MMW物理层下行链路信道调度和控制信令的制作方法

文档序号:12516233阅读:545来源:国知局
MMW物理层下行链路信道调度和控制信令的制作方法与工艺

本申请要求享有2014年4月9日提交的美国临时专利申请No.61/977,613的权益,该申请的全部内容通过引用结合于此。



背景技术:

对于过去的数十年,移动设备的数量成指数增长,由此造成了对数据和移动无线网络的数据递送能力的需求的增长。为了满足对移动数据的快速增长需求,可以部署大量的更小小区。然而,异构网络提供的带宽包括宏和小小区网络可能是不充足的。因此,其他机制,例如毫米波(mmW)频率的使用可以被用来提供与用户特定数据传输相关的显著能力提升。然而,mmW波束的窄波束图样(pattern)可以形成对单独mmW基站方案的挑战,例如,在递送小区特定和/或广播信息的过程中。



技术实现要素:

无线发射/接收单元(WTRU)(例如,毫米波WTRU(mWTRU))可以使用第一天线图样接收第一控制信道。第一控制信道可以为以下中的一者:公共物理下行链路定向控制信道(PDDCCH)、物理下行链路控制信道(PDCCH)、增强PDCCH(EPDCCH)、或毫米波物理下行链路控制信道(mmPDCCH)。每波束可以被配置第一控制信道。第一控制信道可以由多个WTRU读取。第一控制信道可以使用宽波束(例如,长期演进(LTE)波束)或毫米(mmW)波束被携带。

WTRU可以使用第二天线图样接收第二控制信道(例如,专用PDDCCH)。WTRU可以解调和解码第一控制信道和第二控制信道。所述第一控制信道和/或所述第二控制信道的资源分配可以例如经由较高层信令从网络接收。第一控制信道可以使用可以宽于用于携带第二控制信道的mmW波束的mmW波束或LTE波束被携带。

WTRU可以使用解码的第一控制信道或解码的第二控制信道中的至少一者确定与所述WTRU相关联的波束调度信息以及确定所述WTRU是否针对mmW分区被调度。波束调度信息可以包括发射和接收波束调度信息。当所述WTRU针对所述mmW分区被调度时,WTRU可以使用所确定的波束调度形成接收波束并使用所述接收波束接收所述第二控制信道。WTRU可以通过解调和解码所述第二控制信道确定与关联于所述第二控制信道的数据信道(例如,物理下行链路定向数据信道(PDDDCH))有关的动态每传输时间间隔(TTI)调度信息。WTRU可以使用动态每TTI调度信息接收数据信道。

WTRU可以确定与每TTI调度信息相关联的有效周期且应用所述每TTI调度信息至一个或多个mmW TTI。所述每TTI调度信息针对子帧内的多个连续TTI是相同的。

附图说明

图1A是可以在其中实施一个或多个所公开的实施方式的示例通信系统的系统图示;

图1B是可以在图1A示出的通信系统内使用的示例无线发射/接收单元(WTRU)的系统图示;

图1C是可以在图1A示出的通信系统内使用的示例无线电接入网和示例核心网的系统图示;

图1D是可以在图1A示出的通信系统内使用的另一示例无线电接入网和另一示例核心网的系统图示;

图1E是可以在图1A示出的通信系统内使用的另一示例无线电接入网和另一示例核心网的系统图示;

图2示出了示例性毫米波(mmW)下行链路系统;

图3示出了频率和空间滤波的示例;

图4示出了示例性mmW下行链路帧结构;

图5示出了示例性mmW系统中的下行链路逻辑、传输和物理信道;

图6示出了专用物理下行链路定向控制信道(PDDCCH)和物理下行链路定向数据信道(PDDDCH)的复用的示例;

图7示出了在mmW WTRU(mWTRU)中的数字化波束成形的示例;

图8示出了连接至两个RF链(chain)的相控天线阵列(PAA)的示例;

图9示出了连接至其各自的RF链的PAA的示例;

图10示出了示例性窄波束图样;

图11示出了示例性宽波束图样;

图12示出了示例性多波束图样;

图13示出了每波束对的动态预测调度的示例;

图14示出了具有固定窄波束图样的示例性mmW系统;

图15示出了物理下行链路定向数据信道(PDDDCH)的公共物理定向下行链路控制信道(PDDCCH)和专用PDDCCH调度;

图16示出了PDDDCH的仅专用PDDCCH调度的示例;

图17示出了PDDDCH的物理下行链路控制信道(PDCCH)调度的示例;

图18示出了多个传输时间间隔(TTI)的PDDDCH的PDCCH调度的示例;

图19示出了PDDDCH的增强型物理下行链路控制信道(EPDCCH)调度的示例;

图20示出了PDDDCH的专用mmW PDCCH(mmPDCCH)调度的示例;

图21示出了PDDDCH的复用的mmPDCCH调度的示例;

图22示出了PDDDCH的PDCCH和PDDCCH调度的示例;

图23示出了PDDDCH的增强型PDCCH(EPDCCH)和PDDCCH调度的示例;

图24示出了PDDDCH的长期演进(LTE)媒介接入控制(MAC)控制元素(CE)和专用PDDCCH调度的示例;

图25示出了PDDDCH的专用mmPDCCH和专用PDCCH调度的示例;

图26示出了PDDDCH的复用的mmPDCCH和专用PDCCH调度的示例;

图27示出了具有mmW宽波束图样的示例性mmW系统;以及

图28示出了PDDDCH的复用的宽波束公共PDDCCH调度的示例。

具体实施方式

现在将参照多个附图对说明性实施方式进行详细描述。虽然这一说明提供了可能实施的具体示例,应该注意的是所述细节是示例性的且不对本申请的范围进行限制。

图1A是可以在其中实施一个或多个所公开的实施方式的示例通信系统100的系统图示。该通信系统100可以是将诸如语音、数据、视频、消息发送、广播等之类的内容提供给多个无线用户的多接入系统。该通信系统100可以通过系统资源(包括无线带宽)的共享使得多个无线用户能够访问这些内容。例如,该通信系统100可以使用一种或多种信道接入方法,例如码分多址(CDMA)、时分多址(TDMA)、频分多址(FDMA)、正交FDMA(OFDMA)、单载波FDMA(SC-FDMA)等等。

如图1A所示,通信系统100可以包括无线发射/接收单元(WTRU)102a、102b、102c和/或102d(统称或合称为WTRU 102)、无线电接入网(RAN)103/104/105、核心网106/107/109、公共交换电话网(PSTN)108、因特网110和其他网络112,但应理解的是所公开的实施方式涵盖任意数量的WTRU、基站、网络和/或网络元件。WTRU 102a、102b、102c、102d中的每一个可以是被配置成在无线环境中运行和/或通信的任何类型的装置。作为示例,WTRU 102a、102b、102c、102d可以被配置成发送和/或接收无线信号,并且可以包括用户设备(UE)、移动站、固定或移动订户单元、寻呼机、蜂窝电话、个人数字助理(PDA)、智能电话、便携式电脑、上网本、个人计算机、无线传感器、消费电子产品等等。

通信系统100还可以包括基站114a和基站114b。基站114a、114b中的每一个可以是被配置成与WTRU 102a、102b、102c、102d中的至少一者无线对接,以便于接入一个或多个通信网络(例如,核心网106/107/109、因特网110和/或网络112)的任何类型的装置。例如,基站114a、114b可以是基站收发信站(BTS)、节点B、e节点B、家用节点B、家用e节点B、站点控制器、接入点(AP)、无线路由器等。尽管基站114a、114b每个均被描述为单个元件,但要理解的是基站114a、114b可以包括任何数量的互连基站和/或网络元件。

基站114a可以是RAN 103/104/105的一部分,该RAN还可以包括诸如基站控制器(BSC)、无线电网络控制器(RNC)、中继节点之类的其他基站和/或网络元件(未示出)。基站114a和/或基站114b可以被配置成发送和/或接收特定地理区域内的无线信号,该特定地理区域可以被称作小区(未示出)。小区还可以被划分成小区扇区。例如与基站114a相关联的小区可以被划分成三个扇区。由此,在一种实施方式中,基站114a可以包括三个收发信机,例如针对所述小区的每个扇区都有一个收发信机。在另一种实施方式中,基站114a可以使用多输入多输出(MIMO)技术,并且因此可以针对小区的每个扇区使用多个收发信机。

基站114a、114b可以通过空中接口115/116/117与WTRU 102a、102b、102c、102d中的一者或多者通信,该空中接口115/116/117可以是任何合适的无线通信链路(例如,射频(RF)、微波、红外(IR)、紫外(UV)、可见光等)。可以使用任何合适的无线电接入技术(RAT)来建立空中接口115/116/117。

更特别地,如上所述,通信系统100可以是多接入系统,并且可以使用一种或多种信道接入方案,例如CDMA、TDMA、FDMA、OFDMA、SC-FDMA等。例如,在RAN 103/104/105中的基站114a和WTRU 102a、102b、102c可以实施诸如通用移动电信系统(UMTS)陆地无线电接入(UTRA)之类的无线电技术,其可以使用宽带CDMA(WCDMA)来建立空中接口115/116/117。WCDMA可以包括诸如高速分组接入(HSPA)和/或演进型HSPA(HSPA+)的通信协议。HSPA可以包括高速下行链路分组接入(HSDPA)和/或高速上行链路分组接入(HSUPA)。

在另一种实施方式中,基站114a和WTRU 102a、102b、102c可以实施诸如演进型UMTS陆地无线电接入(E-UTRA)之类的无线电技术,其可以使用长期演进(LTE)和/或高级LTE(LTE-A)来建立空中接口115/116/117。

在其他实施方式中,基站114a和WTRU 102a、102b、102c可以实施诸如IEEE 802.16(即,全球微波互联接入(WiMAX))、CDMA2000、CDMA20001X、CDMA2000EV-DO、临时标准2000(IS-2000)、临时标准95(IS-95)、临时标准856(IS-856)、全球移动通信系统(GSM)、增强型数据速率GSM演进(EDGE)、GSM EDGE(GERAN)之类的无线电技术。

图1A中的基站114b可以是例如无线路由器、家用节点B、家用e节点B或者接入点,并且可以使用任何合适的RAT,以用于促进在诸如商业区、家庭、车辆、校园之类的局部区域的无线连接。在一个实施方式中,基站114b和WTRU 102c、102d可以实施诸如IEEE 802.11之类的无线电技术以建立无线局域网(WLAN)。在另一实施方式中,基站114b和WTRU 102c、102d可以实施诸如IEEE 802.15之类的无线电技术以建立无线个域网(WPAN)。在又一实施方式中,基站114b和WTRU 102c、102d可以使用基于蜂窝的RAT(例如,WCDMA、CDMA2000、GSM、LTE、LTE-A等)以建立微微(picocell)小区或毫微微小区(femtocell)。如图1A所示,基站114b可以具有至因特网110的直接连接。由此,基站114b可不经由核心网106/107/109来接入因特网110。

RAN 103/104/105可以与核心网106/107/109通信,该核心网106/107/109可以是被配置成将语音、数据、应用和/或通过网际协议的语音(VoIP)服务提供到WTRU 102a、102b、102c、102d中的一者或多者的任何类型的网络。例如,核心网106/107/109可以提供呼叫控制、账单服务、基于移动位置的服务、预付费呼叫、网际互联、视频分配等,和/或执行高级安全性功能,例如用户验证。尽管图1A中未示出,但应理解的是RAN 103/104/105和/或核心网106/107/109可以直接或间接地与其他RAN进行通信,这些其他RAN使用与RAN 103/104/105相同的RAT或者不同的RAT。例如,除了连接到可以采用E-UTRA无线电技术的RAN 103/104/105,核心网106/107/109也可以与使用GSM无线电技术的RAN(未显示)通信。

核心网106/107/109也可以用作WTRU 102a、102b、102c、102d接入PSTN 108、因特网110和/或其他网络112的网关。PSTN 108可以包括提供普通老式电话服务(POTS)的电路交换电话网络。因特网110可以包括使用公共通信协议的互联计算机网络及装置的全球系统,所述公共通信协议例如是传输控制协议(TCP)/网际协议(IP)因特网协议套件中的传输控制协议(TCP)、用户数据报协议(UDP)和网际协议(IP)。所述网络112可以包括由其他服务提供方拥有和/或操作的无线或有线通信网络。例如,网络112可以包括连接到一个或多个RAN的核心网,这些RAN可以与RAN 103/104/105使用相同的RAT或者不同的RAT。

通信系统100中的WTRU 102a、102b、102c、102d中的一些或者全部可以包括多模式能力,例如WTRU 102a、102b、102c、102d可以包括用于通过不同的无线链路与不同的无线网络进行通信的多个收发信机。例如,图1A中显示的WTRU 102c可以被配置成与可使用基于蜂窝的无线电技术的基站114a进行通信,并且与可使用IEEE 802无线电技术的基站114b进行通信。

图1B是示例WTRU 102的系统图。如图1B所示,WTRU 102可以包括处理器118、收发信机120、发射/接收元件122、扬声器/麦克风124、键盘126、显示器/触摸板128、不可移除存储器130、可移除存储器132、电源134、全球定位系统(GPS)芯片组136和其他外围设备138。应该理解的是,在保持与实施方式一致的情况下,WTRU 102可以包括上述元件的任何子组合。同样,实施方式设想基站114a和114b和/或基站114a和114b可以表示的节点(例如但不限于收发信机站(BTS)、节点B、站点控制器、接入点(AP)、家庭节点B、演进型家庭节点B(e节点B)、家庭演进型节点B(HeNB或He节点B)、家庭演进型节点B网关、以及代理节点等等)可以包括图1B中描述的以及这里描述的元件的一些或全部。

处理器118可以是通用处理器、专用处理器、常规处理器、数字信号处理器(DSP)、多个微处理器、与DSP核心相关联的一个或多个微处理器、控制器、微控制器、专用集成电路(ASIC)、现场可编程门阵列(FPGA)电路、任何其它类型的集成电路(IC)、状态机等。处理器118可以执行信号编码、数据处理、功率控制、输入/输出处理和/或使得WTRU 102能够运行在无线环境中的其他任何功能。处理器118可以耦合到收发信机120,该收发信机120可以耦合到发射/接收元件122。尽管图1B中将处理器118和收发信机120描述为独立的组件,但是处理器118和收发信机120可以被一起集成到电子封装或者芯片中。诸如处理器118的处理器可以包括集成存储器(例如,WTRU 102可以包括芯片组,该芯片组包括处理器和相关联的存储器)。存储器可以指的是与处理器(例如,处理器118)集成的存储器或另外与设备(例如,WTRU 102)相关联的存储器。存储器可以是非易失性的。该存储器可以包括(例如,存储)可以由处理器执行的指令(例如,软件和/或固件指令)。例如,存储器可以包括在执行时可以使得处理器实施这里描述的一个或多个实施的指令。

发射/接收元件122可以被配置成通过空中接口115/116/117将信号发送到基站(例如,基站114a),或者从基站(例如,基站114a)接收信号。例如,在一个实施方式中,发射/接收元件122可以是被配置成发送和/或接收RF信号的天线。在另一种实施方式中,发射/接收元件122可以是被配置成发送和/或接收例如IR、UV或者可见光信号的发射器/检测器。在又一种实施方式中,发射/接收元件122可以被配置成发送和接收RF信号和光信号两者。应当理解,发射/接收元件122可以被配置成发送和/或接收无线信号的任意组合。

此外,尽管发射/接收元件122在图1B中被描述为单个元件,但是WTRU102可以包括任何数量的发射/接收元件122。更具体地,WTRU 102可以使用MIMO技术。由此,在一个实施方式中,WTRU 102可以包括两个或更多个发射/接收元件122(例如,多个天线)以用于通过空中接口115/116/117发射和/或接收无线信号。

收发信机120可以被配置成对将由发射/接收元件122发送的信号进行调制,并且被配置成对由发射/接收元件122接收的信号进行解调。如上所述,WTRU 102可以具有多模式能力。由此,收发信机120可以包括多个收发信机以用于使得WTRU 102能够经由例如UTRA和IEEE 802.11的多种RAT进行通信。

WTRU 102的处理器118可以被耦合到扬声器/麦克风124、键盘126和/或显示器/触摸板128(例如,液晶显示(LCD)显示单元或者有机发光二极管(OLED)显示单元),并且可以从上述装置接收用户输入数据。处理器118还可以向扬声器/麦克风124、键盘126和/或显示器/触摸板128输出用户数据。此外,处理器118可以访问来自任何类型的合适的存储器中的信息,以及向任何类型的合适的存储器中存储数据,所述存储器例如可以是不可移除存储器130、和/或可移除存储器132。不可移除存储器130可以包括随机存取存储器(RAM)、只读存储器(ROM)、硬盘或者任何其他类型的存储器存储装置。可移除存储器132可以包括订户标识模块(SIM)卡、记忆棒、安全数字(SD)存储卡等。在其他实施方式中,处理器118可以访问来自物理上未位于WTRU 102上(例如位于服务器或者家用计算机(未示出)上)的存储器的数据,以及向该存储器中存储数据。

处理器118可以从电源134接收电能,并且可以被配置成将该电能分配给WTRU 102中的其他组件和/或对至WTRU 102中的其他组件的电能进行控制。电源134可以是任何适用于给WTRU 102供电的装置。例如,电源134可以包括一个或多个干电池(例如,镍镉(NiCd)、镍锌(NiZn)、镍氢(NiMH)、锂离子(Li-ion)等)、太阳能电池、燃料电池等。

处理器118还可以耦合到GPS芯片组136,该GPS芯片组136可以被配置成提供关于WTRU 102的当前位置的位置信息(例如,经度和纬度)。作为来自GPS芯片组136的信息的补充或者替代,WTRU 102可以通过空中接口115/116/117从基站(例如,基站114a、114b)接收位置信息,和/或基于从两个或更多个相邻基站接收到的信号的定时(timing)来确定其位置。应当理解,在与实施方式保持一致的同时,WTRU 102可以通过任何合适的位置确定方法来获取位置信息。

处理器118还可以耦合到其他外围设备138,该外围设备138可以包括提供附加特征、功能和/或无线或有线连接的一个或多个软件和/或硬件模块。例如,外围设备138可以包括加速度计、电子指南针(e-compass)、卫星收发信机、数字相机(用于照片或者视频)、通用串行总线(USB)端口、震动装置、电视收发信机、免持耳机、模块、调频(FM)无线电单元、数字音乐播放器、媒体播放器、视频游戏机模块、因特网浏览器等等。

图1C为根据一种实施方式的RAN 103及核心网106的示例系统图。如上所述,RAN 103可使用UTRA无线电技术通过空中接口115与WTRU 102a、102b、102c通信。RAN 103还可以与核心网106进行通信。如图1C所示,RAN 103可包括节点B 140a、140b、140c,节点B 140a、140b、140c每一者均可包括一个或多个用于通过空中接口115与WTRU 102a、102b、102c通信的收发信机。节点B 140a、140b、140c中的每一者均可与RAN 103中的特定小区(未示出)相关联。RAN 103还可包括RNC 142a、142b。应理解,在与实施方式保持一致的同时RAN 103可包括任意数量的节点B和RNC。

如图1C所示,节点B 140a、140b可以与RNC 142a通信。此外,节点B 140c可以与RNC 142b通信。节点B 140a、140b、140c可以经由Iub接口与各自的RNC 142a、142b通信。RNC 142a、142b可以经由Iur接口彼此通信。RNC 142a、142b的每一个可以被配置成控制其连接的各自的节点B 140a、140b、140c。此外,RNC 142a、142b的每一个可以被配制成执行或支持其他功能,例如外环功率控制、负载控制、准许控制、分组调度、切换控制、宏分集、安全功能、数据加密等。

图1C中示出的核心网106可以包括媒体网关(MGW)144、移动交换中心(MSC)146、服务GPRS支持节点(SGSN)148和/或网关GPRS支持节点(GGSN)150。尽管前述每一个元件被描述为核心网106的一部分,但应理解这些元件的任何一个可以由除核心网运营方之外的实体所拥有和/或操作。

RAN 103中的RNC 142a可以经由IuCS接口连接到核心网106中的MSC 146。MSC 146可以连接到MGW 144。MSC 146和MGW 144可以给WTRU 102a、102b、102c提供对例如PSTN 108的电路交换网络的接入,以促进WTRU 102a、102b、102c与传统路线通信装置之间的通信。

RAN 103中的RNC 142a还可以经由IuPS接口连接到核心网106中的SGSN 148。SGSN 148可以连接到GGSN 150。SGSN 148和GGSN 150可以给WTRU 102a、102b、102c提供对例如因特网110的分组交换网络的接入,以促进WTRU 102a、102b、102c与IP使能装置之间的通信。

如上所述,核心网106还可以连接到网络112,网络112可以包括其他服务提供方拥有和/或操作的其他有线或无线网络。

图1D为根据一种实施方式的RAN 104及核心网107的系统图。如上所述,RAN 104可使用E-UTRA无线电技术通过空中接口116与WTRU 102a、102b、102c通信。RAN 104还可以与核心网107进行通信。

RAN 104可包括e节点B 160a、160b、160c,但应理解,在保持与实施方式一致的同时RAN 104可包括任意数量的e节点B。e节点B 160a、160b、160c每一者均可包括用于通过空中接口116与WTRU 102a、102b、102c通信的一个或多个收发信机。在一个实施方式中,e节点B 160a、160b、160c可以实施MIMO技术。从而,e节点B 160a例如可以使用多个天线来向WTRU 102a发射无线信号并从WTRU 102a接收无线信号。

e节点B 160a、160b、160c中的每一个可以与特定小区(未示出)相关联,并可被配置为处理无线电资源管理决定、切换决定、在上行链路和/或下行链路中对用户进行调度等。如图1D所示,e节点B 160a、160b、160c可以通过X2接口互相通信。

图1D中示出的核心网107可以包括移动性管理网关(MME)162、服务网关164和分组数据网(PDN)网关166。虽然上述元素中的每一个都被描述为核心网107的一部分,但应理解这些元素中的任何一个可被除核心网运营商以外的实体所拥有和/或操作。

MME 162可经由S1接口连接到RAN 104中的e节点B 160a、160b、160c中的每一个,并可充当控制节点。例如,MME 162可负责认证WTRU 102a、102b、102c的用户、承载激活/去激活、在WTRU 102a、102b、102c的初始附着期间选择特定服务网关,等等。MME 162还可提供控制平面功能,以用于在RAN 104和使用其它无线电技术(比如GSM或WCDMA)的其它RAN(未示出)之间进行切换。

服务网关164可经由S1接口连接到RAN 104中的e节点B 160a、160b、160c中的每一个。服务网关164可以一般地向/从WTRU 102a、102b、102c路由并转发用户数据分组。服务网关164还可执行其它功能,比如在e节点B间切换期间锚定用户平面、当下行链路数据对WTRU 102a、102b、102c是可用的时触发寻呼、管理并存储WTRU 102a、102b、102c的上下文等等。

服务网关164还可连接到PDN网关166,其可向WTRU 102a、102b、102c提供到分组交换网络(比如因特网110)的接入,以促进WTRU 102a、102b、102c和IP使能装置之间的通信。

核心网107可以促进与其它网络的通信。例如,核心网107可以向WTRU 102a、102b、102c提供到电路交换网络(比如PSTN 108)的接入,以促进WTRU 102a、102b、102c和传统陆线通信装置之间的通信。例如,核心网107可以包括充当核心网107与PSTN 108之间的接口的IP网关(例如IP多媒体子系统(IMS)服务器)或者可以与该IP网关通信。此外,核心网107可以向WTRU 102a、102b、102c提供到网络112的接入,网络112可包括由其他服务提供商拥有和/或操作的其它有线或无线网络。

图1E是根据一种实施方式的RAN 105和核心网109的示例系统图。RAN 105可以是利用IEEE 802.16无线电技术通过空中接口117与WTRU 102a、102b、102c通信的接入服务网(ASN)。如下面进一步描述的,WTRU 102a、102b、102c、RAN 105和核心网109中的不同功能实体之间的通信链路可被定义为参考点。

如图1E中所示,RAN 105可包括基站180a、180b、180c和ASN网关182,但应理解,在保持与实施方式一致的同时RAN 105可以包括任意数量的基站和ASN网关。基站180a、180b、180c的每一个都可与RAN 105中的特定小区(未示出)相关联并且均可包括用于通过空中接口117与WTRU 102a、102b、102c通信的一个或多个收发信机。在一种实施方式中,基站180a、180b、180c可以实施MIMO技术。从而,举例来讲,基站180a可以使用多个天线来向WTRU 102a发射无线信号并从WTRU 102a接收无线信号。基站180a、180b、180c还可提供移动性管理功能,比如切换触发、隧道建立、无线电资源管理、流量分类、服务质量(QoS)策略执行等。ASN网关182可以充当流量聚合点并可负责寻呼、缓存订户简档、路由到核心网109等。

WTRU 102a、102b、102c与RAN 105之间的空中接口117可被定义为实施IEEE 802.16规范的R1参考点。此外,WTRU 102a、102b、102c中的每一个可与核心网109建立逻辑接口(未示出)。WTRU 102a、102b、102c和核心网109之间的逻辑接口可被定义为R2参考点,其可用于认证、授权、IP主机配置管理、和/或移动性管理。

基站180a、180b、180c中的每一个之间的通信链路可被定义为包括用于促进WTRU切换和基站之间的数据传递的协议的R8参考点。基站180a、180b、180c和ASN网关182之间的通信链路可被定义为R6参考点。R6参考点可包括用于基于与WTRU 102a、102b、102c中的每一个相关联的移动性事件促进移动性管理的协议。

如图1E所示,RAN 105可连接到核心网109。RAN 105和核心网109之间的通信链路可被定义为例如包括用于促进数据传递和移动性管理能力的协议的R3参考点。核心网109可包括移动性IP本地代理(MIP-HA)184、认证、授权、记账(AAA)服务器186、和网关188。虽然上述元件中的每一个都被描述为核心网109的一部分,但应理解,这些元件中的任何一个可被除核心网运营商以外的实体所拥有和/或操作。

MIP-HA可负责IP地址管理,并可使得WTRU 102a、102b、102c能够在不同ASN和/或不同核心网之间漫游。MIP-HA 184可以向WTRU 102a、102b、102c提供到分组交换网络(比如因特网110)的接入,以促进WTRU 102a、102b、102c和IP使能装置之间的通信。AAA服务器186可负责用户认证和支持用户服务。网关188可促进与其它网络的互通。例如,网关188可向WTRU 102a、102b、102c提供到电路交换网络(PSTN 108)的接入,以促进WTRU 102a、102b、102c和传统陆线通信装置之间的通信。此外,网关188可向WTRU 102a、102b、102c提供到网络112的接入,该网络112可包括由其他服务提供商拥有或操作的其它有线或无线网络。

虽然图1E中未示出,但将要理解的是,RAN 105可以连接到其它ASN,并且核心网109可连接到其它核心网。RAN 105和其它ASN之间的通信链路可被定义为R4参考点,R4参考点可包括用于在RAN 105和其它ASN之间协调WTRU 102a、102b、102c的移动性的协议。核心网109和其它核心网之间的通信链路可被定义为R5参考,其可包括用于促进本地核心网和受访核心网之间的互通的协议。

毫米波(mmW)系统可以提供大的带宽,该大的带宽可以为用户特定的数据传输提供容量改进。mmW系统中使用的窄波束图样可以对单独的仅mmW e节点B(eNB)方案提出挑战,例如,在递送小区特定的或广播信息的过程中。波束图样可以被称为天线图样、天线波束图样、波束方向或信道(channel)。波束图样可以与参考信号(例如,唯一参考信号)或天线端口相关联。mmW系统设计可以将附加(add-on)下行链路mmW数据传输系统结合到小小区LTE网络中。

单独的mmW eNB可以被提供。小小区mmW eNB(SCmB)部署可以基于小小区部署(例如,基于第三代合作伙伴计划(3GPP)版本12(R12)的小小区部署)。在这样的部署中的mmW操作可以例如由两个网络节点来执行。小小区mmW eNB(SCmB)可以是长期演进(LTE)小小区eNB,其可以能够操作mmW空中接口。并行地,LTE小小区eNB可以在下行链路中用LTE空中接口操作。SCmB可以提供天线配置和可以允许SCmB在宽波束图样中传送LTE信道而在窄波束图样中传送mmW信道的波束成形技术。SCmB可以传送宽波束图样和窄波束图样。宽波束图样和窄波束图样可以被同时传送。为了支持没有mmW发射机的WTRU,SCmB可以支持其中上行链路可以操作LTE空中接口(例如,仅LTE空中接口)的模式。例如mmW WTRU(mWTRU)的WTRU可以能够在下行链路中并行操作mmW下行链路空中接口与LTE空中接口。mWTRU可以具有多个天线集合(例如,两个天线集合),以及相关联的射频(RF)链(例如,一个在LTE波段中操作而另一个在mmW波段中操作)。天线和RF链的每个实例可以与基带处理功能(例如,独立的基带处理功能)相关联。例如,如果mmW空中接口类似于LTE系统。,多个基带功能可以共享一个或多个块。mmW硬件和/或软件可以被实施为接收机。

一个或多个mmW信道(例如,附加mmW信道)可以作为载波聚合方案的一部分被实现。在这样的载波聚合方案中,载波类型可以是在mmW频带中,但可以应用不同的空中接口。mmW信道可以应用于高吞吐量或低延时流量数据应用。可以包括系统信息更新、寻呼、无线电资源控制(RRC)和非接入层(NAS)信令(例如,信令无线电承载)的控制信令和/或组播流量可以在LTE信道中被携带。某mmW控制信令可以使用LTE信道。

图2示出了示例性mmW下行链路数据系统200。如图2所示,由于潜在的显著传播损失,例如,在mmW频带处的非视距(NLOS)中,SCmB和/或mWTRU可以在传送(Tx)和/或接收(Rx)方向上利用窄波束成形以确保符合要求的链路预算用于高吞吐量和低延时流量数据。在发射机和接收机处使用可控制的10°波束24.5dBi角天线在城市区域中在28GHz和38GHz进行的示例运行中断(outage)研究可以指示一致的覆盖可以在这样的天线被使用时以200米的小区半径实现。

SCmB和mWTRU可以利用更宽的波束图样用于LTE操作,其可以包括小区搜索、随机接入、小区选择和/或重新选择等等。具有0dBi的天线增益的全方向辐射图样可以在LTE技术的仿真和部署中使用,包括波束成形。

mmW下行链路数据系统200可以标识和减轻对一组步骤的mmW传送和/或接收波束图样的方向性的影响,一组步骤可以包括mmW物理层控制信令、物理层数据调度、波束或信道测量和反馈、传送和/或接收波束校准,等等。接收波束成形可以执行窄空间滤波,如图3中所示,由此mWTRU可以看到特定空间方向上的信道脉冲(impulse)响应。LTE WTRU可以具有全方向接收波束图样且可以感知角域(例如,整个角域)上的重叠(superimpose)信道脉冲响应。

图3示出了频域滤波和空间/角域滤波之间的比较。校准的传送/接收波束可以提供角域中额外的自由度以及可以相对于LTE系统为mmW层提供更大的空间分离度。这可以是mmW的传播以及可以被包括在mmW天线中的大量天线元件的结果。例如,空间滤波可以造成有效的信道,其通过排除其波束宽度之外的路径而相当平坦。

mmW系统可以使用28GHz、38GHz、60GHz等的载波频率。系统带宽可以是可变的,例如,高达1GHz。估计的RMS延迟扩展可以是具有窄波束图样的大约100-200ns。延时可以为1ms。波形可以是基于正交频分复用(OFDM)或基于宽带单载波。连接性可以经由具有mmW附加信道和多个RF链(每个连接至不同天线)的LTE小小区eNB提供。数据速率可以例如为30Mbit/s或在下行链路中多于95%或WTRU更多。移动性可以通过提供可以被维持的最佳化的数据连接(例如在3km/h的速度)来实现,和/或通过提供可以被维持的数据连接(例如在30km/h的速度)来实现。数据速率和移动性标准可以在例如小于100米的小区半径被满足。

针对mmW空中接口的候选者可以包括宽带循环前缀单载波(SP-SC)、正交频分复用(OFDM)、单载波(SC)-OFDM、或者多载波码分多址(MC-CDMA)中的一者或多者。在峰均功率比(PAPR)性能、对发射机非线性的灵敏度、具有不同均衡方案的比特误差率(BER)性能(迫零决策反馈均衡(ZF-DFE)或频域线性均衡(FD-LE))、资源信道化、多路接入方案、或每个候选者的实现复杂度中的一个或多个的方面可以例如借助基于mmW信道建模的仿真被考虑。

单载波波形相比于OFDM可以具有良好的PAPR性质,但可能缺乏在频域中动态调度资源的能力且可能更难于信道化。mmW天线的窄波束可以限制执行频域调度的能力。具有精确mmW信道建模的仿真可以用于适当的评估。

OFDM波形可以被利用。SCmB可以操作LTE和mmW空中接口,且类似的波形可以促进这两种实施(例如,时钟分布和快速傅立叶变换(FFT)块)之间的功能块共享。这里公开的一个或多个实施可以在基于OFDM的mmW波形的上下文中被公开。然而,某些系统过程可以例如,通过较小的修改应用于单载波波形。

OFDM帧结构可以被提供。例如,为了提升LTE和mmW信道之间协调的灵活性以及可能在mWTRU设备中实现公共功能块共享,mmW采样频率可以为1.92MHz的LTE最小采样频率的整数倍。mmW OFDM系统可以采用子载波间隔Δf,其可以为15kHz LTE子载波间隔的整数倍,例如,Δf=15*K kHz。整数倍K和结果Δf的选择可以实现多普勒频移和不同类型的频率误差的灵敏度与去除信道时间弥散的能力之间的平衡。在多普勒频移与子载波间隔成比例增加时,子载波之间的正交性可以退化且子载波间干扰可以增加。

由于mmW下行链路数据链路目标高达30km/h,28GHz处的最大多普勒频移可以为778Hz。mmW频率上的信道时间弥散可以被测量,且密集城市区域中的示例28GHz测量指示示例均方根(RMS)延迟扩展σ可以在100和200ns之间。90%相干带宽可以在1/50σ100kHz处被估计而50%相干带宽在1/5σ1kHz处被估计。100kHz和1kHz之间的子载波间隔可以是合理的。示例Δf可以为300kHz,例如,K=20。宽子载波间隔可以是对多普勒频移以及其他类型的频率误差的鲁棒,其可以降低实现难度。

OFDM系统的符号长度T符号可以为1/Δf。如果子载波间隔Δf为300kHz,符号长度T符号可以为3.33μs。循环参数(CP)长度可以覆盖信道时间弥散的整个长度以消除符号间干扰,但CP可以携带额外功率的损失并降低数据速率,例如,系统开销。在其中T符号为3.33μs的示例中,CP长度TCP可以被选为T符号的1/14,例如,0.24μs,且对应的CP开销可以为通过TCP/(TCP+T符号)计算的7%。

为了实现低延时,mmW下行链路数据增强的传输时间间隔(TTI)长度相比于LTE系统的1ms TTI长度显著减小。mmW下行链路可以具有1ms的子帧长度以与LTE 1ms子帧定时相配。mmW子帧可以包括多个TTI,且TTI长度可以紧密地依赖于其他帧结构参数,诸如子载波间隔、符号长度、CP长度、FFT大小等。表1示出了具有保守的CP(例如,4x信道延迟扩展)的OFDM参数的示例。CP长度选择可以基于mmW频率上的延迟扩展可以低于200ns的假设。

表1

图4示出了对应于表1公开的示例的示例性帧结构400。由于延伸的CP针对LTE系统被设计,较长的CP可以针对延伸的小区半径被考虑。较长的CP可以针对更保守的方法被考虑以确保信道时间弥散在CP长度中被完全覆盖。标称(nominal)频谱效率可以随着CP长度引起的开销的增加而降低。

某些示例帧结构在可以被结合到基于OFDM的LTE小小区网络中的基于OFDM的mmW下行链路数据增强的上下文中被公开。例如包括宽带SC和MC-CDMA的其他波形实现可以使用不同的结构和/或参数。这里公开的一般原理可以应用于可以用于mmW传输的其他波形实现。

除了LTE物理信道以外,mmW下行链路数据增强还可以利用这里公开的物理层信道和参考信号。mmW下行链路数据增强可以利用波束特定的参考信号(BSRS)。BSRS可以是与用于波束获取、定时和/或频率同步的发射波束、用于物理下行链路定向控制信道(PDDCCH)的信道估计、精细波束追踪、波束测量等相关联的序列。BSRS可以携带(例如,隐式地携带)波束标识信息。可以存在不同类型的BSRS。例如,可以存在用于mmW扇区和其成员分区(segment)的BSRS。分区可以在这里公开的切换波束系统中使用且例如如图14中所示。分区可以被称为波束方向(例如,窄波束方向,宽波束方向)。

物理下行链路定向数据信道(PDDDCH)可以被提供。PDDDCH可以携带作为媒介接入控制协议数据单元(MAC PUD)从MAC层接收的有效载荷(payload)信息。该信道的资源分配可以通过PDDCH中携带的下行链路调度信息来确定。用于mWTRU的PDDDCH可以在窄发射波束中传送。PDDDCH可以在成对的窄接收波束中接收。在不同发射/接收波束对中用于不同WTRU的PDDDCH可以应用完全相同的时间、频率或编码资源中的至少一者。多个PDDDCH可以使用时间、频率或编码域中的至少一者中的多接入在发射/接收波束对中操作。

物理下行链路定向控制信道(PDDCCH)可以被提供。PDDCCH可以携带与用于mWTRU的数据相关联的控制信息。控制信息可以用于解调和/或解码与PDDCCH相关联的PDDDCH。PDDCCH可以使用发射/接收窄波束对来操作。PDDCCH可以应用类似的多用户接入。PDDCCH可以包括公共PDDCCH和/或专用PDDCCH。专用PDDCCH可以基于每TTI与PDDCCH相关联。公共PDDCCH可以包括mWTRU的波束特定的信息(诸如分区标识)以标识发射波束。mWTRU可以读取公共PDDCCH以找出是否mWTRU被调度以及mmW波束对的标识将被使用。公共和专用PDDCCH可以分别位于时域和频域中。公共PDDCCH可以在窄或宽mmW波束中被携带。专用PDDCCH可以位于窄mmW波束中。

解调参考信号(DMRS)可以被提供。DMRS可以包括嵌在PDDDCH的信道估计的传输中的信号。信号可以例如根据预先定义的图样位于时域和频域中以确保正确的信道插入和重构。

一个或多个信道和参考信号可以被相同地波束成形且可以经由物理天线端口传送。信道可以使用mmW频带且可以应用于高速、低延时用户流量应用。图5示出了mmW系统500中的示例下行链路逻辑、传输和物理信道。系统500可以采用与mmW相关信道映射的信道,例如,信道502、504、506。

mWTRU可以在其数据在PDDDCH中例如利用mWTRU的发射/接收波束对被传送时具有相关联的PDDCCH。时分复用(TDM)、频分复用(FDM)、或混合复用中的一者或多者可以被应用。PDDCCH和PDDDCH可以在TTI中在时域中复用。PDDCCH可以被解码,且PDDDCH解调和解码可以在TTI结束之前开始。这可以较少地要求数据缓冲资源且可以降低延时。分配的频谱的PDDCCH占用可以降低效率。PDDCCH和PDDDCH可以在TTI中在频域中被复用。PDDCCH和PDDDCH解码可以直到TTI结束才开始。mWTRU可以对数据使用大的缓冲,因为分配的带宽可以在mmW频带中是大的。这可以增加延时。频谱效率可以被提高。PDDCCH和PDDDCH可以在时域和频域中被复用以在TDM和FDM之间平衡。图6示出了专用物理下行链路定向控制信道(PDDCCH)和物理下行链路定向数据信道(PDDDCH)的复用。

mmW下行链路数据增强可以是单向的,例如,在下行链路方向上。上行链路中的mmW控制信息可以在LTE上行链路控制或数据信道中被携带。双工方案,诸如频分双工(FDD)、时分双工(TDD)、和/或空分双工(SDD)可以被利用。

多路接入可以依赖于波束成形技术且可以在波束之内(例如,波束内)或波束之间(例如,波束间)变化。高级基带发射波束成形可以在SCmB处被使用。模拟接收波束成形可以在mWTRU处被使用。

波束内多路接入可以涉及在下行链路发射波束中调度多个mWTRU。例如,频分多址(FDMA)可以涉及指派有不同频率分配以及同时接收的多个mWTRU。mWTRU可以在类似的角入射方向上接收强下行链路信号。一个mWTRU的最好波束可能不是另一mWTRU的最好波束。共同配置的(例如,优化的)波束(例如,所有中次优的)可以被使用。SCmB可以在波束中调度mWTRU。

时分多址(TDMA)可以涉及指派有在发射波束中分配的频率的多个mWTRU。例如,在一时隙中,可以存在一个mWTRU接收。在这种情况下,次优波束可以不被使用。然而,分组大小可以相当地大,这可以导致封包(packing)低效。

非正交多址(NOMA)可以涉及在发射波束中相互间隔设置的多个mWTRU以及大的路径损耗差。mWTRU可以使用相同的频率和时间资源,例如,非正交的,但可以使用叠加编码和串行干扰消除(SIC)以相继地去除干扰信号。mWTRU的信道估计可以使用更复杂的设计。

波束间多址接入可以涉及在不同的下行链路发射波束中调度多个mWTRU。空分多址(SDMA)可以涉及在不同发射波束中指派的多个mWTRU。mWTRU可以分配有相同的频率资源且可以同时接收(例如,MU-MIMO)。接收波束成形可以使用干扰抑制组合(IRC)。FDMA可以涉及在分配有不同频率资源的不同发射波束中指派的多个mWTRU。TDMA可以涉及指派有相同的频率资源的不同发射波束中指派的多个mWTRU和转而根据调度的接收。这可以类似于波束间TDMA。

mWTRU可以使用相位天线阵列以获得补偿mmW频率处的高路径损耗的天线增益,此处短波长可以允许设备设计的紧凑形式因素。尽管0.5λ的元件间隔可以用于理论性能分析,但实际上更大的间隔(例如0.7λ)可以被应用。

天线元件可以具有专用RF链,其可以包括图7中所示的RF处理和模数转换(ADC)。天线元件处理的信号可以在相位和/或幅度方面单独控制以配置(例如,优化)信道容量。尽管该mWTRU天线配置可以提供很高的性能,但其可能在实现方面具有高成本和复杂度以及在操作方面具有高能耗。

mWTRU可以利用其中模拟波束成形可以通过与移相器相关联且连接至RF链的相控阵元件执行的混合方法。天线元件处的信号的相位可以在波束成形中被调整。在存在多于一个RF链时,数字预编码可以在一个或多个RF链(例如,所有RF链)的基带信号上应用。空间分集和MIMO方案可以使用数字预编码来实现。

混合波束成形的系统参数可以包括多个数据流N数据、多个RF链(TRX)NTRX、多个天线端口NAP、多个天线元件NAE、和/或多个相位天线阵列NPAA

在一示例中,NPAA可以小于或等于可以小于或等于NTRX的NAP,而NTRX可以小于或等于NAE。PAA可以包括多个天线元件。例如,4x4PAA可以具有16个天线元件。天线端口可以被定义,由此天线端口上的符号被传达所在的信道可以从相同天线端口上的另一符号被传达所在的信道被推断出。每个天线端口的一个资源网格可以被提供。小区特定的参考信号可以支持一个、两个、或四个天线端口的配置,且可以在天线端口p=0、p∈{0,1}和p∈{0,1,2,3}上分别传送。组播-广播单频率网络(MBSFN)参考信号可以在天线端口p=4上传送。与物理下行链路共享信道(PDSCH)相关联的mWTRU特定的参考信号可以在一个或多个天线端口p=5、p=7、p=8上、或天线端口p∈{7,8,9,10,11,12,13,14}中的一个或多个上传送。与增强物理下行链路控制信道(EPDCCH)相关联的解调参考信号可以在天线端口p∈{107,108,109,110}中的一个或多个上传送。定位参考信号可以在天线端口p=6上传送。CSI参考信号可以支持一个、两个、四个、或八个天线端口的配置,且可以分别在天线端口p=15、p∈{15,16}、p∈{15,16,17,18}和p∈{15,16,17,18,19,20,21,22}上传送。天线端口可以携带可以用于标识天线端口的与天线端口相关联的波束成形的参考信号。

相位天线阵列(PAA)可以连接至一个或多个RF链,这取决于系统要求和/或配置。图8示出了可以连接至RF链804、806的PAA 802。PAA 802可以大小为4x4。RF链804、806可以具有16个移相器的集合。PAA 802可以在方位面中的+45°和-45°覆盖内形成两个波束图样。在该配置中,NPAA<NAP=NTRX<NAE

图9示出了连接至RF链904的PAA 902和连接至RF链908的PAA 906。例如,PAA 902、906可以具有专用RF链。如图9所示,相位天线阵列的数量NPAA、天线端口数量NAP、RF链(TRX)数量NTRX、和天线元件数量NAE可以相关为:NPAA=NAP=NTRX≤NAE。这样的示例可以通过例如在方位面中的不同方向处设置PAA 608、906来允许两个同时发生的波束之间的空间独立性。校准的PAA排列相比于图8中的配置可以提供聚合的更大的覆盖范围。天线配置可以被完全数字化,且可以比得上图7中所示的配置,例如,在TRX的数量等于天线元件的数量(例如,每个天线元件一个RF链)时。

在一示例中,N数据≤NTRX≤NAE。当N数据=NTRX=1时,mWTRU可以具有单波束配置且可以每次操作一个波束。mWTRU波束成形可以形成窄波束图样,如图10所示,在角方向,例如更强的角方向,例如从波束测量估计的LOS路径。

图11所示的一示例,mWTRU可以形成具有宽主瓣的宽波束图样以覆盖包括强和弱这两者之间的连续角方向的范围。天线增益可以在形成宽图样时降低,且链路预算可能变得更糟。

图12所示的一示例,mWTRU可以适应性地形成具有多个有区别的强瓣的波束图样,以在两个或更多个不同的入射角(incoming angular)方向接收。多个发射波束可以例如指向多个强镜面反射路径以利用空间分集。该波束图样的形成相比于窄波束图样可以降低天线增益。自适应的波束图样可以使用波束成形算法以具有连续导向和形成能力来响应估计的信道情况动态调整波束图样。

当N数据=1<NTRX时,例如,N数据=2时,mWTRU可以具有两个同时发生的波束图样以及该波束图样可以不同且用于不同的应用。mWTRU可以在不同的角入射方向设置两个窄波束图样以利用空间分集以及减缓堵塞效应和/或减弱LOS情况。这可以促进波束组合。mWTRU可以在不同的角入射方向设置两个窄波束图样以及可以在一个波束的信道情况恶化(例如快速地)时应用快速波束切换机制。mWTRU可以形成窄波束和宽波束用于不同的应用。例如,窄波束可以用于流量,而宽波束可以用于控制信令。

当1<N数据=NTRX时,传输可以应用MIMO来提高容量,例如,在高SNR信道情况下。mWTRU可以在不同的角入射方向设置两个窄波束图样以接收两个数据流。mWTRU模拟波束成形算法可以包括固定的基于码本的波束成形和/或基于特征值的波束成形。

在固定的基于码本的波束成形中,波束的网格可以包括固定的波束的集合。波束可以通过mWTRU应用从预先定义的码本v∈{v1,v2,v3…vN}选择的波束成形向量v被形成,其中N可以表示固定波束的数量。每个向量可以包括移相器的预先校准的相移且可以代表模拟波束方向,例如,波束。波束的数量可以依赖于半功率波束宽度(HPBW)和期望的覆盖范围。

基于特征值的波束成形可以涉及基于短期信道信息预编码应用的基于特征值的加权向量。算法可以在具有增加的多路径和高角扩展以及低mWTRU移动性的场景下表现良好。这样的波束成形可以提供自适应的波束成形能力以追踪信道情况。

小小区mmW基站(SCmB)波束成形方案可以包括固定的波束、自适应的波束成形,例如,基于码本和非基于码本的,以及经典的波束成形,例如DoA估计。方案可以使用不同的过程。例如,DoA估计可以使用较小的角扩展,且mWTRU可以传送LTE波段上行链路参考信号用于AS范围估计以提供DoA精确度。固定的波束系统可以使用波束循环和波束切换机制。

遗留(例如,LTE)WTRU天线配置可以具有全方向的辐射图样(具有0dBi的天线增益)。这样的天线配置可以在RAN1/RAN4系统中以及用于各种技术的评估的链路仿真中使用,包括,例如,版本12(R12)3D MIMO/波束成形。WTRU天线波束可以在宽波束宽度是固定的,例如具有海拔中的最大3dBi增益和方位角中0dBi的120°。WTRU可以在携带包括天线端口、层数、加扰标识等的信息的物理下行链路控制信道(PDCCH)的辅助下接收下行链路波束成形的物理下行链路共享信道(PDSCH)。相关联的解调参考信号(DMRS)可以为WTRU特定的且可以与数据符号一起被波束成形。

SCmB和mWTRU可以高度形成定向和窄波束图样以提供波束成形增益,例如,以克服mmW信道经历的显著路径损耗以及满足SCmB部署的链路预算。mmW控制信息可以在波束对内传送和接收。由于空间隔离引起的专有性质的控制信令可以涉及不同的控制信令且数据调度可以在一些LTE系统中使用。系统、方法、手段可以被提供以在成对的mmW窄波束图样中接收mmW调度信息,例如,从窄波束公共PDDCCH和/或专用PDDCCH到PDDDCH。

SCmB和一个或多个mWTRU可以在LTE和mmW频带中操作。这样的SCmB和mWTRU可以使用mmW频带用于数据,例如,在mmW窄波束图样中传送数据。这样的SCmB和mWTRU可以应用跨系统调度,例如,经由LTE下行链路信道调度mmW数据。LTE信道中携带的mmW DCI可以包括动态的每TTI调度信息。

控制信令和调度设计可以考虑多个设计问题,包括两个系统之间的定时差异、两个系统的TTI长度的不相等、和/或LTE调度机制。过程可以使用LTE信道来调度PDDDCH,例如,从PDCCH/EPDCCH/PDSCH到PDDDCH。

在LTE信道中携带动态每TTI mmW DCI可以降低两个系统之间的操作差异引起的跨系统调度效率。为了更好利用LTE信道资源,SCmB可以使用LTE信道用于相对静态mmW DCI且可以在mmW窄波束中传送PDDCCH以传达动态每TTI mmW DCI。该设计可以在不同的LTE信道和PDDCCH使用mmW DCI的协调和定序。过程可以应用这样的多阶段跨系统调度,例如,从PDCCH/EPDCCH/PDSCH到专用PDDCCH到PDDDCH。

SCmB可以形成mmW宽波束图样以携带与mmW小区或扇区相关联的mWTRU的控制信息(例如,层一(L1)控制信息)。mWTRU接收波束可以在配置的波束位置接收下行链路宽波束。宽波束可以携带针对一个或多个用户的控制信息。与控制信息相关联的信令可以被复用。系统、方法、手段可以被提供给mWTRU来检测和/或接收来自下行链路mmW宽波束图样的控制信令,例如,宽波束PDDCCH到PDDDCH。

毫米波(mmW)下行链路控制信息(mDCI)可以包括mWTRU波束调度和动态每波束对结构配置信息。mDCI信令可以携带可以用于下行链路mmW数据调度的控制信息,例如用于mWTRU定位、解调、和/或解码PDDDCH的信息。

毫米波下行链路控制信息(mDCI)可以包括发射和接收波束调度信息。这样的调度信息可以用于mWTRU标识用于调度的数据传输的发射和/或接收波束。该信息可以例如使用天线端口号或波束标识号用信号发送,或可以例如从编码指派(诸如BSRS索引)导出。SCmB调度器可以例如基于特定于接收波束的信道测量和LTE信道测量为mWTRU指派mmW数据。例如,信道质量指示(CQI)可以不与用于该测量的接收波束相关联。发射机处的网络可以具有有关接收波束可用的选项的信息。由于接收机方向可以改变,接收机波束例如可以通过经由陀螺仪、指南针等等的使用进行补偿在总体坐标而不是相对于mWTRU方向中被指定。该波束特定调度信息可以在公共PDDCCH或专用PDDCCH或LTE信道中携带,例如,这依赖于控制信令设计。

毫米波下行链路控制信息(mDCI)可以包括动态帧结构配置信息。用于下行链路和上行链路分配的时隙或子帧配置可以被改变(例如,动态改变)以适应下行链路和上行链路流量负载。该配置可以是例如在SCmB和mWTRU之间的每波束对。多个(例如,两个)波束对可以使用不同的时分双工(TDD)配置,而在波束对之间没有下行链路到上行链路和/或上行链路到下行链路干扰,例如,这是由于可以由窄波束对所提供的空间隔离。

毫米波下行链路控制信息(mDCI)可以包括调度持续时间信息。图13示出了每波束对(例如,SCmB发射(Tx)波束1和mWTRU Rx波束3之间、SCmB Tx波束2和mWTRU Rx波束2之间)动态预测调度的示例。如图13中所示,例如使用预测调度,PDDCCH中调度的mmW TTI的数量可以改变。SCmB可以在同时将被调度的波束对中配置(例如,预测性地配置)多个连续的TTI。多个连续的TTI的配置可以依赖于信道情况。例如,在SCmB Tx波束1/mWTRU Rx波束3波束对的情况下,对于子帧N 1302,可以配置三个连续TTI(1304),而在SCmB Tx波束2/mWTRU Rx波束2波束对的情况下,对于子帧N 1302,可以配置四个连续的TTI(1306)。连续的TTI的数量可以在专用PDDCCH中携带的动态帧结构配置信息中被传达。例如,调度有效周期值指示连续的TTI的数量。多个TTI配置可以节省信令开销。由于专用PDDCCH的排他性,不同mWTRU之间的干扰可以被消除。

毫米波下行链路控制信息(mDCI)可以包括PDDDCH频率资源分配信息。例如,PDDDCH频率资源分配可以包括PDDDCH例如在基于OFDM系统中应用RB或在基于SC的系统中应用载波指示符的频率资源位置。使用的比特数可以依赖于包括系统带宽、调度粒度等的一个或多个因素。局部的或分布式分配可以被考虑。窄波束内的mmW信道可能没有分布式分配可以利用的那么多频率选择性,例如,如在LTE信道中。与PDDDCH相关联的DMRS可以根据预先标准化的图样被置于分配的区域中。

毫米波下行链路控制信息(mDCI)可以包括PDDCCH频率资源分配信息。例如,PDDCCH频率资源分配信息可以包括PDDCCH应用的频率资源位置。在PDDCCH和PDDDCH在图6所示的mmW窄波束中被时间复用时,这可以类似于PDDDCH频率资源分配。PDDCCH可以单独置于mmW宽波束中。PDDCCH的分配可以被预先标准化,而没有与PDCCH如何操作类似的方式中的显式实时信令。

毫米波下行链路控制信息(mDCI)可以包括编码指派信息。例如,编码指派信息可以包括mWTRU可以用来检测和/或解调BSRS和/或数据传输的BSRS序列索引或加扰编码索引的配置。加扰编码可以在PDDDCH或PDDCCH上使用。

毫米波下行链路控制信息(mDCI)可以包括载波指示符信息。在波束对内,mmW数据传输可以使用载波聚合。mWTRU可以接收可应用于与携带控制信息的基于SC或基于OFDM的载波不同的基于SC或基于OFDM的载波的调度信息。

毫米波下行链路控制信息(mDCI)可以包括与调制编码方案相关联的信息,诸如调度TTI中传送的数据的传输格式,包括与编码速率和调制方案相关的信息。对应于特定编码速率和调制方案的预先定义的MCS值的集合可以例如以MCS表的形式被使用。

毫米波下行链路控制信息(mDCI)可以包括数据指示信息,其可以指示调度TTI是具有新数据传输或重传。mDCI可以包括冗余版本信息,其可以标识哪个重传的冗余版本在调度的TTI中携带。冗余版本可以在增量冗余重传方案中应用。

毫米波下行链路控制信息(mDCI)可以包括与层数相关的信息。mmW数据传输可以包括多个层以利用多输入多输出(MIMO)应用与波束成形。mWTRU可以基于该信息从不同层解映射(de-map)数据。

毫米波下行链路控制信息(mDCI)可以包括信道状态信息请求。SCmB可以请求信道状态信息,包括信道质量指示符(CQI)、预编码矩阵指示符(PMI)、秩指示符(RI)等。CQI测量可以是波束特定的且基于BSRS。SCmB可以在该波束中在频率分配中传送特定CSI-RS。这样的波束可能不用于数据或调度目的。CQI可以是宽带或子带。

毫米波下行链路控制信息(mDCI)可以包括波束特定测量请求。SCmB可以请求特定于某发射波束用于调度目的的质量测量。相关联的波束测量时机可以在该请求中被显式地配置或可以基于事先用信号发送的配置例如在SIB中隐式地指示。波束特定测量可以是与基于数字信噪比(SNR)的CQI测量相反的模拟测量。例如,mWTRU可以检测在特定频率资源的能量以确定波束的强度。波束质量测量可以是提供实时波束特定信息的层1(L1)测量和反馈机制。

毫米波下行链路控制信息(mDCI)可以包括mmW UCI资源分配。上行链路资源可以针对mmW上行链路信道状态信息或其他测量报告被隐式分配。下行链路mmW传输和UCI资源分配之间的关联可以在例如特定波束信息、频率资源分配、编码指派等中实现。

某些调度信息,诸如波束调度,可以长期提供。长期调度信息的解码可以是周期性的或由某些预先定义的事件触发。这些事件例如可以包括波束强度或SINR的降级、较高层命令、和/或mmW扇区的更好的波束对的一致测量。

周期性的和配置的mWTRU接收窄波束循环可以用来检测mmW扇区BSRS。这样的接收波束循环还可以用来针对波束信号强度的二维波束特定测量的mmW分区标识或波束信号干扰噪声比(SINR)度量读取公共PDDCCH。

毫米波下行链路控制信息(mDCI)传输可以例如基于控制信令和/或调度过程设计而改变。控制信令和调度过程设计可以基于发射波束配置和/或接收波束配置、LTE和mmW系统之间的协调等等。

一个或多个DCI参数的传输可以例如依赖于系统设计被传达。某些DCI参数可以不同于其他被传送且可以在每个调度实例中具有不同的应用。

mWTRU的毫米波下行链路控制信息(mDCI)传输可以在一个物理层信道中被实施或在多个(例如,两个)物理层信道中顺序地实施。例如,专用PDDCCH可以携带包括MCS的每TTI调度信息。每TTI调度信息可以被应用于相关联的PDDDCH,而不用波束特定信息。公共PDDCCH可以由mWTRU用于标识波束以及提取专用PDDDCH。mmW DCI的一部分可以在较高层信令中被携带。

这里提供的与mmW波束传输有关的系统、方法和/或手段可以应用于mmW系统。图14示出了具有固定的窄波束图样的示例性mmW系统。如图14所示,SCmB 1406可以在LTE小小区覆盖范围1402上覆盖mmW覆盖范围,例如,由全方向天线提供。小小区覆盖范围1402可以位于宽波束系统内,例如,宏LTE扇区1404。mmW覆盖范围可以通过例如使用六个mmW PAA来实现。PAA中的每一个可以与例如10°水平波束宽度的一个或多个窄波束一起使用。由于硬件复杂度和成本,mmW扇区内同时发生的SCmB波束的数量可以被限制。例如,在SCmB在mmW扇区中用10°半功率带宽(HPBW)的窄波束操作固定的波束系统时,六个波束方向可以被当作分区。SCmB可以根据某些配置,包括图样、周期性、功率等,在分区中循环窄波束。

如图14所示,mWTRU 1408可以例如基于最佳LTE小区使用LTE CS过程附着到SCmB 1406。mWTRU 1408和接收mmW特定的配置例如经由SIB。接收的配置可以包括有关LTE下行链路参考和mmW子帧定时之间的定时偏移的配置。mWTRU 1408可以使用定时偏移和从主同步信号(PSS)和/或次同步信号(SSS)以及公共参考信号(CRS)检测的LTE下行链路参考定时来校准mmW接收。

接收的配置可以包括有关mmW扇区BSRS编码索引的配置,该索引可以标识每个mmW扇区。例如,BSRS可以使用伪随机序列,诸如具有良好的自相关和互相关属性以及对定时和频率偏移具有的良好性能的Zadoff-Chu(ZC)序列。在ZC序列的情况下,扇区序列可以基于特定于SCmB的ZC基本序列被产生。

接收的配置可以包括有关mmW分区BSRS编码索引的配置。这样的配置可以标识已标识的扇区内的mmW分区。mmW分区标识可以在BSRS之后的控制字段内被编码,例如,使用三比特来代表公共PDDCCH中的至多八个标识。

接收的配置可以包括有关频率资源的配置,该频率资源可以用于扇区BSRS、分区BSRS、和/或窄波束内的公共PDDCCH。接收的配置可以包括有关子帧、周期性、传输图样、和/或扇区、分区、BSRS、和/或公共PDDCCH的其他配置参数的配置。

接收的配置可以包括有关时域资源(例如,符号位置、BSRS的时隙或子帧、以及窄波束内的专用PDDCCH传输)的配置。

接收的配置可以包括有关周期性、功率、和/或mmW扇区内mmW分区上的SCmB波束循环的图样的配置。例如,其中下行链路波束处于扇区的系统帧号(SFN)以及位置处以子帧为单位的持续时间可以用信号发送至mWTRU。波束的功率可以用于估计分区的路径损耗。在SFN循环中,SCmB可以专用多个连续的子帧以在分区上循环以用于波束特定的测量。

接收的配置可以包括有关周期性、图样、和/或mWTRU波束循环的其他配置参数的配置。接收的配置可以包括有关公共PDDCCH传输配置参数的配置,例如,在信道中携带的控制字段的传输格式和信息有效载荷。

一个或多个mmW BSRS配置参数可以应用于SCmB的多个mmW扇区。mWTRU可以检测不与mWTRU所附着至的SCmB位于同一位置的mmW扇区。

mWTRU可以执行循环过程以在mWTRU接收波束位置提供用于调度或其他目的的波束测量。mWTRU可以根据循环图样、周期性、和/或其他配置参数形成mmW窄接收波束。其他配置参数可以根据mWTRU能力和/或来自网络的信令被确定。

扇区BSRS和分区BSRS可以是相关的。扇区BSRS和分区BSRS可以根据BSRS配置被检测。mWTRU接收波束方向的持续时间可以从分区处的SCmB的持续时间导出。例如,对于mWTRU接收波束方向的持续时间,SCmB可以在mmW扇区内在分区上具有波束的循环。接收波束方向要检测和测量的mmW扇区和分区可以由网络请求和/或配置。例如,mWTRU可以被配置成使用mmW分区和接收波束方向的子集用于随后的测量。如下面表2所示,网络可以请求和配置针对波束对的波束特定的测量,其测量度量高于15(例如,如粗体项所表示的)。

表2

mWTRU可以在定时和频率上与可以属于其相关联的SCmB的最强BSRS同步。mWTRU可以与来自非共站mmW扇区的最强BSRS同步,例如,如果没有足够强到被检测到的BSRS。例如,如果没有检测到BSRS,mWTRU可以在该接收机波束方向报告零或无度量。

mWTRU可以解调和解码公共PDDCCH。mWTRU可以获得mmW分区标识。公共PDDCCH可以应用预先定义的传输格式。公共PDDCCH读取可以涉及可以对所有mWTRU是可接入的分区标识字段。

分区标识可以不在数据格式中被显式地编码,但可以嵌入到mmW分区参考信号中,该信号可以具有与mmW扇区BSRS相同的类型。mWTRU可以使分区BSRS相关。mWTRU可以标识分区BSRS且进一步与分区BSRS同步。mmW扇区和分区BSRS可以根据预先定义的关系在时间上校准。序列生成可以基于网络指派的扇区和分区标识符。

mWTRU可以表示测量的信号强度(例如,模拟测量)和/或该特定接收波束的标识的mmW扇区和/或分区的SNR。度量可以根据预先定义的表被量化为整数值。该信息可以基于如表2所示的每个接收波束,其具有mWTRU的六个接收波束位置和每mmW扇区六个分区的波束配置。该示例可以采用范围从1(例如,最小SINR或波束强度)到32(例如,最大SINR或波束强度)的度量表。

mWTRU可以向网络报告mWTRU接收波束方向的测量的mmW分区度量。该mmW扇区和分区的接收波束循环和测量可以为网络提供mmW扇区关联和数据调度的信息。该报告可以包括如表2所示的波束特定的测量结果。

mWTRU可以报告其值大于预先配置的阈值的测量度量。例如,表3示出了具有阈值10的基于阈值的测量。该报告可以仅包括mWTRU接收波束3和4且针对接收波束4仅mmW分区2至5的波束特定的测量。

表3

周期性和选择性配置的波束循环和测量可以为调度过程提供输入。mmW DCI可以包括波束分配信息。调度的mWTRU可以相应地设置接收波束且可以与BSRS同步而无需搜索发射波束。

mmW窄波束公共PDDCCH可以用于mWTRU接收波束的长期调度。专用PDDCCH可以用于PDDDCH的每TTI动态调度。SCmB传送的mmW窄波束图样可以携带PDDCCH和PDDDCH。

每TTI mmW数据调度信息可以在专用PDDCCH中携带。发射和接收波束调度信息可以在公共PDDCCH中携带。发射和接收波束调度信息可以用于每波束的一个mWTRU。mWTRU可以使用WTRU特定的标识信息检测其公共PDDCCH的波束调度信息,该标识信息例如,国际移动用户标识(IMSI)/小区无线电网络临时标识符(C-RNTI)/mmW无线电网络临时标识符(mmW-RNTI)加扰的小区特定的参考信号(CRS),和/或有效载荷可以用上述提供的标识信息加扰。

mWTRU可以如这里公开从周期性的或请求的波束循环开始。配置参数可以用于初始的波束获取,诸如发射波束循环周期性、发射波束的数量、发射波束BSRS码索引等等。

mWTRU可以循环其覆盖范围并在接收波束方向(例如,每个接收波束方向)检测发射波束,例如,mmW分区。携带数据传输的发射波束可以在公共PDDCCH中具有mWTRU特定的信息,例如,mWTRU的C-RNTI、mmW-RNTI或其他标识。mWTRU可以在接收波束方向检测发射波束。mWTRU可以解码公共PDDCCH。mWTRU可以检测该调度且可以开始数据传输。每TTI调度数据可以从专用PDDCCH获取,如图15所示。mWTRU可以在公共PDDCCH中接收发射和/或接收波束调度信息和在专用PDDCCH中接收动态每TTI调度信息。

如图15中所示,mWTRU(例如,mWTRU1)可以形成mmW窄接收波束。mWTRU可以根据循环图样、周期性和/或其他配置参数形成mmW窄接收波束。其他配置参数可以根据mWTRU能力和/或来自网络的信令被确定。接收波束形成可以基于即将到来的调度实例的公共或专用PDDCCH的事件触发监测或测量和调度监测的周期性循环。

mWTRU可以使扇区BSRS相关并检测扇区BSRS.mWTRU可以根据BSRS配置随后分区BSRS。mWTRU接收波束方向的持续时间可以从分区的SCmB波束的持续时间被导出。例如,对于mWTRU接收波束方向的持续时间,SCmB可以在mmW扇区内在分区上具有波束的循环。

mWTRU可以在定时和频率上与可以属于其相关联的SCmB的最强BSRS同步。如果没有发现这样的BSRS,mWTRU可以与来自非共同位置的mmW扇区的最强BSRS同步。

mWTRU可以解调和解码公共PDDCCH(例如,与mWTRU1有关的SCmB Tx波束1公共PDDCCH 1502)。mWTRU可以获得mmW分区标识。公共PDDCCH可以应用预先定义的传输格式。公共PDDCCH中的分区标识可以由一个或多个WTRU(例如,所有mWTRU)读取。

mWTRU可以使分区BSRS相关且检测分区BSRS以及可以与检测的分区BSRS同步。

mWTRU可以解调和解码公共PDDCCH或专用PDDCCH以确定mWTRU是否被调度用于分区。mWTRU还可以确定mWTRU可以使用的接收的波束的标识。携带与接收波束的标识和mWTRU是否被调度用于分区相关联的信息的公共PDDCCH的字段可以被编码有调度的mWTRU的标识(例如,C-RNTI、mmW-RNTI、或IMSI)。编码可以在CRC加扰和/或有效载荷加扰中实现。

mWTRU可以在调度方向形成调度接收波束且可以针对诸如MCS和NDI的动态每TTI调度信息解调和解码专用PDDCCH(例如,专用PDDCCH1504)。公共和专用PDDCCH的资源分配可以由网络经由较高层信令例如在系统信息块(SIB)中用信号发送。

mWTRU可以读取调度实例的有效周期且可以相应地应用有效周期至连续的mmW TTI。如图15所示,专用PDDCCH(例如,与mWTRU2有关的专用PDDCCH 1506)可以携带可以应用于多个连续的mmW TTI 1508的调度信息。mWTRU可以根据专用PDDCCH中接收的调度信息在DMRS的辅助下解调和解码相关联的PDDDCH(例如,1508)。

PDDDCH的仅专用PDDCCH调度可以被提供。图16示出了这样的调度的示例。如图16所示,波束调度信息可以在mmW子帧n 1606中被包括在专用PDDCCH(例如,mWTRU1的专用PDDCCH调度1602和mWTRU2的专用PDDCCH调度1604)中。数据调度可以不涉及公共PDDCCH。例如,在mWTRU可以在相同波束对内继续数据传输时,波束调度信息可以被重复。

基于信道情况在发射/接收波束对内用于TTI的调度信息可以适用于一个或多个TTI(例如,连续的TTI)。一个专用PDDCCH可以用于调度多个连续的PDDDCH,例如,TTI。这种类型的动态帧结构可以是每波束对且可以从子帧到子帧变化,如图13所示。

专用PDDCCH中的mmW DCI可以携带控制字段以在多个TTI方面指示有效周期,在该TTI期间可以应用相同调度信息。mWTRU可以在随后的TTI中不尝试解码专用PDDCCH,因为整个TTI长度可以被PDDDCH占用。这可以节省控制信令开销,且这样的配置可以在波束对中改变,并且由于波束对之间的空间隔离,这种配置不会产生干扰。该有效周期可以依赖于波束对的信道情况而改变。

LTE物理下行链路控制信道(PDCCH)和/或增强PDCCH(EPDCCH)可以在多个mmW TTI内用于mWTRU波束和mmW PDDDCH的长期调度。DCI字段可以用来指示相关联的TTI数。SCmB传送的mmW窄波束图样例如可以携带PDDDCH例如且没有公共或专用PDDCCH。mmW数据可以使用LTE L1信道来调度。

LTE DCI格式可以用来携带mmW DCI信息。LTE DCI格式可以包括这里公开的mDCI字段。mDCI字段可以包括以下中的一个或多个:发射和接收波束调度、动态帧结构配置、调度持续时间、PDDDCH和其DMRS频率资源分配、PDDDCH DMRS编码指派、载波指示符、调制编码方案、新数据指示、冗余版本、层数、信道状态信息请求、波束特定的测量请求、或mmW UCI资源分配。

LTE DCI可以包括调度TTI数。mmW TTI长度可以显著小于1ms的mmW TTI长度。PDCCH可以调度多个mmW TTI。预测调度可以应用于调度连续TTI。在任一情况下,LTE DCI可以包括调度TTI数将调度信息与将要被调度的mmW TTI关联的字段。

LTE DCI可以包括mmW UCI处理信息。网络可以配置如何处理与调度的PDDDCH传输、波束特定的测量、和/或每mmW TTI的其他mmW上行链路控制信息相关联的多个ACK/NACK。这样的信息可以通过mWTRU来处理(例如,捆绑和/或复用),且可以在LTE物理上行链路控制信道(PUCCH)中传送。mmW UCI处理信息可以用于用信号发送mWTRU可以使用的处理类型。

mWTRU可以监测例如LTE标准中规定的PDCCH。mWTRU可以使用其C-RNTI检测其PDCCH中携带的mmW DCI且可以解码调度信息。mWTRU可以接收mmW TTI的一组调度信息。下行链路LTE参考子帧定时和mmW子帧定时之间的定时偏移可以允许充足的时间来解码mmW DCI。

图17示出了PDDDCH的PDCCH调度的示例。如图17中所示,mWTRU(例如,mWTRU1)可以根据调度的接收波束信息形成接收波束以及可以根据LTE子帧开始定时和预先定义的定时偏移来校准mmW子帧接收定时。LTE子帧N 1702中解码的PDCCH 1706可以在mmW子帧n 1704中应用。N可以等于或不等于n。例如在LTE子帧和mmW子帧均为1ms时,N可以等于n。如图17所示,一个LTE PDCCH 1706可以调度多个mmW TTI,例如,依赖于mmW TTI的长度。例如,mmW TTI可以为100μs且一个mmW子帧可以包括10个mmW TTI。因此,一个PDCCH可以调度至多10个mmW TTI。

mWTRU可以使mmW扇区BSRS相关以及检测mmW扇区BSRS且可以随后根据调度的BSRS配置分区BSRS。mWTRU可以随后基于参考信号同步其定时和频率。

mWTRU可以根据mmW DCI中相关联的调度信息和TTI数解调和解码调度的TTI。如图17所示,mWTRU(mWTRU1)可以在LTE子帧N 1702中使用来自一个PDCCH 1706的调度信息在mmW子帧n 1704中接收TTI 2 1708和TTI 6 1710。mWTRU(mWTRU2)可以在TTI 2 1712和TTI 9 1714中接收调度信息。

mWTRU可以读取每个调度实例的有效周期并相应地应用有效周期至连续的mmW TTI。LTE PDCCH可以例如携带多个调度信息,每个可应用于多个连续的mmW TTI。图18示出了多个TTI内PDDDCH的PDCCH 1808(例如,在LTE子帧N 1802中)调度的示例。如图18所示,mWTRU(mWTRU1)可以接收TTI(TTI2、TTI3和TTI4)的一组调度信息1804。LTE子帧N 1802中的LTE PDCCH 1808可以携带四组mmW TTI的两组调度信息。类似的过程可以由mWTRU在增强PDCCH(EPDCCH)应用于调度mmW PDDDCH时应用。

图19示出了PDDDCH的EPDCCH调度的示例。如图19所示,第一EPDCCH 1904(例如,在LTE子帧N 1902中)可以携带与mWTRU1有关的PDDDCH的调度信息1908(例如,在mmW子帧n 1912中)。如图19所示,第二EPDCCH 1906可以携带与mWTRU2有关的PDDDCH的调度信息1910。

mWTRU波束和PDDDCH的LTE毫米波物理下行链路控制信道(mmPDCCH)动态每TTI调度可以被提供。每TTI调度可以由PDCCH提供或通过盲解码检测。下行链路LTE控制物理信道、mmPDCCH可以基于每mmW TTI动态传送mmW调度信息例如以应对LTE和mmW TTI不相等的影响。mmPDCCH可以在每个下行链路LTE符号位置被传送,该位置具有到将被调度的mmW TTI的一对一映射。在符号N中传送的mmPDCCH可以在即将到来的mmW子帧的时隙N中调度PDDDCH传输。

在LTE下行链路帧结构中,可以存在十三个符号位置,其中的两个或三个符号可以用于PDCCH。LTE子帧可以具有10个mmPDCCH用于一个mWTRU。多个mmPDCCH可以位于同样的符号位置用于多个mWTRU的调度。

这里公开的mDCI可以在mmPDCCH中被编码。mmPDCCH可以具有专用资源用于其mWTRU,其可以通过PDCCH调度或可以具有可以涉及mWTRU的盲解码的复用结构。

对于mWTRU解码mmPDCCH,特定于mmPDCCH的LTE DCI可以被使用。DCI可以用来调度L1控制信道。每mWTRU的mmPDCCH DCI可以包括例如符号位置、频率资源分配(例如,PRB指派)、调制编码方案(例如,可以被预先定义且不包括在mmPDCCH DCI中)、解调参考信号配置、和/或上行链路毫米波物理上行链路控制信道(mmPUCCH)配置(例如,关联的mmW UCI传输)。在mmPDCCH中携带的mDCI可以应用这里公开的字段。

图20示出了PDDDCH的专用mmPDCCH调度的示例。mWTRU可以监测PDCCH 2004(例如,在LTE子帧N 2002中)。如图20所示,在专用mmPDCCH(例如,与mWTRU1有关的mmPDCCH 2006)中,mWTRU(mWTRU1)可以使用其C-RNTI检测其PDCCH 2004中携带的mmPDCCH特定的LTE DCI以及可以解码信息用于接收其即将到来的mmPDCCH 2006。mmPDCCH特定的LTE DCI可以包括mmPDCCH符号位置2008、频率资源、传输格式、和/或其他配置参数。mmPDCCH 2006可以携带与mWTRU1的PDDDCH 2012有关的调度信息2010(例如,在子帧n 2014中)。

mWTRU可以使mmPDCCH位于相同LTE TTI的调度符号位置中并解码该mmPDCCH。由于通过PDCCH用信号通知的mWTRU(例如,仅通过PDCCH用信号通知的mWTRU)可以读取mmPDCCH,所以在符号位置处可以不必须有盲解码。mmPDCCH可以携带mDCI,包括例如波束分配、BSRS、PDDDCH资源分配等等。

图21示出了PDDDCH的复用mmPDCCH调度的示例。如图21所示,在复用mmPDCCH中,mWTRU可以盲解码符号位置和频率资源,例如以确定是否有其mmPDCCH用于mmW调度。mWTRU标识,诸如C-RNTI、mmW-RNTI、或IMSI,可以用于标识mmPDCCH。mmPDCCH可以在多个mWTRU之间复用且可以利用通过RRC信令用信号发送的配置通过频率分配被传送至mWTRU。mWTRU可以根据它们的用信号发送的mmPDCCH配置在配置的符号位置和频率资源执行盲解码。例如,如果mmPDCCH在盲解码中被检测,mWTRU可以解调和解码该mmPDCCH。mWTRU可以从mmPDCCH读取mDCI信息。

在专用mmPDCCH方法和/或复用mmPDCCH方法中,mWTRU可以解调和解码相关联的mmW TTI的一组调度信息mDCI。下行链路LTE参考子帧定时和mmW子帧定时之间的定时偏移可以允许足够的时间解码PDCCH和mmPDCCH。mWTRU可以根据调度的接收波束信息形成接收波束并且可以根据LTE子帧开始定时和预先定义的定时偏移校准mmW子帧接收定时。LTE子帧N中的解码的mmPDCCH可以在mmW子帧n中被应用。在图20中所示的示例中,其中mmPDCCH位于LTE子帧中的符号位置的数量可以与mmW子帧中相关联的mmW TTI的数量相同。

mWTRU可以使mmW扇区BSRS相关并检测mmW扇区BSRS以及可以根据调度的BSRS配置分区BSRS。mWTRU可以基于参考信号同步其定时和频率。mWTRU可以解调和解码调度的mmW TTI。如图20所示,LTE子帧N 2002的符号位置2 2008和6 2020处的mWTRU(mWTRU1)mmPDCCH可以应用于在mmW子帧n 2014中的mmW TTI 2 2012和6 2022中解码mmW传输。符号位置2 2016和9 2018处的mWTRU(WTRU2)mmPDCCH可以应用于调度相同mmW TTI。如图20中所示,WTRU2 mmPDCCH 2016可以使用mDCI中的预测调度和有效周期字段以使用一个mmPDCCH调度mmW TTI 2、3和4。

图21示出了PDDDCH的复用mmPDCCH调度的示例。如图21所示,当mmPDCCH应用盲解码时,mWTRU1和mWTRU2mmPDCCH可以在符号2、6和9中复用。如图21所示,LTE子帧N 2102的符号位置2 2104处的mWTRU(mWTRU1)mmPDCCH可以用于在mmW子帧2106的mmW TTI 2 2108中解码mmW传输。

LTE PDCCH、EPDCCH、一个或多个MAC控制元素、和/或mmPDCCH可以用于mWTRU波束的长期调度。专用PDDCCH可以用于PDDDCH的每TTI动态调度。

LTE DCI可以用于mWTRU波束调度。使用LTE信道和mmW PDDCCH的两阶段调度机制可以用来降低mmW调度的LTE信道使用。mmW窄波束图样可以携带专用PDDCCH和PDDDCH。专用PDDCCH可以包括与一个或多个PDDDCH相关联的动态每TTI调度信息。长期调度信息可以在PDCCH、EPDCCH、或MAC控制元素中传送的LTE DCI中携带,其可以包括例如发射波束调度、接收波束调度、PDDCCH配置(例如,频率、时间、和/或编码(加扰)配置)、调制编码方案(例如,可以被预先定义和不包括)、和/或PDDCCH的解调参考信号配置。该调度信息可以被周期性读取或由一个或多个预先定义的事件触发。

图22示出了PDDDCH的PDCCH和PDDCCH调度的示例。如图22所示,mWTRU可以监测PDCCH 2204(在LTE子帧N 2202中),例如,如LTE标准中所规定的。mWTRU可以例如使用其C-RNTI检测在其PDCCH中携带的LTE DCI。mWTRU可以解码调度信息用于发射和接收波束指派2206、解码专用PDDCCH配置等。mWTRU,例如mWTRU1,可以解码专用PDDCCH 2210配置以在mmW子帧n 2208内定位和/或解码PDDDCH 2212。

图23示出了PDDDCH的EPDCCH和PDDCCH调度的示例。如图23所示,mWTRU可以监测EPDCCH 2306(在LTE子帧N 2302中),例如,如LTE标准中所规定的。mWTRU可以例如使用其C-RNTI检测在其EPDCCH中携带的LTE DCI。mWTRU可以解码调度信息用于发射和接收波束指派2308、解码专用PDDCCH配置等。mWTRU,例如mWTRU1,可以使用PDDCCH 2312(例如,在mmW子帧n 2310内)以定位和/或解码PDDDCH 2314。

图24示出了PDDDCH的LTE MAC控制元素和专用PDDCCH调度的示例。如图24所示,mWTRU可以监测PDCCH 2404(在子帧N 2402中),例如,如LTE标准中所规定的。mWTRU可以例如使用其C-RNTI检测在其PDCCH中携带的LTE DCI。mWTRU可以解码PDSCH调度信息。mWTRU可以读取PDSCH 2408中的MAC控制元素以及可以接收包括发射和接收波束的mmW调度信息2410。这可以涉及较高层操作和重传且可以具有较大的调度延时。波束调度可以是长期事件。利用这样的波束调度,延时可以不造成问题。

图25示出了PDDDCH的专用mmPDCCH和专用PDCCH调度的示例。如图25所示,mWTRU可以监测PDCCH 2504(在LTE子帧2502中),例如,如LTE标准中所规定的,并可以使用其C-RNTI检测在其PDCCH中携带的mmPDCCH 2508特定的LTE DCI。mWTRU可以解码信息以接收其即将到来的mmPDCCH。mmPDCCH特定的LTE DCI可以包括例如mmPDCCH符号位置、频率资源、传输格式和/或其他配置参数。该mmPDCCH 2508可以不限于一个符号位置且可以跨多个符号位置。mWTRU可以在相同LTE TTI的调度符号位置中定位mmPDCCH并解码该mmPDCCH。由于通过PDCCH用信号通知的mWTRU(例如,通过PDCCH用信号通知的mWTRU)可以读取mmPDCCH。在符号位置处的盲解码可以不是必须的。mmPDCCH可以携带mDCI,其可以包括波束分配、BSRS、PDDDCH资源分配等。mWTRU,例如,mWTRU1和mWTRU2,可以接收包括这里公开的发射和接收波束调度信息的调度信息。

图26示出了PDDDCH的复用mmPDCCH和专用PDCCH调度的示例。如图26所示,mWTRU可以监测PDCCH 2604(在子帧N 2602中),例如,如LTE标准中所规定的,且可以盲解码符号位置和频率资源以确定是否存在其mmPDCCH用于mmW调度。诸如C-RNTI、mmW-RNTI、或IMSI的mWTRU标识可以用来标识mmPDCCH 2606。mmPDCCH 2606可以在多个mWTRU之间复用且可以利用通过RRC信令用信号发送的配置通过频率分配传送至mWTRU。mWTRU可以根据它们的用信号发送的mmPDCCH配置在配置的符号位置和频率资源处执行盲解码。如果mmPDCCH在盲解码过程中被检测到,mWTRU可以解调和解码mmPDCCH,且mWTRU可以读取mDCI信息。PDCCH可以不在该方法中应用,且没有PDCCH容量可以被mmW调度占用。

在图22-26中所示的方法中,mWTRU可以根据调度的接收波束信息形成接收波束且可以根据LTE子帧开始定时和预先定义的定时偏移校准mmW子帧接收定时。mWTRU可以使mmW扇区BSRS相关且检测mmW扇区BSRS以及可以随后根据调度的BSRS配置分区BSRS。mWTRU随后可以基于参考信号同步其定时和频率。mWTRU可以根据LTE DCI中接收的配置或较高层信令(例如,SIB)中用信号发送的预先定义的参数来解调和解码专用PDDCCH。mWTRU可以基于专用PDDCCH mDCI解调和解码调度的mmW TTI PDDDCH。mWTRU可以读取每个调度实例的有效周期并相应地应用有效周期至连续的mmW TTI。mWTRU(mWTRU2)PDDCCH可以使用mDCI中的预测调度和有效周期字段来使用一个专用PDDDCH调度mmW TTI 6、7和8。

mWTRU可以连续地或周期性地读取宽波束公共PDDCCH以接收用于数据传输的波束和动态每TTI调度信息以及波束信号强度或波束SINR度量的二维波束特定的测量的配置。图27示出了具有mmW宽波束图样的示例mmW系统2700。LTE小小区2702可以在LTE频带中应用水平全方向天线2704。一个或多个(例如,三个)mmW PAA可以被设置以创建三个mmW扇区,每个具有120°的水平覆盖范围。覆盖范围可以利用低增益天线由宽波束公共PDDCCH的链路预算来确定。信道设计可以使用保守编码速率和调制。mmW宽波束图样可以携带PDDCCH以实现mWTRU的宽覆盖范围。由于波束的大宽度和所产生的低天线增益,宽波束可以不携带PDDDCH。

如图27所示,mWTRU 2706可以例如基于最佳LTE小区使用LTE CS过程附着到SCmB且可以在SIB中接收与每扇区的宽波束中携带的宽波束公共PDDCCH有关的mmW特定的配置。

该配置可以包括mmW扇区BSRS编码索引,其可以标识mmW扇区。例如,BSRS可以使用伪随机序列,例如具有良好自相关和互相关属性以及对定时/频率偏移具有良好性能的ZC序列。在ZC序列的情况下,扇区序列可以基于特定于该SCmB的一个ZC基本序列被产生。这可以用于标识宽波束。

该配置可以包括mmW分区BSRS编码索引,其可以标识一个标识的扇区内的每个mmW分区。mmW分区标识可以在BSRS之后的控制字段内编码,例如,公共PDDCCH中的三比特的控制字段(例如,多达八个标识)。这可以应用于标识窄数据波束。

该配置可以包括用于扇区BSRS、分区BSRS、和窄波束内的宽波束公共PDDCCH的频率。该配置可以包括子帧、周期性、传输图样、和/或扇区、分区BSRS和宽波束公共PDDCCH的其他配置参数。该配置可以包括时域资源,例如,符号位置、BSRS的时隙或子帧、以及宽波束公共PDDCCH传输。该配置可以包括宽波束公共PDDCCH传输配置参数,例如,该信道中携带的控制字段的传输格式和信息有效载荷。

PDDDCH调度信息可以在宽波束公共PDDCCH中被携带。调度信息可以包括例如发射和接收波束调度、动态帧结构配置、宽波束公共PDDCCH资源分配、PDDDCH频率资源分配、编码指派、载波指示符、调制编码方案、新数据指示、冗余版本、层数、信道状态信息请求、波束特定的测量请求和/或mmW UCI资源分配。

图28示出了PDDDCH的复用宽波束公共PDDCCH调度的示例。如图28所示,mWTRU可以形成mmW窄接收波束且可以使宽波束中的扇区BSRS相关并检测该扇区BSRS。扇区BSRS可以处于扇区宽波束中。mWTRU可以在该BSRS处于该范围内时检测该BSRS。mWTRU可以在定时和频率上与可以属于其相关联的SCmB的用信号发送的或最强BSRS同步。mWTRU可以根据预先配置的传输格式在预先配置的控制周期2808中调制和解码宽波束公共PDDCCH。PDDCCH的读取可以是连续的、周期性的或由事件触发。

mWTRU可以使用包括C-RNTI、mmW-RNTI或IMSI的唯一mWTRU标识来校验CRC或有效载荷以确定是否存在mDCI用于mmW传输。宽波束公共PDDCCH可以与多个mWTRU的PDDCCH复用。盲解码可以被应用。网络可以经由RRC信令向mWTRU用信号发送其宽波束公共PDDCCH配置。mWTRU可以接收包括波束和每TTI分量的PDDDCH调度信息。

mWTRU可以在调度方向形成调度接收波束且可以使调度的窄发射波束的分区BSRS相关且检测该分区BSRS。保护时间可以在宽波束公共PDDCCH和PDDDCH之间被预留以允许波束形成、自动增益控制(AGC)收敛、同步等,用于mWTRU准备好接收调度的发射波束。当检测到发射波束,mWTRU可以在定时和频率上与调度的分区BSRS同步。mWTRU可以在调度的DMRS的辅助下解调和解码PDDDCH 2806。

mWTRU可以读取每个调度实例的有效周期并相应地应用有效周期至连续的mmW TTI。如图28中以示例的方式所示的,mWTRU(mWTRU1和mWTRU2)可以在mmW子帧N 2802的mmW TTI 0(2804和2806)中被调度,但mWTRU(mWTRU1)可以具有持续多于至少两个TTI(例如,三个TTI)的预测调度。在数据传输期间,宽波束公共PDCCH可以发送测量请求至mWTRU以利用测量时机配置测量一个或多个发射波束。在测量时机期间,mWTRU可以针对这里公开的波束特定的测量循环波束。

这里描述的过程和手段可以以任意组合应用,可以应用于其他无线技术,以及用于其他服务。WTRU可以涉及物理设备的标识、或涉及诸如订阅相关的标识的用户标识,例如,移动站国际用户电话号码(MSISDN)、会话发起协议(SIP)统一资源标识符(URI)等。WTRU可以涉及基于应用的标识,例如,每个应用可以使用的可以用户名。

上述过程可在结合至计算机可读存储介质中的由计算机和/或处理器执行的计算机程序、软件或固件中实现。计算机可读介质的示例包括但不限于电子信号(通过有线或无线连接传送)和/或计算机可读存储介质。计算机可读存储介质的例子包括但不限于只读存储器(ROM)、随机存取存储器(RAM)、寄存器、缓存存储器、半导体存储设备、例如但不限于内置磁盘和可移动磁盘的磁介质、磁光介质和光介质(例如CD-ROM盘和/或数字多用途盘(DVD))。与软件相关联的处理器可被用于实施在WTRU(例如,mWTRU)、UE、终端、基站、RNC和/或任何主机计算机中使用的射频收发信机。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1