超硬金刚石及其制造方法

文档序号:7607160阅读:375来源:国知局
专利名称:超硬金刚石及其制造方法
技术领域
本发明涉及金刚石,更具体的说,涉及在沉积室内使用微波等离子体化学气相沉积(MPCVD)制造的超硬金刚石。
背景技术
人造金刚石的大规模生产很久以来一直是研究人员和工业界的目标。除了宝石性质之外,金刚石是最坚硬的已知材料,具有最高的已知导热率,并且对于很多种电磁辐射是透明的。因此,除了其作为宝石的价值之外,由于其在若干工业中的广泛应用,金刚石是颇有价值的(valuable)。
至少在最近的20年间,通过化学气相沉积(CVD)来制造少量金刚石的方法已经是可行的。如B.V.Spitsyn等人在“Vapor Growth ofDiamond on Diamond and Other Surfaces(金刚石和其它表面上的金刚石气相生长)”,Journal of Crystal Growth,第52卷,第219-226页中所报道的,该方法涉及使用甲烷或另一种简单烃类气体与氢气的组合在减压和800-1200℃的温度下在衬底(substrate)上进行金刚石的CVD。氢气的加入(inclusion)防止在金刚石成核和生长时形成石墨。据报道,使用该技术的生长速率达到1μm/小时。
后来的工作,例如Kamo等人在“Diamond Synthesis from Gas Phasein Microwave Plasma(在微波等离子体中从气相合成金刚石)”,Journalof Crystal Growth,第62卷,第642-644页中报道的工作,证实了使用微波等离子体化学气相沉积(MPCVD)在1-8KPa的压力和800-1000℃的温度下以在2.45GHz的频率下为300-700瓦的微波功率制造金刚石。在Kamo等人的方法中使用了浓度为1-3%的甲烷气体。据报道,使用该MPCVD方法的最大生长速率为3μm/小时。
天然金刚石的硬度在80-120GPa之间。大多数生长或制造的金刚石,不管其方法如何,硬度均小于110GPa。不同于已经经受过退火的IIa型天然金刚石,尚未见硬度大于120GPa的金刚石的报道。

发明内容
因此,本发明涉及一种制造金刚石的装置和方法,其基本上消除了由于相关领域的限制和缺点所导致的一个或多个问题。
本发明的一个目的涉及一种用于在微波等离子体化学气相沉积系统中制造具有增大的硬度的金刚石的设备和方法。
本发明的另一个目的是增强单晶金刚石的光学特性。
本发明另外的特征和优点的一部分将在以下描述中阐明,一部分可以显而易见地从描述中得出,或者可以通过本发明的实践而得到。本发明的目的和其它优点将通过所撰写的说明书和权利要求书以及附图所特别指出的结构来实现和获得。
为了达到这些和其它优点并且符合本发明的目的,如本发明所具体表达和广泛描述的,通过微波等离子体化学气相沉积生长、在超过4.0GPa的压力下并且加热至超过1500℃的温度下进行退火的单晶金刚石具有大于120GPa的硬度。
在另一个实施方式中,单晶金刚石的硬度为160-180GPa。
根据本发明的另一个实施方式,制造硬单晶金刚石的方法包括生长单晶金刚石和在超过4.0GPa的压力和超过1500℃的温度下对该单晶金刚石进行退火,从而使该单晶金刚石的硬度超过120GPa。
应当理解到对本发明的上述概括描述和下述详细描述均是示范性和说明性的,其意味着对所要求的发明提供进一步的解释。


了本发明的实施方式并且和说明书一起用来解释本发明的原理,其被包括以提供对本发明的进一步理解,并且并入构成说明书的一部分。
图1是用于测试金刚石硬度的压头的图片。
图2是在金刚石上造成的压痕的照片。
图3的图片显示了退火的微波等离子体CVD-生长的单晶金刚石的硬度和韧性与IIa型天然金刚石、退火的IIa型天然金刚石、退火的Ia型天然金刚石和退火的Ib型HPHT人造金刚石的硬度和韧性的比较。
具体实施例方式
现在详细参考本发明的优选实施方式,其结果在附图中说明。
本申请中提到的微波等离子体CVD-生长的单晶金刚石是用2002年11月6日提交的题为“Apparatus and Method for Diamond Production(制造金刚石的装置和方法)”的美国专利第10/288,499号中所述的装置来生长的,该专利在此并入作为参考。通常,将晶种金刚石放置在夹具中,该夹具移动晶种金刚石/在金刚石生长时移动生长的金刚石。本申请的发明人也是美国专利申请第10/288,499号的发明人。
在Ib{100}型人造金刚石上沉积厚度大于1毫米的微波等离子体CVD-生长的单晶金刚石。为了提高生长速率(50-150μm/h)并且促进光滑{100}晶面的生长,在N2/CH4=0.2-5.0%、CH4/H2=12-20%、总压力为120-220托和900-1500℃的气氛中,在CVD室中从微波诱导的等离子体中生长单晶金刚石。在<950℃和>1400℃下,拉曼光谱显示了少量引起褐色金刚石的氢化无定形碳(a-C:H)4和含氮的a-C:H(N:a-C:H)4。光致发光(PL)光谱显示了氮-空位(N-V)杂质。厚度达到4.5mm的单晶金刚石以比传统的多晶CVD生长方法高两个数量级的生长速率被制造出来。
微波等离子体CVD-生长的单晶金刚石在超过4.0GPa的压力(例如,5-7GPa)下加热至超过1500℃的温度(例如,1800-2900℃)在使用带型或砧型(anvil-type)装置的反应釜中退火1-60分钟。反应釜可以是小室(cell),例如美国专利第3,745,623号或第3,913,280号所述的小室,其在此并入作为参考。这样的退火处理减少或消除了微波等离子体CVD-生长的单晶金刚石晶体的颜色,并且使Ib型HPHT人造种晶(seed crystal)的色泽变浅。而且,退火的微波等离子体CVD-生长的单晶金刚石的退火的CVD金刚石的硬度(至少~140GPa)超过了退火或未退火的Ib型HPHT人造金刚石(~90GPa)、退火的Ia型天然金刚石(~00GPa)、IIa型天然金刚石(~110GPa)和退火的IIa型天然金刚石(~140GPa)以及烧结(sintered)多晶金刚石(120-140GPa)的硬度。
实施例1在大约1500℃的温度下用比率为5%的N2/CH4在微波CVD室中在黄色Ib型HPHT人造金刚石上生长单晶金刚石。微波等离子体CVD-生长的单晶金刚石的尺寸为1平方厘米,厚度稍大于1毫米。微波等离子体CVD-生长的单晶金刚石的颜色为褐色。然后,将Ib型HPHT人造晶种金刚石(seed diamond)上的褐色微波等离子体CVD-生长的单晶金刚石作为样品放置在反应釜中。
将反应釜放置在传统的HPHT装置中。首先,将压力增加到5.0GPa的压力,然后将温度升到2200℃。样品在这样的退火条件下保持5分钟,然后在释放压力之前经大约1分钟的时间将温度降低至室温。
将样品从反应釜中取出,并且在光学显微镜下检验。褐色的微波等离子体CVD-生长的单晶金刚石已经变成透明的浅绿色,并保持牢固地结合在黄色Ib型HPHT人造金刚石上。Ib型HPHT人造金刚石的黄色变成更浅的黄色或者更透明的黄色。硬度为大约160GPa。
实施例2除了退火条件保持1小时之外,与上述实施例1相同。褐色的微波等离子体CVD-生长的单晶金刚石变成浅绿色,其比实施例1中得到的浅绿色更透明,并且保持牢固地结合在Ib型HPHT人造金刚石上。Ib型HPHT人造金刚石的黄色变成更浅的黄色或者更透明的黄色。硬度为大约180GPa。
实施例3在大约1450℃的温度下用比率为5%的N2/CH4在微波CVD室中在黄色Ib型HPHT人造金刚石上生长单晶CVD金刚石。微波等离子体CVD-生长的单晶金刚石的尺寸为1平方厘米,厚度稍大于1毫米。微波等离子体CVD-生长的单晶金刚石的颜色为浅褐色或黄色。换句话说,一种不像上述实施例1中的微波等离子体CVD-生长的单晶金刚石的褐色那样深的黄色或浅褐色。然后将Ib型HPHT人造金刚石上的黄色或浅褐色微波等离子体CVD-生长的单晶金刚石作为样品放置在反应釜中。硬度大于160GPa。
将反应釜放置在传统的HPHT装置中。将压力增加到大约5.0GPa的压力,然后将温度迅速升到大约2000℃。样品在这样的退火条件下保持5分钟,然后在释放压力之前经大约1分钟的时间将温度降低至室温。
将样品从反应釜中取出,并且在光学显微镜下检验。浅褐色的微波等离子体CVD-生长的单晶金刚石已经变成无色,并且保持牢固地结合在黄色Ib型HPHT人造金刚石上。Ib型HPHT人造金刚石的黄色也变成更浅的黄色或者更透明的黄色。
实施例4除了使无色的微波等离子体单晶CVD-生长的金刚石在~1200℃的温度下在N2/CH4=5%的气氛中退火之外,与上文实施例1相同。退火之后,微波等离子体单晶CVD-生长的金刚石是蓝色的。这种蓝色的微波等离子体单晶CVD-生长的金刚石具有>20MPa m1/2的非常高的韧性。硬度为大约~140GPa。
实施例5除了使无色的微波等离子体单晶CVD-生长的金刚石在~1200℃的温度下在N2/CH4=.5%的气氛中退火之外,与上文实施例1相同。微波等离子体单晶CVD-生长的金刚石仍然是无色的。这种无色的微波等离子体单晶CVD-生长的金刚石具有~160GPa的硬度和~10MPa m1/2的韧性。
图1是用于测试金刚石硬度的压头的图片。用图1所示的压头1在退火的微波等离子体CVD-生长的单晶金刚石上进行维氏硬度测试。图1中的压头1具有安装在底座3上的冲击材料2。冲击材料2可以是碳化硅、金刚石或者某些其它的坚硬材料。该冲击材料具有锥形维氏压头形状的面(face),其中锥形维氏压头形状两侧的角度为136°。
压头对测试金刚石2施加点荷载(point load),直至在测试金刚石2中形成压痕或裂缝。为防止压头的弹性变形,荷载在测试金刚石的<100>方向的{100}晶面上在1至3kg之间变化。通过光学显微镜测量压痕以及与压痕有关的裂缝的大小。图2是在微波等离子体CVD-生长的单晶金刚石上产生的压痕的照片。
通过测量压痕的长度D和高度h,可以从以下方程(1)确定测试金刚石的硬度Hv(1)Hv=1.854×P/D2P是在压头上使用以便在该测试金刚石上形成压痕的最大荷载。D是压头在测试金刚石中形成的最长裂缝的长度,h是测试金刚石内压痕的深度,如图1所示。
通过在以下方程(2)中使用由方程(1)得到的硬度Hv,可以确定测试金刚石的断裂韧性Kc(2)Kc=(0.016±0.004)(E/Hv)1/2(P/C3/2)E是杨氏模量,其被假定为1000GPa。P是在压头上使用以便在该测试金刚石上形成压痕的最大荷载。术语d是测试金刚石中压痕凹孔的平均长度,如图2所示,使d=(d1+d2)/2。术语c是测试金刚石中径向裂缝的平均长度,如图2所示,使c=(c1+c2)/2。
由于硬度测定中的不确定性,还在其它金刚石上进行了相同的测量。发现其它金刚石上的测量结果与其它金刚石的公布数据是一致的。维氏硬度测试是在各种类型金刚石的(100)方向的(100)晶面上进行的。
通过光学显微镜清楚地看出,退火的微波等离子体CVD-生长的单晶金刚石的压痕表面不同与其它(较软的)金刚石的压痕表面。退火的微波等离子体CVD-生长的单晶金刚石表现出沿着<110>或<111>的矩形裂缝图案,没有沿<100>的交叉裂缝线,而且锥形维氏压头在退火的微波等离子体CVD-生长的单晶金刚石的表面上产生了水印状的变形标记。与此相反,退火的IIa型天然金刚石的沿着(110)和(111)的矩形裂缝图案较少,而是仍然表现出较软的金刚石的交叉(100)裂缝。这些结果显示,退火的微波等离子体CVD-生长的单晶金刚石比压头坚硬,压头的弹性变形所产生的压力导致了较软的{111}晶面的滑移。
典型地,在未退火的微波等离子体CVD-生长的单晶金刚石和Ib型天然金刚石上进行~15次测量之后,维氏压头破裂。而且,典型地,在退火的IIa型天然金刚石、退火的Ia型天然金刚石和退火的Ib型HPHT人造金刚石上进行~5次测量之后,维氏压头破裂。但是,在退火的微波等离子体CVD-生长的单晶金刚石上仅仅进行一次或两次测量之后,维氏压头破裂。这些观察结果进一步表明,退火的微波等离子体CVD-生长的单晶金刚石比测量数值所表示的还要坚硬。实际上,许多退火的微波等离子体CVD-生长的单晶金刚石完全损坏了较软的压头。在这样的例子中,压头无论如何都不会在退火的微波等离子体CVD-生长的单晶金刚石的表面上留下印迹。
图3的图片显示了退火的微波等离子体CVD-生长的单晶金刚石的硬度和韧性与IIa型天然金刚石、退火的IIa型天然金刚石、退火的Ia型天然金刚石和退火的Ib型HPHT人造金刚石的比较。如图3所示,退火的微波等离子体CVD-生长的单晶金刚石的硬度比IIa型天然金刚石高得多,如图3中虚线框10所示。所有退火的微波等离子体CVD-生长的单晶金刚石还具有比报道的多晶CVD金刚石的硬度范围更高的硬度,如图3中的虚线框20所示。图3中表示的微波等离子体CVD-生长的单晶金刚石的断裂韧性为6-10MPa m1/2,硬度为140-180GPa,有迹象表明其硬度可能更高。
由于可以在不偏离本发明的精神或实质特征的前提下以几种形式具体表达本发明,也应当理解,除非特别指出,上述实施方式并不受任何上文描述的细节所限制,而是应当广泛地认为在如所附权利要求所定义的其精神和范围之内,因此所有落入权利要求的边界和范围,或者这种边界和范围的等同物之内的变化和修改,因此均意味着被所附权利要求所包括。
权利要求
1.一种通过微波等离子体化学气相沉积生长的单晶金刚石,其在超过4.0GPa的压力下加热至超过1500℃的温度进行退火,该单晶金刚石的硬度大于120GPa。
2.根据权利要求1所述的单晶金刚石,其断裂韧性为6-10MPam1/2。
3.根据权利要求1所述的单晶金刚石,其中所述的硬度为160-180GPa。
4.根据权利要求1所述的单晶金刚石,其中硬度是通过方程Hv=1.854×P/D2来确定的,其中P是在压头上使用以便在所述单晶金刚石上形成压痕的最大荷载,D是压头在所述单晶金刚石中形成的最长裂缝的长度,并且h是所述单晶金刚石内压痕的深度。
5.根据权利要求3所述的单晶金刚石,其断裂韧性为6-10MPam1/2。
6.一种硬度为160-180GPa的单晶金刚石。
7.根据权利要求6所述的单晶金刚石,其断裂韧性为6-10MPam1/2。
8.根据权利要求6所述的单晶金刚石,其中硬度是通过方程HY=1.854×P/D2确定,其中P是在压头上使用以便在所述单晶金刚石上形成压痕的最大荷载,D是压头在所述单晶金刚石中形成的最长裂缝的长度,并且h是所述单晶金刚石内压痕的深度。
9.一种制造硬单晶金刚石的方法,包括生长单晶金刚石;和在超过4.0GPa的压力和超过1500℃的温度下对所述的单晶金刚石进行退火,以使其硬度超过120GPa。
10.根据权利要求9所述的方法,其中生长单晶金刚石包括微波等离子体化学气相沉积。
11.根据权利要求9所述的方法,其中生长单晶金刚石是在N2/CH4=0.2-5.0%和CH4/H2=12-20%的气氛中在120-220托的总压力下发生的。
12.根据权利要求9所述的方法,其中对所述单晶金刚石进行退火得到硬度超过160-180GPa的单晶金刚石。
13.根据权利要求9所述的方法,其中生长单晶金刚石是在温度为900-1500℃的气氛中发生的。
14.根据权利要求9所述的方法,其中所述的退火进行1-60分钟。
15.根据权利要求9所述的方法,其中对所述单晶金刚石进行退火得到硬度超过140-180GPa的单晶金刚石。
全文摘要
一种通过微波等离子体化学气相沉积生长、在超过4.0GPa的压力下加热到超过1500℃的温度进行退火的单晶金刚石,其硬度大于120GPa。一种制造硬单晶金刚石的方法包括生长单晶金刚石和在超过4.0GPa的压力和超过1500℃的温度下使该单晶金刚石退火,以使其硬度超过120GPa。
文档编号H04N5/765GK1942610SQ200480020156
公开日2007年4月4日 申请日期2004年7月14日 优先权日2003年7月14日
发明者R·J·赫姆利, H-K·毛, C-S·严 申请人:华盛顿卡内基研究所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1