3g无线电设备的制作方法

文档序号:7887450阅读:207来源:国知局
专利名称:3g无线电设备的制作方法
技术领域
本发明涉及一种移动电话单元的设备结构。
背景技术
已出现了很多用于蜂窝通信的标准。例如,欧洲GSM系统工作在已知为GSM850,GSM900,GSM1800和GSM1900的发射频带,其中该名称的数字部分是以MHz表达的频带频率。而且,UMTS系统操作在1.92和1.98GHz的发射频带上。很明显期望如果电信设备能够容易地在这些它希望使用的服务所依据的或实际上其服务是可用的多种电信标准之间切换。

发明内容
根据本发明的第一方面,提供了一种用于GSM和UMTS的发射机,包括同相/正交上变频器,其用于混合同相和正交输入与中频;包括锁相环的GSM路径;以及UMTS路径;其中提供有频率发生器模块,用于产生在频率F1的第一信号,且将该第一信号提供为到在GSM路径中象频干扰抑制混合器、到UMTS路径中混合器的输入,并作为到分频器的输入,该分频器将第一信号除以3,以产生提供到同相/正交上变频器的中频;以及其中在GSM路径中的象频干扰抑制混合器是可控的,以选择上或下边带,从而GSM路径操作在(1+1/3)F1或(1-1/3)F1;以及其中在UMTS路径中的混合器选择上边带,从而具有在(1+1/3)F1的输出。
因此,可以提供一种发射机布置,其操作用于GSM频带和UMTS频带,其中很多RF组件是共享的。因此,例如,如果来自频率发生器的第一信号是以约1.35GHz为中心的频带,但扩展为低至1.28GHz且高至1.485GHz,则可调谐发射机用以选择性地操作用于在GSM850和GSM900频带,和在GSM1800和1900频带,以及在1.92和1.98GHz之间的UMTS频带。
有利的是,第一射频信号实际上是由工作在2.565到2.97GHz范围内的超高频压控振荡器产生。然后,该频率被分频器除以2,以确保第一RF频率具有相等的传号/空号比。本领域普通技术人员应当理解,晶体管开关和逻辑技术现在已足够快速用于操作在这些频率上。而且,可将分频器布置为产生第一射频信号的同相和正交版本。
有利的是,用于产生中频的分频器(即本地振荡器信号)是再生分频器,其包括两个信道,一个工作在同相信号,另一个工作在正交信号。每一信道都具有接收第一射频信号的混合器和4分频电路,该4分频电路接收混合器的输出和其自身提供至各自混合器第二输入的输入。还将4分频的分频器的输出提供到各自同相和正交混合器。由混合器和4分频的分频器形成的反馈环路实际上形成了3分频的混合器,如同本领域普通技术人员所已知的。
优选地,GSM发射路径包括相位灵敏度检测器,其具有用于接收同相/正交上变频器输出的第一输入,以及用于接收在锁相环中象频干扰抑制混合器输出的第二输入。相位灵敏度检测器的输出提供到压控振荡器的输入,该压控振荡器产生射频输出信号。压控振荡器的输出提供到象频干扰抑制混合器的另外的输入。因为象频干扰抑制混合器接收第一信号的同相和正交信号,因此,可以以电子方式选择它输出上边带或下边带。因此,锁相环可选择性地锁定到频率F1减去中频或F1加上中频。
在GSM路径中压控振荡器的输出还被提供到能够在C类模式中进行驱动的高功率放大器,以获得高效率。在C类中驱动该放大器产生了压控振荡器频率倍数的谐波。但是很明显,这些倍数是间隔开至少850MHz,且因此可以容易地通过相对简单的滤波来移除。
UMTS路径可包括一个或多个电子控制的可变增益放大器,其用作放大所调制的中频信号。该放大器典型地仅操作在以约中频即450MHz为中心的频率的相对狭窄的频带之间。因此,可将该放大器特别地构造成线性的。然后,由单一边带混合器将来自该放大器的输出与第一信号混合,以将其上变频到在1.92到1.98GHz范围内的UMTS输出频率。然后,来自混合器的输出经过另外的提供约25到30dB增益的可变增益放大器。该放大器的输出可在被提供到另外的芯片外功率放大器之前经过表面声波滤波器。还提供反馈路径用于采样功率放大器的输出,检测其输出电平,通过模-数转换器将其数字化,以及提供功率输出测量结果至UMTS功率控制逻辑电路。
因此,在本发明的优选实施例中,可提供一种操作用于UMTS和GSM发射模式的多模发射机,该发射机包括a.信号输入,其用于接收要由发射机进行上变频的信号(例如I/Q基带信号);b.振荡器,其用于产生具有频率F1的第一射频信号,其中F1是所需载波频率FC的1.5或0.75倍;c.第一分频器,其用于接收第一射信号F1,并将其除以3,从而形成中频本地振荡器信号IF,该信号具有基本上是所需载波频率的0.25或0.5倍的频率;d.至少一个混合器,其用于混合来自信号输入的信号与中频本地振荡器信号,以产生调制中频信号;e.GSM路径,其响应于调制中频信号;以及f.UMTS路径,其响应于调制中频信号;其中GSM路径包括在锁相环内的压控振荡器,该锁相环包括象频干扰抑制混合器,其在其第一输入接收压控振荡器的输出,以及在其第二输入接收第一射频信号的同相和正交表示,从而它选择性地输出上或下边带作为至锁相环内相位灵敏度检测器的信号;以及其中UMTS路径包括至少一个可变增益放大器和混合器,其用于混合第一射频信号与调制中频信号并输出边带之一到另外的放大器级。
振荡器之后可以由2分频级跟随,从而能够容易地获得被分频的振荡器信号的同相和正交版本。在此实施方案中,振荡器频率需要加倍到1.5或3倍于所需载波频率。
根据本发明的第二方面,提供一种包含直接转换多模接收机,其包括电子可重新配置滤波器。
因此,通过提供该可重新配置滤波器,可操控来自直接转换多模接收机的输出,使其适于在信号上执行的额外处理操作,从而提取其中的数据。
有利的是,该直接转换多模接收机还包括偏移发生器,其可用于施加可控偏移给响应于接收机输出的加法器。
在直接转换的拓扑结构中,这一点是高度期望的,以便能够提供偏移给来自接收机的输出。这其中的原因是下变频是通过混合所接收的无线电信号(该信号标称地以约频率Fr为中心)与也具有频率Fr的本地产生的无线电信号来执行的。因此,它按照所接收信号的载波被下变频到DC信号(或在振荡器频率失配的情况下非常接近DC)。因此,需要从变频器的输出中减去任何杂散DC偏移(或低频信号),以减小动态范围所需的随后处理电路,这实际上包含模-数转换器,从而随后可以在数字域中执行进一步处理。移除DC偏移的动作意味着可以减小动态范围和所需变频器分辩率,从而减小了随后处理电路的成本。
在优选实施例中,提供了一种直接转换多模接收机,其包括至少一个电子可重新配置滤波器,该滤波器配置用于滤波从接收机和偏移发生器接收的基带信号,每一可重新配置滤波器和偏移发生器处于控制电路的控制之下,从而可自动将偏移和滤波器响应控制为接收模式和信号条件的函数。
滤波器可实现为硬件或软件。硬件实现将趋向于优选的,因为它们不需要对后ADC处理资源带来如此大的负载。
根据本发明的第三方面,提供了一种展示了在其通带中基本上均匀的群延迟的混合滤波器,其中该滤波器包括Chebychev和反Chebychev响应的组合。
当设计用于通信应用的模拟滤波器时,通常在选择性、群延迟和复杂性要求之间难以进行平衡。理想地,我们希望信号经过滤波器的物理延迟是均匀的,而与其频率内容无关。因此,就相位与频率图而言,相位延迟需要随频率线性增加。
在电信环境中,且特别是在UMTS通信中,避免微分群延迟是重要的,因为它会产生码元间干扰。
但是,通常获得良好的选择性也是必要的,这是在通带与阻带之间的快速变换。
已知的是显示良好选择性性能的高Q滤波器(诸如Chebychev和Elliptic滤波器)通常在微分群延迟性能方面品质降低。另一方面,展示良好微分群延迟性能的滤波器(诸如Butterworth和Bessel滤波器)通常具有较差的滚降特性。发明人已认识到能够布置不同滤波器性能的组合,使得提供所需的响应。新的滤波器设计避免了常规滤波器技术的缺陷,并提供了优良的选择性、衰减和微分群延迟特性。发明人已注意到,反Chebychev通带特性与Butterworth的那些基本上相同,但该滤波器包含了阻带零值,这提供了优良的初始滚降特性。另一方面,Chebychev滤波器具有良好的初始滚降特性和非常高的最终衰减电平。
再回到群延迟特性,本领域技术人员已知的是,在远低于截止频率的频率上,Chebychev和反Chebychev滤波器都展示了基本上均匀的群延迟。但是,在截止频率区域,两个不同滤波器的群延迟的一阶导数具有相反的符号。发明人已认识到通过组合这两个特性,有可能获得基本上抵消了在接近截止频率区域的群延迟特性。这种抵消能够被布置成足以确保该群延迟抵消随时间而开始失效,由此导致不希望的群延迟特性,但信号幅度已经在这些频率上足够衰减,从而它们变得相对不重要。
该混合滤波器表示了对于可重新配置切换频带多模滤波器的良好选择,其操作模式可带来对滤波器性能的不同要求。因此,在多模接收机的情况下,一种操作模式可在微分群延迟方面带来对滤波器的苛刻要求,但在选择性方面不会是如此困难的要求。另一操作模式可能具有对选择性方面更为苛刻的要求,但在微分群延迟方面就不会如此困难。这里所提出的混合Chebychev/反Chebychev滤波器是对这两种要求的有效的解决方案。除频带切换滤波器之外,还可以调整这两种组成滤波器的相对截止,从而更加优化在不同操作模式中的性能。
根据本发明的第四方面,提供了一种双模单一芯片收发信机,包括发射机和接收机,其中频率合成器由发射机和接收机所共享,其中发射机包括上变频器,其用于接收输入并通过混合该输入与第一合成频率而将其上变频,且其中在GSM模式中,偏移锁相环用于将在上变频器输出处的相位调制转换成RF载波,且在UMTS模式中上变频信号被线性放大;以及其中接收机包括至少一个用于下变频所接收信号的下变频信道。
因此,通过共享集成电路内的很多发射和接收组件,有可能显著地减小GSM/UMTS收发信机结构的实现成本。
优选地,UMTS发射机包括另外的上变频级。因此,第一上变频器可产生中频输出。然后,该中频在被上变频到最终输出频率之前可被线性放大。然后,该最终频率可经过没有集成电路集成在一起的功率放大器。提供一个或多个“芯片外”功率放大器减小了在发射机路径和接收机路径之间的信号泄漏。这特别重要,因为UMTS操作在全双工模式,且因此信号泄漏对接收机性能产生降低效果。
优选地,UMTS双工滤波器也是提供在芯片外。
根据本发明的第五方面,提供了一种用于多模零拍接收机的自动增益控制器,该控制器包括响应于用于设定初始增益的第一信号的开环控制器,和闭环控制器,其响应于信号功率或幅度的测量结果,以用于将可变增益放大器输出处的信号功率或幅度维持在预定范围。
因此,可使用开环控制器,以提供快速放大器的初始建立,从而将其大致带入到所需的操作状态,并且然后使用反馈环来“微调”放大器增益。这在当改变模式时增强了放大器的建立时间。
UMTS无线系统要求连续双工操作。作为此一部分,需要自动增益控制(AGC),以在改变信号电平和信道条件的情况下维持可接受的性能。零拍结构的使用在其中自动增益控制器能够操作的方式中带来一些限制。
零拍接收机容易在其同相/正交模拟基带路径中产生不希望的DC偏移。为维持可接受的性能,有必要移除这些DC偏移,因为它们与信道中信号无法区分。在弱信号条件下,DC偏移基本上在幅度上大于所需信号是相当正常的。因此,如果不移除DC偏移,则可接受的所需信号接收很可能是不可能的。在宽带接收机中移除该偏移的一种普通方法是使用简单高通滤波器或AC耦合(DC阻止)电路布置。
通过调整模拟基带放大器的增益,可在零拍接收机中获得自动增益控制。但是,调整增益也调整了DC偏移电平,并因此对于为阻止DC分量而引入的高通滤波器产生了瞬变稳定时间问题。结果,需要低带宽自动增益环,以使当瞬变作为DC偏移的移位结果而出现时使它们最小。但是,低带宽自动增益控制与对于初始快速获得信号的要求不兼容。
发明者已认识到通过组合“前向馈送”或开环自动增益控制器和反馈自动增益控制器有可能克服这一点。
前向馈送/开环控制器能够基于由适当测量设备(诸如位于接收机处适当位置的全波或半波整流器,例如位于信道选择滤波器输出)进行的信号功率的初始测量来建立其初始值,或另一选择是开环控制器可基于所需接收机操作模式进行初始增益控制设定。开环控制器在每一模式改变时仅操作一次,以建立可变增益放大器的初始参数和其他需要增益建立的分量。从这时起,控制就传递到进行精细调整到多种增益电平的闭环。
根据本发明的另外的方面,提供了一种零拍接收机,包括具有可变时间常数的高通滤波器和可变增益放大器,滤波器和放大器是模-数转换器的上行流,其中当实现可变增益放大器增益的步幅改变时,高通滤波器的时间常数对于预定时间阶段减小。
根据本发明的另外的方面,提供了一种零拍接收机,包括至少一个模-数转换器的信号调节器上行流和具有可变时间常数的高通滤波器,其中当该至少一个信号调节器操作用于使对提供到模-数转换器的信号进行改变时,将滤波器的时间常数设定为减小的值。
高通滤波器可以实现模-数转换器的下行流,并且因此可在数字域中实现。
在该零拍直接转换接收机中,有必要使用高通滤波器,以从模拟基带信号路径中移除DC偏移。对于3.84MHz UMTS信号,该高通滤波器的截止频率应为约10kHz等,以移除所需信号能量的最小电平。但是,这种低截止频率意味着对于DC瞬变的长的稳定时间。发明已认识到,如果滤波器的截止频率暂增加,则DC瞬变的稳定时间能够很大程度地改善。这一点显著增加了接收机的稳定时间。


将通过参考随附附图,以实例方式对本发明进行进一步描述,在附图中图1是电路图,示意性地示出了组合的GSM和UMTS发射机,具有集成进单一电路的共享RF组件;图2是直接转换多模接收机的示意性图;图3是比较低通Chebychev和反Chebychev滤波器的群延迟相对于频率的图表;图4是低通Chebychev和反Chebychev滤波器的幅度响应相对于频率的图表;图5示出了图4滤波器的组合幅度响应;图6示意性示出了组合GSM/UMTS收发信机;以及图7示意性地示出了自动增益控制。
具体实施例方式
图1示意性地示出了根据本发明第一方面的实施例的发射机电路。该发射机可选择性地操作为双频带GSM发射机,或另外的选择是,作为3G UMTS发射机。该发射机包括单一芯片1,其上安置有单一射频合成器3。根据由合成器3接收的输入信号fin,合成器控制本地振荡器5,使得振荡器5产生基本上固定频率信号,根据实际需要的用于GSM或UMTS发射路径的操作频率,该信号是所需载波频率的1或3倍。应该强调的是,根据发射频带,由通用振荡器5产生信号的实际频率基本上与没有区别,仅是其与所需载波频率之比不同。由本地振荡器5产生的信号频率可以是例如近似为2.7GHz,并且更具体地为在2.565到2.970GHz的范围。这对应于由本地振荡器所产生频率的±10%的适度调整(实际上在此实例中约为7%)。
然后,来自本地振荡器5的信号被馈送到分频器7,其将信号频率除以2。分频器7还允许信号分离为同相(I)和正交(Q)分量。将I和Q分量馈送到以再生分频器(该分频器被布置为将输入频率除以3)形式的另外的分频器9。3分频的分频器9包括频率混合器11,其接收输入频率信号的I和Q分量,并将它们与已被另外的分频器13进行4分频的相同信号的对应分量进行混合。混合器11和4分频的分频器13的布置在4分频的分频器13的输出产生了原始输入信号的3分频信号。因此,从3分频的分频器9输出的I和Q分量是载波频率的1/4或。以2.7GHz输入频率fin作为我们的实例,在3分频的分频器9的输出的I和Q分量为450MHz。
将单独的I和Q分量供应到各自单独混合器15和17,其每个还接收各自模拟源信号的I和Q分量。混合器15和17用作将各自源信号分量和450MHz的I和Q分量组合在一起,以产生450MHz调制中频信号,其然后经过带通滤波器19。
然后,在带通滤波器19输出的中频沿两个单独的信号路径传播,每个路径用于分别产生GSM信号或3G UMTS信号。
对于GSM,450MHz中频信号被馈送到相位比较器21的第一输入。相位比较器21的第二输入还接收从带通滤波器23接收的450MHz信号。到带通滤波器23的输入得自象频干扰抑制混合器25。象频干扰抑制混合器25接收1.35GHz信号的I和Q分量作为第一输入,该1.35GHz信号是从合成器3、本地振荡器5和2分频的分频器7的组合获得。到象频干扰抑制混合器25的其他输入是载波频率信号,该信号是由被来自相位器21的输出所控制的压控振荡器27产生。相位比较器21、压控振荡器27和象频干扰抑制混合器构成了锁相环,该锁相环用于将调制的中频转换成射频载波信号。锁相环用作跟踪带通滤波器,并因此移除了对诸如SAW或陶瓷滤波器(其在其他情况下是需要的以减小带外发射)的RF带通滤波器的需求。
载波频率基本上是900MHz或1.8GHz,其取决于需要进行发射的GSM频带。象频干扰抑制混合器可选择性地从1.35GHz的I和Q分量信号中减去900MHz信号以达到至带通滤波器23的450MHz信号输入,或从1.8GHz载波信号中减去1.35GHz,从而也到达450MHz输出。因此,至相位比较器21的两个信号输入总是450MHz,即中频。因此,可以覆盖GSM850/900范围和GSM1800/1900范围。
调制的GSM信号被施加到高功率放大器29,该放大器29接收在输入线31上的功率控制信号。将放大器29的输出经开关35馈送到天线33。
对于3G UMTS发射,在将从带通滤波器19输出的中频信号与得自本地振荡器5和2分频的分频器7的1.35GHz信号进行混合之前,通过一对串联连接的可变增益放大器37、39将其馈送。将这两个信号在信号边带混合器41处进行混合,以产生1.8GHz信号,使用另一个单一可变增益放大器43将该信号自身进一步放大。使用功率控制电路45来控制放大器37、39和43,该功率控制电路45接收表示通过放大器49输出抽头处所获得的发射输出信号功率的采样和数字化输入信号。在通过天线33将来自功率放大器43的1.8GHz信号发射之前,它经过UMTS RF SAW滤波器47和另外的UMTS功率放大器49。该信号还经过连接在天线与UMTS功率放大器49之间的双工器和隔离器单元51,该UMTS功率放大器49选择性地允许在天线处所接收的信号被引导到接收机电路。
上述电路的很大优势在于,在上述实例中运行在2.7GHz的单一RF合成器是产生和发射双模(850/900和1800/1900)GSM信号和3GUMTS信号所需要的全部设备。分频器和混合器的使用确保了所需的载波,并且输出频率总是在合成器频率的固定倍数。因此,有可能在单一电路中提供组合的双模GSM和3G UMTS发射机,该单一电路具有相对大数目的共用电路组件用于这两种发射路径。
图2示意性地示出了直接转换(也已知为零拍)模式多模接收机。该接收机包括两个信道,为方便起见,一般性地表示为100和102。示意性地,由于这些信道是相同的,因此为方便起见,只描述第一信道。但是,就操作性能而言,该信道可操作在不同频率上,例如对于GSM850和GSM900的约800到1000MHz,以及对于GSM1800,GSM1900和UMTS的约1.7到2.2GHz。在这些情况中,可以订制单独的信道组件,以操作在其各自频带上。每个信道包括带通滤波器110和110a,其用作抑制在接收机通带之外的信号。因此,用于第一信道的滤波器110可以以900MHz为中心,而用于第二信道102的滤波器110a可以以约1.8GHz为中心。这些滤波器是必需的,以阻止强大的带外发射致使接收接收机驱动至饱合。将带通滤波器110的输入提供至放大器112的输入,该放大器112的输出被分别提供至混合器114和116的第一输入。混合器114和116的第二输入接收本地产生的载波信号的同相和正交版本。该信号的同相和正交版本由移相器118产生,该移相器118自身接收来自多模分数式合成器120、压控振荡器122和多模分数式频率复用器124的组合的本地产生的信号。组件120、122和124由每个信道100和102所共享。混合器114和116将本地产生的参考信号与接收的射频信号混合在一起,以形成其之间的差频率。由于射频和本地产生频率都是标称处于相同频率,因此射频中的信息被直接进行下变频到基带。在每一混合器114和116的输出提供基带信号。同相混合器114和114a的输出被提供到由两个信道之间共享的同相加法器130的第一输入。类似地,正交混合器116和116a的输出被提供到也是由两个信道之间共享的正交加法器132的第一输入。每一加法器130和132也是连接的,以接收由各自数-模转换器134和136产生的偏移信号。提供偏移的能力是重要的,因为耦合到RF输入的本地振荡器可以产生DC偏移,其大小取决于与本地产生的参考相关的杂散耦合信号的幅度和相位。加法器130的输入被提供到电子控制的低通滤波器140输入,电子控制的可变增益放大器142跟随在其后。类似地,加法器132的输出被提供到电子控制的低通滤波器150和可变增益放大器152。放大器142和152的输出被提供到各自模-数转换器160和162,其数字输出在各自有限脉冲响应滤波器中滤波后被提供到信号处理和控制单元170。对于每个同相正交信道,该控制单元估算每个信道所需的偏移,并将偏移信号提供给数-模转换器134和136。控制单元170还以适合于接收机操作模式的方式建立开关滤波器140和150的滤波器特性。
因此,可提供如图2所示的多模直接转换接收机结构。该结构具有的优点在于,很多接收机硬件被重新用于不同的操作模式。当与迄今为止的复制功能相比较时,共用硬件的重新使用能够提供显著的成本和功率节省。
模拟基带部分被设计成能够被配置为满足多种发射系统的要求。这意味着该结构必须允许以下各项i.重新配置增益线路上升,ii.重新配置信道滤波器,iii.重新配置模-数转换器速度和分辩率,以及iv.重新配置DC偏移补偿。
如上所述,使用了分离射频低噪声放大器和同相/正交下变频器,因为对于操作频率和模式来说,这些需要进行优化。尽管原则上具有用于不同操作模式的可重新配置的RF前端是可行的,但相信在当前具有专用的RF前端是更加成本有效的。
如上所述,高度期望在移动电话内的模拟处理电路具有滤波器包含在其中,其能够提供在通带与阻带之间的迅速衰减,且其还能够展示良好的群延迟,而且特别是没有展示微分群延迟,从而避免了码元间干扰。图3比较了由线200表示的反Chebychev滤波器的群延迟和由线202表示的Chebychev滤波器的群延迟,其被绘制为频率的函数。频率单位已包括在图3,4和5的纵坐标中,从而可以容易地比较多种图形。可以看出,在图3给出的实例中,对于超过2×105弧度每秒的频率,反Chebychev群延迟开始增加。但是对于超过2×105弧度每秒的角频率,Chebychev群延迟开始减小,并且这种减小持续直到频率106弧度每秒,然后Chebychev群延迟急剧增加。应当理解,在其中群延迟是相反符号的限制区域204中,可获得对群延迟特性的部分抵消,从而有效地延伸了区域206,该区域206从低频延伸到高达约2×105弧度每秒,其中群延迟相对于频率基本上是不变的直到增加的106弧度每秒上端频率。
图4示意性地了用于反Chebychev和Chebychev滤波器的幅度响应,其群延迟在图3中示出。可以看出,在此实例中的反Chebychev滤波器具有基本上平坦的幅度响应直到约106弧度每秒,且然后幅度响应急剧下降到在5×106弧度每秒出现的陷波。在该点上,响应幅度被抑制超过60dB。Chebychev滤波器在通带内还具有基本上均匀的幅度响应,但具有约2×106弧度每秒的翻转频率,从该频率处幅度迅速下降。
图5示出了使用如图3和图4所示的单独滤波器的Chebychev/反Chebychev滤波器的组合幅度响应。可以看出,组合响应210基本上是平坦的,直到106弧度每秒,并且然后急剧下降,在2×106弧度每秒处约下降10dB,且在5×106弧度每秒处下降超过60dB。而且,群延迟可保持为基本上恒定直到上升到1×106弧度每秒。
本领域普通技术人员应当理解,模拟滤波器设计是极其复杂的数学运算。但已知的是,很多设计以标准化形式已对其进行了分析和描述,从而工程师可以有效地使用标准形式的“诀窍”,以设计特定的滤波器特性。另外,计算机辅助设计包工具现在也允许精确描述滤波器特性。由于这些原因,设计的细节不需要详细描述,因为在现有技术中存在足够的支持使得本领域普通技术人员能够实现该滤波器。但是,对于其响应如图3到5所示的特定滤波器,反Chebychev响应的极位置由Chebychev响应的第一计算极位置来进行计算,并使用极替换。
p=1.204+2.258i2.4081.204-2.258i-1.204-2.258i-2.408-1.204+2.258i]]>有效极存在于S平面的负的一半。
z=01.155i01.633·1016iωz:=z1]]>阻带“零”的位置。
所使用的反Chebychev传递函数为
Hici:=[(1p3)·(1p4)·1p5]·[(siωc)2-(z1)2]·[(siωc)2-(z3)2][[(siωc-1p3)·[(siωc)-(1p4)]·[(siωc)-(1p5)]·[(z1)2]·(z3)2]]]]>Chebychev多项式的解的极位置为pl=0.313+1.022i0.6260.313-1.022i-0.313-1.022i-0.626-0.313+1.022i]]>有效极存在于S平面的负的一半。
所使用的Chebychev传递函数为Hci:=pl3·pl4·pl5[(siωcl-pl3)·(siωcl-pl4)(siωcl-pl5)]]]>混合滤波器的传递函数是两个单独传递函数的组合xi=(Hci·Hici)作为混合滤波器,可单独地将滤波器的两个元件中的每一个调整为更好地订制滤波器响应,以满足特定应用的需求。
例如,对于Chebychev响应,可以调整下各项1.截止频率2.滤波器阶数(极的数目)3.带内纹波对于反Chebychev滤波器,可以调整以下各项1.最小阻带衰减2.最大允许通带滚降3.达到最小阻带衰减的相对频率4.滤波器阶数可通过将滤波器实现为滤波器级的层叠来调整滤波器阶数(即这些级是彼此连接的),由此一个或多个级可被切换出该层叠,以使它们被旁路。因此,旁路一个级就减小了滤波器的阶数。
图6示意性地示出了构成本发明一个实施例的双模GSM/UMTS收发信机。该收发信机通常包括发射信道300和接收信道302。尽管在图6中以简化的形式表示,但发射信道300实际上包含了如本文附图中图1所示的双模发射机。为了简化对图6的理解,图6中与图1所示部分相似的那些部分将用相同的参考标记,因此可以看出,发射机接收来自合成器3的频率合成信号,该合成信号在被提供到上变频器的同相和正交混合器15和17之前经过3分频的分频器9。在GSM模式中,上变频器的输出提供到锁相环移频器,其包括相位检测器21,压控振荡器27,混合器25和带通滤波器23。因此这些组件的操作如同前述参考图1所进行的描述。可以注意到,在该发射机结构图中还存在另外的2分频的分频器306、308和310,应当理解,这些对于发射机的最终操作具有非常小的整体影响,并且特别是分频器308和310有效地使彼此无效,尽管它们允许波形的传号与空号和空号比转换为理想的50-50。类似地,UMTS路径包括线性放大器阵列和上变频器。如图1所示的标记为37、39、41和43的组件示意性地由图6中的框320表示。
应当理解,接收机部分302是图2的简化表示。这里图2的多模分数式复用器124还在图6所示的双分数式合成器3中具体化。也可以清楚地看到,提供了两个信道,每个都具有用于将所接收信号下变频到基带的同相和正交混合器。图2的组件130、132、134、136、140、142、150、152、160和162示意性地由图6中的框330表示。可以清楚,两个发射机信道共享该组件,两个接收机信道共享该组件,并且实际上接收机和发射机共享频率合成器组件。与其中这些组件中的每一个都提供有其单独功能的实施方案相比,这种组件共享能够使得在集成电路的最终价格方面的成本减低,并还减小了收发信机的整体功率消耗,并因此有效地进行复制。
GSM工作在时分复用系统,并因此发射机和接收机不是同时操作的。但是,UMTS操作在全双工上,并因此发射机和接收机是同时操作。在UMTS模式中,重要的是限制由于与UMTS发射机交互而造成的接收机的减敏。这可以通过以下方式获得首先不将低噪声功率放大器与芯片自身集成在一起,并其次通过限制在发射机输出引脚的发射机功率。而且重要的是保证在发射输出处接收频带中的噪声电平是适当的。例如,通过具有13dB增益的外部低噪声放大器,在发射机输出引脚处的发射功率被限制在+3dBm和在接收频带上的-140dBc/Hz的发射噪声基数,如果在发射机和接收机之间获得30dB的隔离,则发射机在接收机灵敏度的影响将近似为0.1dB。
图6所示的结构可操作用于几种模式,用于该收发信机的频率规划可以如下GSM850/900接收模式-合成器频率是RF频率的3倍。
GSM1800/1900接收模式-合成器频率是载波频率的1.5倍。
UMTS接收模式-合成器频率是RF载波频率的1.5倍。
GSM850/900发射模式-合成器频率是RF载波频率的3倍,且中频是RF载波频率的1/2。
GSM1800/1900发射模式-合成器频率是RF载波频率的1.5倍,且中频是RF载波频率的1/4。
UMTS发射模式-合成器频率是RF载波频率的1.5倍,且中频是RF载波频率的1/4。
图7示意性地示出了构成本发明一个实施例的混合前向馈送和反向馈送自动增益控制系统。该电路图示出了可变增益放大器,其输出提供到混合Chebychev/反Chebychev滤波器,一般性地由402表示,其已在前面进行了描述。混合滤波器402的输出提供到另外的可变增益放大器的输入,该放大器示意性地被表示为三个独立的电子可控可变增益放大器404、406和408,它们一起用作提供在一个dB步幅中的0与54dB之间的可变增益。提供最终放大器408的输出作为来自自动增益控制器的输出410。
前向馈送控制器,一般地由420表示,包括接收信号强度指示(RSSI)记录条,其具有连接到混合滤波器402输出的输入。RSSI记录条用于估算在混合滤波器输出处的信号强度。RSSI记录条422产生基本上线性成比例于以dBm表示的滤波器输出处信号的合成功率的电压作为其输出424。该输出信号在被提供到6比特模-数转换器430的模拟输入428之前由低通滤波器426进行滤波。响应于“开始转换”信号来将在模-数转换器430的输入428处的信号数字化,且转换的输出提供到滤波器增益逻辑控制器432。该滤波器增益逻辑控制器具有两个输入,一个提供到寄存器434,用于控制可变增益放大器400的增益,而另一个输入以6比特字提供到6比特下变频计数器440。因此,计数器可以加载有滤波器增益逻辑控制器432的输出。
在UMTS接收机中的信号是所需信号、噪声和任何残余干扰信号的合成信号。将出现在混合滤波器402输出处的该合成信号数字化,以产生具有特性“A”dB每比特的数字字,其中A表示任意数目。该控制字用于设定可变增益放大器的增益。将可变增益放大器设计成具有“A”dB每比特的增益降低特性。这样,如果进入接收机的信号电平增加5AdB,则数字化控制字将也增加5。这将会导致可变增益放大器404、406和408的增益降低了数量为5AdB的合成增益。因此,在可变增益控制器410输出处的信号电平基本上保持恒定。因为到目前为止所描述的方式使用前向馈送技术,因此不存在可能影响反向馈送系统的带宽影响。因此,可以迅速建立自动增益控制器的增益,例如当切换操作模式或信道时。迅速获得了合成信号电平和建立初始增益后,由反馈结构执行进一步的增益控制。
反馈控制器,一般地由450表示,包括整流器452,其连接到放大器408的输出,以减小表示放大器408输出处信号功率的整流信号。来自整流器452的信号在被提供到窗口比较器456的输入之前是由滤波器454进行了低通滤波的,如同本领域普通技术人员所认识到的,该比较器456比较其输入信号与定义窗口的高和低阈值,并产生表示信号是低于窗口阈值或高于窗口阈值的输出458。将信号458提供到计数器440的计数方向控制输入(上/下输入)。如图7所示,还将窗口比较器456配置为提供表示何时至其的输出是在定义窗口的边界之内,并将该输出发送到AND门460,该门用作选通提供到计数器440的时钟信号。因此,当输出410在由窗口比较器456所定义的功率频带之内时,抑制计数器440接收它的时钟信号。时钟信号462还与AND门464(该AND门464对反馈环路是否操作提供整体控制)处的“启动反馈”信号进行“与”操作。AND门464的输出提供到AND门460的输入,其输出连接到计数器440的时钟引脚。计数器440的输出提供到增益解码器470,该解码器470设定放大器404、406和408的增益。
在使用中,信号电平检测器和窗口比较器用于确保合成信号电平和放大器输出保持在狭窄的范围,例如+/-0.5dB。如果合成信号电平高于窗口比较器的阈值,则启动上/下计数器,且在每个时钟周期对增益进行调整。以这种方式,时钟设定反馈环路的时间常数。如果合成信号电平低于窗口比较器阈值,则也启动上/下计数器,但这时计数是以相反方向。结果,反馈环路的动作总是确保合成信号电平以由时钟462频率所确定的速率被牢固地控制和调整。
参考图2,应当注意,每次进行增益控制调整或进行偏移校正时,该步幅调整可导致出现在滤波器输出的瞬变DC偏移。可以通过高通滤波器来移除该DC偏移,但对于确实普通的接收机,DC偏移校正应在数字域执行更好。因此,在每一增益改变处,估算新的DC偏移,并且将该估算结果提供到转换器134和136,使得将校正添加到加法器130和132。这就是说,作为增益改变结果出现的瞬变仍对于低通滤波器140和150具有不需要的影响。该瞬变随时间而衰落,但在滤波器稳定时间期间,零拍接收机被有效地遮蔽。这是因为有必要限制模-数转换器的转换范围,且偏移可引起转换器进行其正常操作范围之外的转换。
假定接收机在此瞬变期间被有效地停止工作,则发明人已认识到,这样就允许在短的时间段内改变滤波器特性,以允许更快速的稳定时间。因此,当实施对增益或偏移的改变时,高通滤波器是同时或接近同时地设定到宽的带宽,从而DC瞬变将快速稳定下来。可从已知的滤波器特性来估算该稳定时间。在稳定时间后,滤波器自动切换回到其正确操作的标称所需设置。滤波器由定时器控制,例如可实现为单稳的,其在简短但良好定义的时间段内改变滤波器特性。该技术保证了最快可能的接收机稳定时间,而同时使可能由高通滤波器移除的所需调整能量数量最小。两种带宽设置之间的典型比约为10比1,尽管这仅是非限制性实例,并且也可以通过设计选择其他比率。该技术的实现不是取决于滤波器技术。因此滤波器可以实现为开关电容滤波器、切换带宽有源R-C滤波器、旋转器-电容滤波器等等。滤波器的特定实现是在本领域普通技术人员的知识范围内。
因此提供一种特别适用于移动电话中的多模接收机和收发信机。
权利要求
1.一种直接转换多模接收机,包括至少一个电子可重新配置滤波器。
2.如权利要求1所述的接收机,其中电子可重新配置滤波器是低通滤波器。
3.如权利要求1所述的接收机,其中至少一个滤波器响应于滤波器控制器。
4.如权利要求1所述的接收机,其中该至少一个滤波器的截止频率是可调整的。
5.如权利要求1所述的接收机,其中该滤波器的阶数是可调整的。
6.如权利要求5所述的接收机,其中该滤波器包括多个滤波器级,且该级可被选择或被旁路,从而改变滤波器的阶数。
7.如权利要求1所述的接收机,其中滤波器的通带纹波数量是可调整的。
8.如权利要求1所述的接收机,其中该至少一个滤波器包括多个不同类型的单独可控的滤波器,从而形成合成滤波器。
9.如权利要求8所述的接收机,其中一个滤波器是反Chebychev滤波器。
10.如权利要求9所述的接收机,其中反Chebychev滤波器是可控的,从而调整从包含最小阻带衰减、最大允许通带滚降、达到最小阻带衰减的频率、及滤波器阶数的列表中选择的其至少一个特性。
11.如权利要求8所述的接收机,其中一个滤波器是Chebychev滤波器。
12.如权利要求11所述的接收机,其中Chebychev滤波器是可控的,以调整来自包含截止频率、滤波器阶数、和通带纹波的列表中的至少一个特性。
13.如权利要求1所述的接收机,其中接收机可操作用于接收GSM和UMTS发射,且其中对于GSM和UMTS所接收的信号可以调整滤波器的操作,以提供所接收信号用于在接收机中进一步处理。
14.如权利要求1所述的接收机,其中接收机进一步包括至少一个响应于控制器的DC偏移发生器,以在接收机内将该DC偏移添加至下变频信号,从而减少出现在接收机中的DC偏移。
15.如权利要求14所述的接收机,其中由DC偏移生器产生的DC偏移被添加至该至少一个电子可重新配置滤波器的下变频信号的上行流。
16.如权利要求14所述的接收机,其中由DC偏移发生器产生的DC偏移被添加至该至少一个电子可重新配置滤波器的下变频信号的下行流。
17.如权利要求1所述的接收机,其中接收机具有“同相”信道和“正交”信道。
18.如权利要求1所述的接收机,进一步包括响应于控制器的可变增益放大器,以将在该可变增益放大器输出处的信号幅度保持在预定范围内。
19.一种直接转换多模接收机,包括至少一个电子可重新配置滤波器,其被布置成滤波来自接收机和DC偏移发生器的基带信号,其每一个都在控制电路的控制下,从而偏移和滤波器响应是作为接收模式和信号条件的函数而被自动控制。
20.如权利要求19所述的接收机,其中接收机操作用于接收GSM和UMTS发射。
21.如权利要求19所述的接收机,其中来自接收机的信号通过模-数转换器被转换成数字形式,并且控制电路响应于该数字形式,并使用它来得出要由偏移发生器施加给下变频信号的DC偏移。
22.如权利要求19所述的接收机,进一步包括第一和第二射频前端,其用于接收在至少第一和第二频带或发射模式中的发射。
23.如权利要求22所述的接收机,其中接收机被布置成接收根据GSM和UMTS标准发射的信号。
24.如权利要求22所述的接收机,其中第一射频前端被布置成接收GSM850MHz和GSM900MHz发射中的至少一个。
25.如权利要求22所述的接收机,其中第二射频前端被布置成接收中GSM1800MHz和GSM1900MHz发射中的至少一个。
26.如权利要求22所述的接收机,其中前端之一被布置成接收UMTS2100MHz和UMTS1900MHz中的至少一个。
27.如权利要求22所述的接收机,其中每一前端包括零拍接收机,其具有第一和第二混合器,用于输出所接收信号的同相和正交分量。
28.如权利要求19所述的接收机,其中滤波器包括Chebychev滤波器和反Chebychev滤波器的组合。
29.如权利要求28所述的接收机,其中每一Chebychev和反Chebychev滤波器的特征都是单独可控的。
30.一种混合滤波器,其包括Chebychev滤波器响应和反Chebychev滤波器响应的组合。
31.如权利要求30所述的混合滤波器,其中选择Chebychev和反Chebychev响应,从而提供在滤波器通带内基本上恒定的群延迟。
32.如权利要求30所述的混合滤波器,其中该滤波器是低通滤波器。
33.如权利要求30所述的混合滤波器,其中滤波器的单独截止频率是独立可调整的,从而允许滤波器的群延迟和选择性根据被滤波信号的性质而改变。
34.一种包括如权利要求30所述的混合滤波器的无线电接收机。
全文摘要
提供了一种用于接收GSM和UMTS发射的零拍接收机(图2)。该接收机还可用于其他发射方案。该接收机包括电子可重新配置低通滤波器(140,150)和偏移发生器,其用于提供用于偏移的DC偏移校正,该偏移可作为在本地射振荡器(122)和该接收机前端之间耦合的结果而产生。
文档编号H04B1/40GK1639990SQ03804376
公开日2005年7月13日 申请日期2003年2月21日 优先权日2002年2月21日
发明者西蒙·阿特金森, 帕列·比尔克, 斯泰西·霍, 佐兰·兹沃纳尔, 艾当·卡哈拉纳 申请人:模拟设备公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1