDM)或密集波分复用(DWDM)信道的窄带信号通道。该光通道监控器(OCM)或滤波器使用一种声光可调谐滤波器(AOTF),用来接收入射光和从入射光中折射出一个诸如含有一个具有中心频率ν
文档编号H04J14/06GK1479154SQ0311006
公开日2004年3月3日 申请日期2003年4月18日 优先权日2002年4月29日
发明者李世芳 申请人:光联通讯技术有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1