用于整个家庭覆盖的专用回程的制作方法

文档序号:11930162阅读:806来源:国知局
用于整个家庭覆盖的专用回程的制作方法与工艺

本申请有权享有于2015年11月10日提交的名称为METHOD AND APPARATUS FOR WHOLE HOME WI-FI COVERAGE(代理人案卷号110729-8045.US00)的美国临时专利申请号为62/253,540的权益;以及于2016年5月13日提交的标题为DEDICATED BACKHAUL FOR WHOLE HOME COVERAGE(代理人案卷号110729-8058.US00)的美国临时专利申请号62/336,503的权益;所有这些专利的全部内容通过引用并入本文。

本申请涉及于2016年10月6日提交的题为“RATE ESTIMATION IN A WIRELESS MESH NETWORK”(代理人案卷号110729-8051.US01)的共同待决的美国专利申请号15/287,704,于2016年10月6日提交的题为“ROAMING IN A WIRELESS MESH NETWORK”(代理人卷号110729-8052.US01)的美国专利申请号15/287,706;于2016年10月6日提交的题为“DEDICATED BACKHAUL LINK FOR A ROBUST WIRELESS MESH NETWORK”(代理人卷号110729-8053.US01)的美国专利申请号15/287,711。

技术领域

本发明涉及电信网络。更具体地,本发明涉及用于整个家庭覆盖的专用回程。



背景技术:

在层级电信网络中,网络的回程部分包括核心网络,或骨干网络与在整个层级网络的边缘处的小型子网络之间的中间链路。在家庭中,这种 网络可以包括具有连接到各种中继器的链路的接入点(AP)。网状网络经常被用于在AP和各种中继器之间建立无线回程。利用网状网络,多个接入点被无线地连接并且彼此交换数据帧以转发业务至网关点或从网关点,例如AP,转发业务。然而,网状网络难以建立和维护,特别是在边缘和接入点之间的中间链路被添加的位置,例如,当中间中继器在AP和AP范围之外的远程中继器之间中继业务时。



技术实现要素:

用于整个家庭覆盖的专用回程多方面地应用优化技术,例如,使用5GHz高频段或低频段带作为专用回程;如果5GHz频段未能到达节点之间,则使用2.4GHz频段作为备用;当以太网比5GHz和2.4GHz频段更好以及可以被获得时,使用以太网;以及使用生成树协议或变体来避免环路。如果专用信道的接收信号强度指示(RSSI)高于阈值,则使用专用回程。在实施方式中,菊花链使用探测请求内容来传递节点之间的跳数和链路质量,通过若链路质量优于定义的阈值则尝试直接路由。对于每个额外的跳,必须存在超过较小的跳的一定比例的增益。如果链路低于某个阈值,则不使用。

附图说明

图1是示出了根据本发明的用于整个家庭覆盖的专用回程的示意图;

图2是示出了根据本发明的5GHz回程的示意图;

图3是示出了根据本发明的5GHz回程(图2)2.4GHz和5GHz回程(图2)的示意图;

图4是示出了根据本发明的用于整个家庭覆盖的专用回程的星型拓扑启动操作阶段的流程图;

图5是示出了根据本发明的用于整个家庭覆盖的专用回程的菊花链操作阶段的流程图;

图6是示出了根据本发明的用于整个家庭覆盖的专用回程的802.11k/v客户端漫游操作阶段的流程图;

图7是示出了根据本发明的用于整个家庭覆盖的专用回程的传统的客户端切换(steering)操作阶段的流程图;

图8是示出了根据本发明的用于整个家庭覆盖的专用回程的2.4GHz信道选择操作阶段的流程图;

图9是示出了根据本发明的用于整个家庭覆盖的专用回程的系统ACS操作阶段的流程图;

图10是示出了根据本发明的用于整个家庭覆盖的专用回程的路由器或桥确定操作阶段的流程图;

图11是示出了根据本发明的用于整个家庭覆盖的专用回程的详细星型拓扑启动操作阶段的流程图;以及

图12示出了计算机系统的示例形式中的机器的图示表示,其中用于使得该机器执行一个或多个在此描述的方法的一组指令可以被执行。

具体实施例

本发明的实施方式提供了用于建立和维持用于整个家庭覆盖的专用回程的若干技术。图1是示出了根据本发明的用于整个家庭覆盖的专用回程的示意图。在图1中,智能Wi-Fi节点10的系统包括专用回程12,以向因特网提供整个家庭覆盖和最快速度。在操作中,路由器被放置在服务中作为接入点(AP)。然后添加附随物(satellite)设备,同步到AP,并且在其之间建立专用回程。在装置上的LED指示装置的同步的进度和成功。

本发明的实施方式多方面地应用优化技术,例如,使用5GHz高频段或低频段带作为专用回程;如果5GHz频段未能到达节点之间,则使用2.4GHz频段作为备用;当以太网比5GHz和2.4GHz频段更好以及可以被获得时,使用以太网;以及使用生成树协议或变体来避免环路。

结合本发明的实施方式,生成树协议是网络协议,其建立用于以太网网络的逻辑无环路拓扑,其基本功能是防止桥接环路和由它们造成的广播辐射。生成树还允许网络设计以包括备用(冗余)链路,以便在活动链路发生故障时提供自动备份路径。这样做没有桥接环路的危险,或者没有手动启用或禁用这些备份链路的需要。顾名思义,生成树算法在连接的层2网桥的网络中创建生成树,并禁用不是生成树的一部分的那些链路,在任何两个网络节点之间留下单个活动路径。生成树算法最初被标准化为IEEE 802.1D,但是在功能上,先前已经分别在802.1D,802.1s和802.1w中被规定的生成树、快速生成树和多个生成树已经被分别并入到IEEE 802.1Q-2014中。

在本发明的实施方式中,如果专用信道的接收信号强度指示(RSSI)高于阈值,则使用专用回程。阈值是可以在硬件认证完成后在硬件上被定义和修改的参数。

本发明的一些实施方式应用菊花链方法(下面讨论的),其使用探测请求内容来传递节点之间的跳数和链路质量。如果链路质量优于定义的阈值,则这样的实施方式尝试直接路由。对于每个额外的跳,必须存在超过较小的跳的一定比例的增益。如果链路低于某个阈值,则不使用;以及Wi-Fi保护设置(WPS)扩展到几个节点,使得节点可以连接任何人。

当新的节点被添加到网络时,节点从所有相邻的节点看到菊花链的信息元素的内容。除了内容之外,节点通过使用信息元素的内容(跳数,到主AP的数据速率)和相邻节点的RSSI来检查其它AP的信号强度。然后节点决定它要连接到哪个AP。优选选择主AP或具有较少跳的节点,以避免额外的延迟和多个跳的开销。

在本发明的一些实施方式中,回程被用于推送配置。在本发明的这样的实施方式中,处于网络中并且正在回程信道上通话的节点可以配置新的节点。可以通过按下按钮或通过智能手机上的应用来推送配置。

每个单元上都有一个同步按钮。用户可以按下新单元上的同步按钮,并按下任何先前存在的单元上的同步按钮。该同步触发软件过程,导致新的单元由已经在网络上的单元编程。在此过程中,新单元接收Wi-Fi配置、网络配置和其它配置文件。

手机应用可以通过使用Wi-Fi、蓝牙或两者与新的单元和先前存在的单元通信来触发同步过程。

在本发明的实施方式中,5GHz高频段被定义为专用回程。高频段在美国被定义为信道100到140+149到165,在欧洲被定义为DFS频段信道100到140。如果专用无线链路下降到质量阈值以下,则2.4GHz频段可以被用作备用选项。哪个频段用于回程的决定可能因附随物而异。

图2是专用的5GHz频段被用作两个装置之间的通信方法的示例。在图2中,多个客户端装置20a-20c与相应的节点22a-22c相关联。每个节点包括一个或多个2.4GHz无线电和一个或多个5GHz无线电。节点通过专用的5GHz回程连接23,24连接。当5GHz连接不可用时,2.4GHz连接25可以被用作回程。当2.4GHz连接被用作回程时,它被客户端和回程共享。本领域技术人员将理解,当这种连接不可用时,任何其它的连接可以代替5GHz回程连接,包括例如另一5GHz无线电,除了5GHz和2.4GHz之外的频段中的无线电等。

图3是专用的5GHz频段被用于一个附随物并且2.4GHz被用于另一附随物的示例。在图3中,多个客户端装置26a-26c与相应的节点27a-27c相关联。每个节点包括一个或多个2.4GHz无线电和一个或多个5GHz无线电。节点27a,27b通过专用的5GHz回程连接28连接。当5GHz连接不可用时,2.4GHz连接29被用作节点27a,27c之间的专用回程。

图4-11是示出了根据本发明的用于整个家庭覆盖的专用回程的操作阶段的流程图,其中图4示出了星型拓扑启动,图5示出了菊花链流程图,图6示出了802.11k/v客户端漫游,图7示出了传统的客户端切换,图8示出了2.4GHz信道选择,图9示出了系统ACS,图10示出了路由器或桥 确定,以及图11示出了详细的星型拓扑启动。在一些实施方式中,802.11r被用于加速密钥交换。

拓扑定义了一种布置,其中节点在网络中被连接,包括哪些节点是直接被连接的,以及哪些通信信道和技术被用于不同节点进行通话。星型拓扑是一种布置,其中所有的节点都直接被连接到基础节点(base node)。基础节点是被连接到家庭网关的节点。在星型拓扑中,在附随物和基础节点上运行的软件做出决定,即哪个无线频段对于附随物和基础之间的连接是最佳的。如果专用频段是可用于通信并且专用链路的质量优于所定义的阈值,则专用无线频段是无线通信的优选方法。

本发明的实施方式中的无线特征包括星型拓扑或菊花链拓扑,给定网络拓扑和信道条件、客户端切换、通过使用供应商特定信息元素(VIE)和WPS的单元加载、自动信道选择(ACS)和2.4G带宽、蓝牙低功耗(BLE)和信道规划。为了本文的讨论的目的,VIE是诸如Netgear的供应商可以将其添加到通信信息的特定于该供应商的信息元素(IE)。这里描述的所有IE是供应商IE。

仅对于星型,5GHz专用信道是主回程信道。如果5GHz不工作,则系统尝试使用2.4GHz频段。该单元在两个频段上关联,并且如果RSSI高于预定义的阈值,例如,-80dBm,则使用5GHz。如果RSSI低于阈值,则附随物单元使用2.4GHz频段作为回程,并且5GHz回程不被使用。如果2.4GHz和5GHz频段的RSSI低于阈值(-80dBm),则LED指示该单元需要被移动得更近。

在图4中,星型拓扑启动序列从启动/重新连接(100)开始,其中启动Scan_count=0(102)。对所有无线电执行扫描,其中Scan_count=Scan_count+1(104)。如果检测到基础无线电(106),它们与在专用的5GHz和2.4GHz频段中的基础相关联(108)。如果做出RSSI D基础>阈值D基础的确定(110),则专用无线电被用作回程(112),并且系统等待T(114)。然后系统试图关联专用的5GHz无线电,如果其 尚未被关联(116)并且做出RSSI D基础>阈值D基础的确定(110)。如果没有做出RSSI D基础>阈值D基础(110)的确定,其中RSSI_2G基础>阈值2G(120),如果可能则使用2.4GHz作为回程(118),并且如果不可用,则系统打开移动更靠近通知(122)。如果基础无线电没有被检测到(106),并且Scan_count<Scan_threshold(124),则系统打开无连接通知(126)。

在本发明的实施方式中,菊花链被使用。在菊花链中,如果RSSI满足预定的阈值,则优选5GHz专用频段。如果可能,系统尝试使用5GHz专用和星型。如果不能使用5GHz星型,则系统尝试使用5GHz菊花链。如果5GHz在星型或菊花链拓扑中无法工作,则系统尝试使用2.4G作为最后手段。如果RSSI足够好,则相较于2.4GHz频段优选5GHz专用菊花链。

在图5中,菊花链序列开始(200),并且系统在所有三个无线电上扫描(202)。如果未找到无线电(204),则系统指示用户应移动更靠近(228)。系统测量以下RSSI值:

·RSSI 2G基础=2.4GHz中的RSSI,

·RSSI 2G最大=2.4GHz中的最大RSSI,

·RSSI D基础=专用回程的RSSI,

·RSSI D最大=专用回程的最大RSSI(206)以及,

然后确定RSSI D基础>阈值1(208)。如果是,则系统关联到在专用频段和2.4GHz中的基础AP(210)。但是,如果RSSI D基础>阈值2并且跳数<max_hop(最大跳数)(212),则系统关联至具有在2.4GHz和5GHz专用中的RSSI D最大的AP(214)。此外,如果RSSI D基础>阈值3,则系统检查最大跳数(216),并且如果是这样,则将其关联到2.4GHz和5GHz回程中的基础(218)。再次,如果RSSI D基础>阈值4并且跳数<max_hop(220),则系统关联到最高的2.4GHz RSSI(222),并且指示用户应该移动更靠近(226)。

在本发明的实施方式中,对于使用基本服务集(BSS)转换管理(BTM)的客户端切换,系统在可用时和当客户端运转时依赖于802.11v和802.11k。这是最安全的切换。对于带上切换,系统使用RSSI和负载将客户端从2.4GHz移动到5GHz。该系统不使用负载将客户端从5GHz移动到2.4G。在将客户端从单元移动到单元时,如果RSSI下降到某个阈值以下,则系统检查其它AP的RSSI。如果其它AP的RSSI在5GHz高于阈值,则系统移动到5GHz;如果其它AP的RSSI在2.4GHz频段中高于某个其它阈值,则系统将客户端移动到该其他AP的2.4G。

在图6中,对于802.11k/v客户端漫游,如果RSSI<阈值vk(300)不为真,则系统等待T1(310);并且如果为真,则系统执行测量11k(302)。如果最大的RSSI 5G>thresh_5G vk(304),则系统将BTM发送到最佳5GHz(312)。如果不是,则系统确定是否最大RSSI 2G>thresh_2.G vk(306),如果是,则系统将BTM发送到最佳2.4GHz(314),否则系统等待T2(308)。

在本发明的实施方式中,用于传统客户端切换的无线特征被用于不支持802.11v/k的客户端或不具有正确的实现的客户端。如果客户端在X秒内没有上行链路数据包,则此客户端在空闲时段期间发生切换。RSSI阈值低于断开客户端的阈值。对于2.4GHz和5GHz,RSSI可以是不同的。当客户端连接回来时,系统通过将客户端关联到具有高于阈值的RSSI和高于阈值的跳数的AP,尝试切换客户端至正确的AP。系统拒绝探测响应并X次尝试测量RSSI。然后,系统让客户端关联到其期望的任何无线电的任何频段。

在图7中,在传统的客户端切换中,在每个单元上,确定在过去的n秒中是否num_rejected_probe>X(400),如果是这样,则该单元响应并被允许(402)。用于允许的单元的系统确定是否RSSI<thresh de-auth(404),发送de-auth(406),测量在所有接口上的探测(408),以及确定RSSI最佳的5G>RSSI 5G(410)。如果后者为真,则系统响应并允 许在最佳的5GHz上的回程(412);否则,系统响应并允许在最佳的2.4GHz上的回程(414)。

在本发明的实施方式中,WPS被用于在回程上加载新单元并且用于向网络添加具有不同回程凭证的单元。WPS以回程上的隐藏的SSID进行工作。只有具有VIE的单元可以在专用信道上通过WPS过程。

在本发明的实施方式中,VIE被用于标记装置。VIE被包括在探测、信标,关联和认证帧或这些数据包的子集中。装置寻找VIE以查看另一侧。如果VIE存在,则装置通过八次握手。

供应商IE内容包括能力、专用频段、跳数、切换能力和发射功率,2.4GHz信道规划和5GHz信道规划。

可以存在由供应商定义的一个或多个VIE,其被用于向未连接或加入网络的新装置提供关于该节点的信息。新装置必须知道网络中的其它装置是什么,其它节点具有什么能力,以及每个装置如何连接到因特网,即主路由器可用的数据速率、多少跳、2.4GHz回程、5GHz回程。存在在VIE中的软件的版本,通过使用这个,每个装置可以知道其它装置正在使用什么软件,并且通过使用这个,装置可以使用相同的应用程序编程接口(API)结构与之通信。

在附随物单元上,如果回程连接不到位,则使用WPS来找到回程连接。一旦凭证在一个回程信道上被获取,则将其复制到另一个回程信道。如果回程凭证已经就位并且单元被连接,则WPS按钮被使用以发起与在专用信道上的客户端或其它附随物单元之间的WPS。

在本发明的实施方式中,如果在附近没有AP,则使用2.4GHz的信道选择。如果在附近存在AP,则挑选具有最高RSSI的AP的信道。系统仅考虑对于20/40MHz共存(在默认情况下启用)具有高于-80dBm的RSSI的AP,并忽略由客户端报告的20/40共存比特(默认启用)。

在图8中,开始2.4GHz信道选择(500)。如果最大的RSSI>阈值1(-50dBm)(502),则系统使用具有最高RSSI的信道(506);否则,系统通过ACS并且积极地挑选40MHz(504)。

在本发明的实施方式中,BLE建立SSID和密码。BLE也被用于Wi-Fi诊断目的。BLE可以被用于允许访客访问和BLE网格。

BLE具有被称为通用属性档案(GATT)的模式。在GATT中,两个装置在通过BLE通信之前不需要配对和经历配对过程。因此,任何具有BLE能力的装置都可以通过BLE获得信息。因此,家庭中的新装置可以使用BLE获得SSID和密码,并且如果用户想要使用Wi-Fi并且如果网络所有者向新装置授予许可,则它们可以使用该SSID和密码来连接到Wi-Fi。

此外,当Wi-Fi网络由于任何故障而停机时,BLE可用于调试问题,重置网络设置或当出现问题时需要采取的任何其它诊断或动作。

与Wi-Fi相比,BLE范围非常有限。因为专用回程具有可以高达BLE的20倍的范围,所以本发明的实施方式可以使用专用回程来传播在所有装置上的信息。当装置接近任何其它装置时,该装置可以与靠近的装置通话,并且该靠近的装置可以使用专用回程来将信息发送回主装置或需要诊断或行动的任何其它装置。

专用回程还可以被用于将BLE的范围扩展到家周围的不同点。例如,可以使用比传统接入点更好的装置来控制LED灯,因为任何装置可以接收LED BLE信号,并且可以使用专用回程重复返回信息到控制LED灯的任何其它装置或云后端。任何BLE传感器或BLE受控装置也是如此。

在本发明的实施方式中,5GHz回程包括MU-MIMO支持。不同的2.4G信道可以被用于不同的单元,以及不同的5GHz面向客户端的信道可以被用在不同的单元上。因为MU-MIMO需要链路的两侧具有MU-MIMO支持并且具有用于MU-MIMO的良好的发送和接收算法,本发明的实施方式在装置之间使用MU-MIMO,尤其是在仅有一个基站的情况下。

本发明的实施方式在初始启动期间提供自动信道选择(ACS)。此特征的算法扫描所有信道,然后收集适当的统计信息,例如干扰(WLAN和非WLAN),并为每个信道分配权重。

在图9中,系统ACS启动(600)。如果最高RSSI>阈值1(602)不为真,则系统通过ACS(604);否则系统确定是否最高=11(606)。如果是,则系统使用信道10(608);否则,系统确定是否最高=1(610)。如果是,则系统使用信道2(612);否则,系统使用具有最高RSSI的信道(614)。

在图10中,路由器或桥接器确定开始(700)。系统在基础单元上启动OS(702),启动DHCP,并等待x秒(704)。如果DHCP服务器不可用(706),则基础单元作为AP出现(714);否则,基础单元作为路由器出现(708)。如果因特网连接不可用(710),则系统指示连接问题(716);否则,系统指示因特网可用(712)。

在图11中,星型拓扑启动开始(800),并且启动,scan_count=0(802)。系统在所有三个无线电上扫描,其中scan_count=scan_count+1(804)。

如果没有检测到基础无线电(806),则scan_count<scan_threshold(814),并且系统打开移动靠近指示器(816)。

如果检测到基础无线电(806),并且RSSI D基础>阈值D基础(808)为真,则系统关联到专用和2.4GHz中的基础(810),并使用专用无线电作为回程(812)。

如果检测到基础无线电(806)且RSSI D基础>阈值D基础(808)为假,则如果RSSI_other_5G基础>threshold_other_5G(822)为假并且RSSI_other_2G基础>阈值2G(820)为假,则系统关闭移动靠近指示器(818)。

如果检测到基础无线电(806)且RSSI D基础>阈值D基础(808)为假,则如果RSSI_other_5G基础>threshold_other_5G(822)为真,则系统关联 到专用的和2.4GHz频段中的基础(824)并使用另一个5GHz无线电作为回程(826)。

如果检测到基础无线电(806)且RSSI D基础>阈值D基础(808)为假,则如果RSSI_other_5G base>threshold_other_5G(822)为假并且RSSI_other_2G base>threshold 2G(820)为真,则系统关联到2.4GHz和任何其它无线电(828),并使用2.4GHz作为回程(830)。

统计收集和算法指南。以下讨论介绍了在扫描期间收集的统计信息以及有关如何使用统计信息的一般准则。以下是在本发明的实施方式中必须考虑的项目的列表:

1)在扫描期间精确计数每个信道上的AP的数量。缓冲区大小被限制用于扫描,因此,当存在许多AP时,较高信道上的AP不适合有限的缓冲区大小。结果,在2.4G中的扫描被分解为至少在信道的三个子集中的三个单独的扫描,以确保看到在所有信道上所有AP。

2)在每个信道上增加扫描时间,使得看到所有的AP。

3)如果具有RSSI为-45dBm或更高的一个或多个AP在邻近范围内,则挑选具有最高的RSSI的AP的信道。如果AP是40MHz,则选择相同的主信道。

4)考虑相邻信道的干扰。最小等级的信道是最好的。

E=取决于AP RSSI的常数

·如果20MHz AP在Z=信道CH,CH-1,CH+1上,则Grade_on_channel_Z=Grade_on_channel_Z+2*E

·如果20MHz AP在Z=CH-2,CH+2上,Grade_on_channel_Z=Grade_on_channel_Z+E

·如果是40MHz AP,对于20MHz的两个20MHz子信道,应用等级计算,如上所述。

5)考虑AP的RSSI。下面的等级是AP信道和所有受影响的相邻信道上的等级。以下内容可被用于启动4x4:

·

·

·

6)在每个信道上的本底噪声在扫描期间被测量:

·tmpnoise=(noise_db<-95)?-95:noise_db

·tmpnoise=(noise_db>=-65)?-65:noise_db

·noise_grade=(tmpnoise+95)/5*4

7)对于40MHz的信道选择,考虑20/40共存(wl obss_coex)。如果由于共存要求没有可用的40MHz信道,则选择最佳的20MHz信道。

8)考虑每个信道上的发射功率。信道1和信道11在美国和澳大利亚应被避免。

9)在扫描期间测量每个信道上的信道利用率。信道利用率包括CCA统计信息和信道干净的时间的百分比。

10)在扫描期间测量每个通道的干扰统计数据,并且可以被使用。

11)每个单元可以考虑网络中的其它AP使用的信道。例如,ACS可以决定在不同单元上使用不同的信道。

注释

动态频率选择(DFS)。在本发明的实施方式中,欧洲电信标准组(ETSI)中的回程信道是在雷达频段上。在FCC区域内,当非雷达回程信道具有干扰时,可以使用雷达频段。如果雷达出现,则需要改变回程,例如,以协调的方式移动信道;以及网状网络中不同节点之间的动态频率选择(DFS)检测的通信,例如,通过使用2.4GHz,另一个5GHz和/或802.11h。来自802.11h的行动帧和/或信标帧可以被扩展用于网格的使用情形。

当雷达出现时,单元使用层2,3或应用层彼此通知雷达入口并协调回程移动。这种协调和移动必须在监管机构允许的时间内执行。如果在监管 机构关闭通信之前的允许的时间内可以执行回程通信协调,则面向客户端的协调无线电,包括2.4GHz无线电,可以被用于通信和移动回程。在这种情况下,其它两个无线电,其不是专用回程无线电,移动到相同的信道,并开始通信以选择新的回程。如果不是这样,可以选择新的回程,并且两个其它无线电被共享用于回程和前传。这不是期望的结果,并且仅当由于雷达事件使得没有回程信道可用时才进行。

面向客户端的无线电的信道规划。在本发明的实施方式中,当2.4G不用作回程时,使用不同的2.4GHz信道。改变5GHz频段的信道;和/或信道的改变被用于避免拥塞。根据可用的业务进行信道协调以使用多个节点中的最干净的信道。

更改每拓扑结构的基本速率集。在本发明的实施方式中,信标速率被改变以迫使客户端漫游;和/或管理帧速率被改变。

改变每距离的发射(TX)功率。在本发明的实施方式中,最大的发射功率可以在网格节点上被降低,如果网格节点覆盖小于峰值功率所允许的。一些管理或控制帧的发射功率可能被降低。某些调制和/或编码的发射功率可能被降低。发射到某些客户端的功率可能被降低。

在专用回程上的移动性控制。在本发明的实施方式中,数据在不同模块之间发送,并用于决定如何漫游,何时漫游以及向客户端发送数据包以漫游。基于最佳的有效速率、干扰和数据类型进行漫游。

在AP上被连接的客户端正在监控客户端无线状态,以及客户端通过Wi-Fi发送的业务。一旦AP看到客户端被考虑用于漫游的任何原因,它就与其它AP进行通信并从它们获得关于其它AP所看到的无线信道的状态的信息。此外,AP向客户端询问客户端从网络看到什么。一旦所有的信息被收集,AP根据网络配置来做出客户端是否连接到另一AP的最终决定。该决定通过专用回程传送,然后尝试漫游客户端。漫游的协调,包括何时向客户端发送漫游触发,以及漫游开始后响应哪个AP,也通过专用回程发生。

蓝牙网格/通过Wi-Fi的蓝牙。本发明的实施方式通过Wi-Fi或通过蓝牙网格在家庭中扩展蓝牙。蓝牙信号可以被解码,比特可以通过Wi-Fi回程发送到靠近目的地的节点,并且蓝牙数据包可以在那个节点处被发射。

计算机系统

图12是可以用于实现一些实施方式的某些特征的计算机系统的框图。计算机系统可以是服务器计算机、客户端计算机、个人计算机(PC)、用户装置、平板PC、膝上型计算机、个人数字助理(PDA)、蜂窝电话、iPhone、iPad、黑莓、处理器、电话、网络设备、网络路由器、交换机或网桥、控制台、手持控制台、(手持)游戏装置、音乐播放器,任何便携式的、移动的,手持的装置、可穿戴的装置,或任何机器,其能够执行要由该机器采取指定行动的一组指令(顺序的或其它的)。

计算系统30可以包括一个或多个处理器35;存储器31;输入/输出装置32,例如键盘和指点装置、触摸装置、显示装置;存储装置34,例如磁盘驱动器;和网络适配器33,例如,网络接口,其被连接到互连36。该互连36被示出为抽象的,其表示任何一个或多个分离的物理总线、点对点连接,或两者都由合适的桥、适配器或控制器连接。因此,互连36可以包括,例如,系统总线、外围部件互连(PCI)总线或PCI-Express总线、超传输或工业标准体系结构(ISA)总线、小型计算机系统接口(SCSI)总线、通用串行总线(USB)、IIC(12C)总线或电气和电子工程师协会(IEEE)标准1394总线,也称为火线。

存储器31和存储装置34是可以存储实现各种实施方式的至少部分的指令的计算机可读存储介质。另外,数据结构和消息结构可以经由数据传输介质存储或传输,例如,通信链路上的信号。可以使用各种通信链路,例如因特网、局域网、广域网或点对点拨号连接。因此,计算机可读介质可以包括计算机可读存储介质,例如,非暂时性介质和计算机可读传输介质。

存储在存储器31中的指令可以被实现为软件和/或固件以对处理器35编程以执行上述动作。在一些实施方式中,这样的软件或固件可以经由计算系统30从远程系统将其下载而被最初地提供给处理系统30,例如,通过网络适配器33。

本文中介绍的各种实施方式可以通过例如可编程电路来实现,例如一个或多个微处理器,由软件和/或固件编程,或完全在专用硬连线(不可编程)电路中,或以这些形式的组合。专用硬连线电路可以是例如一个或多个ASIC、PLD、FPGA等的形式。

虽然在此参考优选实施方式描述了本发明,但本领域技术人员将容易理解,在不脱离本发明的精神和范围的情况下,其它应用可以替代本文所阐述的那些。因此,本发明应当仅由下面包括的权利要求所限制。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1