多模态场上的位置确定的制作方法

文档序号:15106301发布日期:2018-08-04 16:58阅读:194来源:国知局

本申请要求于2015年11月10日提交的序列号为62/253,562的美国临时专利申请的优先权的权益,该美国临时专利申请通过引用以其整体并入本文。

技术领域

本文公开的主题总体涉及多模态场上的(on-field)位置确定。

背景

从事体育运动(诸如,篮球、足球/橄榄球、棒球或垒球等)的人通常在运动场上进行这样的体育运动。运动场可以是任何特定区域,并且在这样的体育运动中,运动场通常具有特定划定的边界。当运动员在运动场上移动时,他们可以以各种方式发挥自己的能力并使用不同的装备。经理或其他非运动人员可以监视他们的运动,并提供指令或建议。

附图简述

在附图中的图中借助示例而非限制的方式示出了一些实施例。

图1是在示例实施例中用于在体育运动中使用多模态无线通信的系统的框图。

图2是对在示例实施例中与进行体育运动的运动员相关的主体区域网络的描绘。

图3A-3C是在示例实施例中对运动场上的广域网的描绘。

图4是在示例实施例中在由运动员网络集线器发送的信号中所包括的数据包的图示。

图5是在示例实施例中被配置为根据第二无线协议进行通信的无线通信标签的框级描绘。

图6是在示例实施例中运动员网络集线器的可选示例的框级图示。

图7是在示例实施例中用于管理运动员网络集线器内的通信优先级的图示。

图8示出了在示例实施例中第一和第二无线协议的时域管理方案。

图9是在示例实施例中对被构造为辅助设备的运动球的描绘。

图10是在示例实施例中,对于运动球接近腕戴式设备并且因此接近主体区域网络的一部分的描绘。

图11是在示例实施例中用于实现系统的流程图。

详细描述

示例方法和系统涉及多模态场上的位置(position)确定。示例只是代表可能的变型。除非另有明确说明,否则部件和功能是可选的并且可被组合或细分,并且操作可以在顺序上改变或者被组合或细分。在以下描述中,为了说明的目的,阐述了许多具体细节以提供对示例实施例的透彻理解。然而,对于本领域的技术人员来说将明显的是,可以在没有这些具体细节的情况下实践本主题。

上面详述的体育运动中的电子信息的管理通常是临时的,并且依赖于单独的外围设备。运动员可以穿戴测量他们自身的生理参数、允许与非运动人员通信等等的外围设备。然而,通常对于单个的运动员或者对于两个运动员来说,这样的外围设备通常不能相对于彼此联网。因此,例如,如果经理想要知道关于运动员的生理信息或表现数据,则经理可能需要单独地收集这样的数据并且将这样的数据关联。此外,虽然已经尝试确定在体育赛事中运动员在场上的定位(location),但是这样的系统通常依赖于光学系统和/或可以基于与其它外围的、生理传感器等分开的单独的设备。

已经开发了根据不同无线通信协议提供多个区域网络的系统。一个或更多个运动员可以具有由运动员网络集线器形成的主体区域网络。主体区域网络同样可以包括多个外围设备,并且可以根据第一无线协议进行通信。运动员网络集线器可以与广域网一起建立,或者加入广域网,该广域网由中继网络集线器根据第二无线协议形成。广域网既可以提供从外围设备发送数据的能力,也可以提供确定各个运动员网络集线器在运动场上的定位的能力。不同的无线协议以还可以限制主体区域网络和广域网之间的干扰的方式提供优化的距离通信。可以结合发送到运动员的以及从运动员发送的其它数据来确定定位。

图1是在示例实施例中用于在体育运动中使用多模态无线通信的系统100的框图。系统100创建一个或更多个主体区域网络102,主体区域网络102包括并且基于各个设备(例如,下面的外围设备108)。这些设备中的一些或所有设备可以关联与体育运动相关联的单个运动员或其他个人(例如,在体育运动中比赛的个人或作为正在体育运动中比赛的队的成员的个人)。系统100还创建广域网104,广域网104关联多个运动员和/或关联与体育运动相关联的其他实体,包括与主体区域网络102相关联的运动员。根据第一无线协议生成和维护主体区域网络102,并且根据不同于第一无线协议的第二无线协议生成和维护广域网104。在各种示例中,第一无线协议具有比第二无线协议更短的通信范围。在一示例中,第一无线协议是根据蓝牙低能量(BLE)无线协议,而第二无线协议是根据超宽带(UWB)无线协议,如本领域已知的。

系统100包括一个或更多个运动员网络集线器106。运动员网络集线器106被配置为根据第一无线协议和第二无线协议两者进行通信。运动员网络集线器106可以采取分立设备或“标签”的形式,该分立设备或“标签”被配置为在体育运动中相对于运动员固定,例如,通过附接到运动员的身体或者附接到或集成到运动员穿戴的服装或其他物品中。系统100还包括外围设备108,该外围设备108与运动员网络集线器106组合,形成主体区域网络102。外围设备108可以包括类似地相对于运动员固定或者以其他方式操作以便感测和向运动员提供或提供关于运动员的包括生理数据在内的数据的设备,诸如心率监测器、呼吸监测器、湿度和/或汗传感器、便于在运动员与其他运动员、教练、经理等之间的通信的设备等。外围设备108还可感测其它辅助设备或与其它辅助设备交互,诸如,体育运动中使用的装备,例如,运动球、球棒、高尔夫球杆等。

如将在本文中进行描述的,外围设备108可以向运动员网络集线器106发送数据并且从运动员网络集线器106接收数据。运动员网络集线器106可以向组成广域网104的其他设备和/或集线器发送数据并且从其接收数据。如将在本文中进一步公开的,运动员网络集线器106可以发送允许广域网104的部件确定运动员网络集线器106在运动场上的位置的数据,并且甚至于确定运动员网络集线器106相对于其被固定的运动员在运动场上的位置的数据。因此,主体区域网络102通常获得关于运动员的信息,并将其与位置信息一起发送,这允许广域网104的部件基本上实时地确定关于运动员的位置、生理和/或其它信息。

广域网104包括运动员网络集线器106以及中继网络集线器110和至少一个主网络集线器112。在各种示例中,系统100一般来说和/或广域网104具体地还包括处理设备114和用户接口116。应当理解的是,处理设备114和/或用户接口116可以是广域网104本地的,或者可以被远程或作为“云”资源访问。因此,在各种示例中,系统100和/或广域网104可以直接利用处理设备114和用户接口116,或者可以远程访问处理设备114和用户接口116。处理设备114和用户接口116可以是单个设备,例如,移动设备(诸如,移动电话、平板计算机、个人数字助理等)、相对固定的设备(诸如,个人计算机、膝上型计算机或服务器),或者可以是结合相对固定的设备操作的一个或更多个移动设备的组合,诸如,通信地耦合到服务器或个人计算机的一个或更多个移动设备。

中继网络集线器110建立在相对于参照物(诸如,运动场)的相对已知的定位中,如将会在本文中说明的那样。虽然术语“中继网络集线器”被用来描述通常在运动员网络集线器106和主网络集线器112之间和之中传递信息的中继网络集线器110那样的那些集线器,但是应当认识和理解的是,中继网络集线器110可以执行不涉及中继任何类型的信息的功能。在各种示例中,中继网络集线器110中的一个或更多个中继网络集线器位于固定位置。在各种示例中,中继网络集线器110中的一个或更多个中继网络集线器是动态地可重新定位的,并且被配置为在它们移动时或移动之后确定它们各自的定位。在一示例中,中继网络集线器110被配置为至少根据第二无线协议进行通信,以便于从外围设备108向主网络集线器112发送信息。中继网络集线器110还可以被配置为将数据(诸如,距离数据或时间数据)附加到来自运动员网络集线器106的发送,或者以其他方式提供用于结合来自其他中继网络集线器110的信息来确定运动员网络集线器106中的一些或全部运动员网络集线器在运动场上的位置的信息,如将在本文中公开的。

主网络集线器112至少根据第二无线协议通信地耦合到中继网络集线器110。主网络集线器112被配置为从中继网络集线器110和/或在某些示例中从运动员网络集线器106获得数据。在各种示例中,主网络集线器112被配置为实现定位引擎,该定位引擎被配置为利用接收到的距离和/或时间数据来确定运动员网络集线器106在运动场上的位置以及甚至于确定相关联的运动员网络集线器106在运动场上的位置。在另外的示例中,主网络集线器112被配置为将信息从外围设备108发送到处理设备114,以用于与关联运动员网络集线器106的运动员相关的分析。

如在本文中将进一步详细地公开的那样,系统100可选地还包括一个或更多个辅助设备118,其可以在体育运动过程期间临时用作主体区域网络102的一部分。辅助设备118可以是诸如球之类的物品和/或用于在运动场上玩游戏的其他装备,或者可以是其他设备(诸如,相机、录音设备等),其可以帮助广播或以其他方式捕获并且记录体育运动的各个方面。辅助设备118可以在各个主体区域网络102之间和之中转移;例如,当球在进行体育运动的运动员之间和之中传递时,球可以是在任何给定时刻拥有球或以其他方式极为靠近球的一个运动员或多个运动员的主体区域网络102的部件,并且然后,当运动员传递、射门或以其他方式失去对球的拥有时,球不再是主体区域网络102的一部分。

图2是对在示例实施例中与进行体育运动的运动员200相关的主体区域网络102的描绘。在示出的示例中,运动员网络集线器106通过固定到固定器202而相对于运动员200被固定,固定器202本身固定到运动员200在体育运动期间穿着的制式汗衫或球衣206的背部204。如图所示,固定器202位于球衣206上,以便当球衣206由运动员200穿着时,固定器202总体上位于运动员200的肩胛骨之间。需要强调的是,用于将运动员网络集线器106相对于运动员进行固定的这种机制并非限制性的,并且可以设想用于将运动员网络集线器106固定到运动员200或相对于运动员200固定的任何合适的机制,包括将运动员网络集线器106固定到运动员200个人、固定到球衣206上的其他地方、或者固定到并非是球衣206的或除了球衣206之外的运动员200身上的或由运动员200拥有的服装或装备的其他物品。

外围设备108包括可由运动员200利用的各种设备。在所示的非限制性示例中,外围设备108包括心率监测器108(1)、呼吸和湿度/汗传感器108(2)、被配置成容纳在运动员200的耳朵中的音频通信设备108(3)、以及被配置成感测运动并且与辅助设备118通信的手腕可佩戴的设备108(4)。如图所示,辅助设备118足够接近手腕可佩戴的设备108(4),以根据无线协议(诸如,第一无线协议)或根据与第一和第二无线协议不同的第三无线协议进行通信。因此,在辅助设备118充分靠近手腕可佩戴的设备108(4)的情况下,辅助设备118被认为是主体区域网络104的一部分。

如本文所述,外围设备108和辅助设备(多个辅助设备)118可以向运动员网络集线器106发送信息。因此,在所示的示例中,心率监测器108(1)发送心率信息,呼吸和湿度/汗监测器108(2)发送呼吸和湿度数据,等等。外围设备108还可以从运动员网络集线器106或经由运动员网络集线器106接收信息。在一示例中,运动员网络集线器106经由第二无线协议接收音频通信,并且根据第一无线协议将音频通信转发或中继到音频通信设备108(3)。外围设备108和/或辅助设备(多个辅助设备)118可以根据第一无线协议和/或任何其他合适的无线协议在彼此之间和之中进行通信。因此,在一示例中,手腕可佩戴的设备108(4)可以从心率监测器108(1)接收心率数据,并且以运动员200可见的方式在用户接口上显示心率数据。

图3A是在示例实施例中广域网104的抽象描述,其中,参照物是运动场300。一些运动员200排列在运动场300上。在所示的示例中,在从外围302倒退预定的定位处,将中继网络集线器110布置在运动场300的外围302的周围。如图所示,十(10)个中继网络集线器以距外围302大约五(5)英尺或1.5米至十(10)英尺或3.0米的距离304布置在外围302的周围。另外地或可选地,中继网络集线器110可以设置在外围302上或运动场300内。在各种示例中,中继网络集线器110被置于地面、地板或其它大致水平的表面上方至少大约十(10)英尺或三(3)米处,然而可以设想小于十(10)英尺或三(3)米的高度,包括被置于地面、地板或水平表面上、之下或之内。

广域网104还包括主网络集线器112,其至少通信地耦合到中继网络集线器110,并且在各种示例中根据第二无线协议通信地耦合到运动员网络集线器106。另外地或可选地,中继网络集线器110可以如本领域中已知的那样使用有线网络通信地耦合到主网络集线器112。在各种示例中,运动员网络集线器106将来自外围设备108和/或辅助设备(多个辅助设备)118的信息直接地或经由一个或更多个中继网络集线器110传送到主网络集线器112。

在各种另外的或可选的示例中,中继网络集线器110和主网络集线器112中的一些或全部是移动的并且可重新定位的。这样的可移动的并且可重新定位的集线器110、112可以沿着轨道或其它约束装置或表面进行操作,或者作为自主的或遥控的交通工具进行操作。自主的或遥控的交通工具可以是各种类型中的任意类型的陆地或空中的交通工具。交通工具可以包括相关联的中继网络集线器110和主网络集线器112的部件、以及用于操作交通工具以及集线器110、112部件所需的供电或电源、和交通工具控制系统。

在中继网络集线器110是自主交通工具或“无人机”、或者是自主交通工具或“无人机”的部件的各种示例中,交通工具可以被编程或被引导以移动到如本文所示的相对于运动场300的位置并且保持。因此,在一示例中,交通工具可以被编程为行驶到或飞到该位置,然后在运动的持续时间内保持在该位置,或者保持在该位置,直到中继网络集线器110可以以不会干扰如本文所公开的定位确定运动的方式被重新定位。在各种示例中,中继网络集线器110中的几个或全部中继网络集线器被配置为在有助于运动员网络集线器106的定位确定的取向上相对于运动场300而自主地布置它们自身。

在各种示例中,用于中继网络集线器110的交通工具包括定位传感器(诸如,其具有全球定位系统(GPS)和/或全球或本地相对定位传感器),以建立它们相对于运动场300的以及相对于其他交通工具/中继网络集线器110的位置。交通工具还可以控制它们的海拔、或者中继网络集线器110的天线的高度或其他方面。基于来自主网络集线器112的命令,交通工具/中继网络集线器110可以被配置为实时动态地重新定位它们自身。

图3B和图3C示出了在示例实施例中,中继网络集线器110与运动员网络集线器106在运动场300上的移位相关的动态的并且自主的重新定位。如图3B所示,在第一时间,若干中继网络集线器110相对于运动员网络集线器106当前位于其中或位于其上的运动场的第一半部310进行定位。在体育运动的过程中,运动员200及他们的运动员网络集线器106移位到运动场300的第二半部308,如图3C所示。基于由主网络集线器112的定位引擎所确定的运动员的定位,主网络集线器112指示中继网络集线器110相对于运动场300重新定位,使得运动员网络集线器106保持在中继网络集线器110的通信范围内。如果运动员网络集线器106的定位发散而使得中继网络集线器110不能保持与所有运动员网络集线器106的通信,则中继网络集线器110可以重新定位以保持与尽可能多的运动员网络集线器106的通信,或者根据各种其他标准中的任何标准进行重新定位,例如,中继网络集线器106可以重新定位,以试图保持确定最可能的运动员网络集线器106的定位或者提供与尽可能多的运动员网络集线器106的通信的能力。

尽管以上基于运动员网络集线器106的确定的定位、相对于来自主网络集线器112的命令描述了中继网络集线器110的动态重新定位,但是应当理解的是,可以利用各种因素中的任意因素来重新定位中继网络集线器110。在各种示例中,中继网络集线器可以由运营商远程控制,或者可以响应于直接来自于运动员网络集线器106的输入。可以生成任何另外的感测信息并将其提供给中继网络集线器110,以便于在体育运动期间适当地重新定位中继网络集线器110。

主网络集线器112可以包含关于自主或遥控交通工具的与中继网络集线器110相同或相似的能力。主网络集线器112还可以包含用于跟踪辅助设备118(诸如,球)的视觉或音频传感器,以补充或替换如本文所公开的用于跟踪辅助设备118的机构。此外,主网络集线器112可包含用户接口116或另一用户接口以在体育运动期间向人员提供由主网络集线器112生成或接收的信息。因此,举例来说,如果裁判希望知道运动员200在体育运动期间是否出界,则裁判可以召唤主网络集线器112交通工具前进到裁判处并且显示与运动员200是否出界有关的信息。

图4是在示例实施例中在由运动员网络集线器106发送的信号(图3的310)中所包括的数据包400的图示。为了确定运动员网络集线器106在运动场300上的定位,并且甚至于确定相关联的运动员的定位,运动员网络集线器106广播包括数据包400的信号310。数据包400包括用于运动员网络集线器106的唯一标识符字段402、以及信号发送时间的或与信号时间具有已知关系的时间(例如,在信号实际发送时间之前100微秒)的运动员网络集线器时间戳404。接收信号310和数据包400的每个中继网络集线器110附加中继网络集线器时间戳406以及中继网络集线器标识符408,中继网络集线器时间戳406与网络集线器110接收信号310和数据包400的时间相关联。中继网络集线器110随后将数据包400发送到主网络集线器112。

如上所述,由接收信号310和数据包400的中继网络集线器110中的一些或全部中继网络集线器来重复上述用于生成数据包400的过程。因此,接收数据包400的每个中继网络集线器110创建其自身独特的数据包400的实例。因此,第一中继网络集线器110生成第一数据包400,并将第一数据包400发送到主网络集线器112,第二中继网络集线器110生成第二数据包400,并将第二数据包400发送到主网络集线器112,等等。

主网络集线器112收集从中继网络集线器110接收的各种数据包400,并利用那些数据包400来确定运动员网络集线器106的定位。具体地,主网络集线器112利用定位引擎来确定位置信息,例如通过将在时间戳404、406之间的差乘以第二无线协议的发送速度(例如,光速)确定在运动员网络集线器106和相关联的中继网络集线器110之间的距离,以建立在运动员网络集线器106和相关联的中继网络集线器110之间的距离。通过利用现有技术中已知的常规三角测量技术,主网络集线器112的定位引擎可以基于距至少三(3)个中继网络集线器110的距离测量结果来确定运动员网络集线器106在运动场300上的定位。

在本文中描述的用于将数据添加到数据包400的方法相对于数据包400在运动员网络集线器106处的开始以及传递通过中继网络集线器110路由到主网络集线器112被描述。这样,运动员网络集线器106广播数据包400,并且中继网络集线器110中继数据包400。然而,在各种示例中,可以根据本文所述的原理来颠倒地实现,其中,中继网络集线器110广播具有时间戳406的数据包400,并且在运动员网络集线器106接收到数据包400后,运动员网络集线器106添加时间戳404,并将数据包400中继到主网络集线器112。

此外,虽然主网络集线器112的定位引擎被描述为确定在运动员网络集线器106和中继网络集线器110之间的距离,但是需要理解的是,可以基于时间戳404和接收数据包400的时间而在中继网络集线器110处进行距离的确定。在这样的示例中,中继网络集线器110被配置为利用中继网络集线器110自身的资源来计算运动员网络集线器106和中继网络集线器110之间的距离。中继网络集线器110然后可以代替数据包400将所确定的距离发送到主网络集线器112,或者除了数据包400之外也可以将所确定的距离发送到主网络集线器112。根据上述原理,可以颠倒该过程,其中,中继网络集线器110广播数据包400并且运动员网络集线器106接收数据包400;在这样的示例中,运动员网络集线器106可以确定距离并将该距离转发到主网络集线器112。

图5是在示例实施例中被配置为根据第二无线协议进行通信的无线通信标签500的框级描述。在示例实施例中,无线通信标签500包括:天线502;定位电路504,其被配置为本文公开的定位引擎或者实现本文公开的定位引擎;微控制器506和有线数据端口508。在各种示例中,天线502被配置为至少根据第二无线协议进行通信。在各种示例中,天线502是各种配置和取向的多个单独天线,以使得能够根据包括第一和第二无线协议在内的多个无线协议进行通信。

定位电路504可以被配置为生成经由天线502发送的数据包400。在一示例中,定位电路504是DecaWave有限公司的DW1000芯片,但是可以使用任何合适的定位电路或者被配置为实现定位引擎的电路。微控制器506被配置为控制定位电路504的操作,并且管理经由有线数据端口508发送和接收的数据。有线数据端口508可以是通用串行总线(USB)到串行数据转换器或任何其它合适的数据转换器。

在各种示例中,无线通信标签500可以在运动员网络集线器106、中继网络集线器110和主网络集线器112中的一些或全部集线器内以相同或基本类似的配置被利用,其中,在集线器106、110、112的操作之间的差异部分地由什么部件耦合到有线数据端口508以及微控制器506的编程来确定。在一示例中,运动员网络集线器106和中继网络集线器110均包括耦合到电源的一个无线通信标签500。在各种示例中,运动员网络集线器106的电源是电池或其他移动电源(诸如,动能发电器),而中继网络集线器110的电源可以是各种地或者移动的(诸如,电池),或者连接到主电源(诸如,墙壁插座)。在一示例中,主网络集线器112形成为具有一个无线通信标签500,该无线通信标签500耦合到计算设备(诸如,处理设备114)或被包括在该计算设备内。在运动员网络集线器106的示例中,天线502可以被配置为根据第一和第二无线协议两者发送和接收数据。

图6是示例实施例中的运动员网络集线器106的可选示例的框级图示。在所示示例中,运动员网络集线器106包含无线通信标签500和主体区域网络集线器600,该主体区域网络集线器600经由有线数据端口508耦合到无线通信标签500。在这样的示例中,无线通信标签500被配置为根据第二无线协议进行通信,而主体区域网络集线器600被配置为根据第一无线协议进行通信。不同地,无线通信标签500和主体区域网络集线器600经由有线通信连接或经由无线通信连接彼此耦合。在其中经由无线通信连接进行连接的示例中,无线通信连接可以经由第一无线协议或者是根据与第一和第二无线协议不同的第三无线协议或者任何合适的无线协议。在这样的示例中,运动员网络集线器106可以是两个或更多个分立部件,即,无线通信标签500和主体区域网络集线器600,它们物理上分开实现并且间隔开,但是协同工作以提供运动员网络集线器106的功能。

主体区域网络集线器600另外包括便于与外围设备108和辅助设备118进行通信的、在外围设备108和辅助设备118之间以及之中进行通信的部件。因此,在各种示例中,主体区域网络集线器600可以包括:天线602,其被配置为根据第一无线协议进行通信;微控制器604;以及通信模块606,其被配置为经由天线602根据第一无线协议进行通信。在微控制器506被配置为控制通信模块606的示例中,可以省略微控制器604。可选地被包括的主体区域网络集线器600的附加电路,诸如数据端口和电源为了清楚起见被省略了。应当注意的是,在主体区域网络集线器600和无线通信标签500中的一个或两个可以包含电源,并且通常向运动员网络集线器106提供电力,或者电源可以被包括作为独立于无线通信标签500和主体区域网络集线器600的运动员网络集线器106的部件。

图7是在示例实施例中用于管理运动员网络集线器106内的通信优先级的图示700。在运动员网络集线器106中支持双无线协议(即,第一和第二无线协议)可以通过管理运动员网络集线器106的计算和无线资源(在某些示例中,仅包括一个微控制器506)得到支持。此外,支持双无线协议可以包括同时有效地管理第一和第二无线协议两者的射频性能。

在一示例中,微控制器506有效地将运动员网络集线器106的主要任务划分为优先级,并提供了框架(如优先级图示700所示),以用于基于子例程对系统连续性的有多重要来管理每个子例程。优先级图示700按优先顺序详细说明了四个优先级:第二无线协议(例如,超宽带)优先级702;第一无线协议(例如,BLE)优先级704(例如,其用于与外围设备108的连接);应用优先级706;以及传感器数据收集优先级708。与第二无线协议相关的发送(例如,定位请求)可以具有最高的单个优先级(702),并且取代微处理器506的尝试(706)(例如,经由用户接口提供用户交互)。

在一示例中,优先级702、704、706、708可以基于或可以倾向于在作为优先级基础的发送中产生预定的延迟。可以设置优先级702、704、706、708,以产生期望的最大延迟。在一示例中,第二无线协议优先级702具有大约五(5)微秒的延迟,第一无线协议延迟优先级704具有大约五(5)毫秒的延迟,应用优先级706具有大约五十(50)毫秒的延迟,并且传感器数据收集优先级708具有大约一百(100)毫秒的延迟。需要强调的是,上面的延迟值是说明性的,而并不限于可选示例实施方式。

如图所示的划分优先级702、704、706、708可以通过允许更重要的例程获得那些例程所需的或以其他方式有效利用的服务延迟、同时使对较低优先级系统的影响最小化,来提供系统有效地运行。在完成较高优先级中断后,操作返回到已经接收到中断的较低优先级例程。图示700中所示的优先级系统可以防止或减轻与单线程系统相关联的一些或全部问题。然而,在各种示例中,由于在第一和第二无线协议之间的定时差异之间所产生的干扰,第一和第二无线协议之间的冲突(conflict)可能持续存在。

图8示出了示例实施例中第一和第二无线协议的时域管理方案800。运动员网络集线器106的性能可以通过协议例程的时域管理来进一步增强或可选地增强。在所示的示例中,第一无线协议是以一(1)赫兹进行BLE通信802,并且第二无线协议是以二十(20)赫兹进行UWB通信804。在所示的示例中,BLE堆栈和UWB子例程分别对应于第一无线协议优先级704和第二无线协议优先级702。BLE堆栈和UWB子例程被快速输入和快速返回,以满足第一和第二无线协议的延迟要求。然而,BLE堆栈和UWB子程序可以被设置成接收基于定时器的中断,该中断分配用于管理模态的规则的开始时间。这样的管理是可以在由微控制器506实现的微控制器代码中考虑到的事情,并且不一定意味着射频前端不会同时激活。这类的执行组织可以补充上述基于优先级的管理。

在各种示例中,即使具有优先级和时域管理,运动员网络集线器106仍然可以看到第一和第二无线协议两者和/或与第一和第二无线协议相关联的电子前端同时激活的时间点。当发生这样的情况时,功率消耗可以处于相对最大值,电噪声可以处于相对最大值,并且射频干扰可以处于相对最大值。为了减少这三个因素对设计的影响或使这三个因素对设计的影响最小化,可以可选地实现三种技术来解决它们。

关于功率消耗,功率尖峰可导致运动员网络集线器106内的地平面噪声以及供电下降。功率尖峰还可能负面地影响可用的电池寿命,因为电源轨下降可能导致运动员网络集线器106过早地达到系统关机电压。运动员网络集线器106可以使每个射频系统(例如,无线通信标签500和主体区域网络集线器600)可用的地平面面积最大化,并且将它们各自的地平面彼此隔离。此外,供电去耦电容器可以减少在高峰功耗时期期间对电池的影响或使在高峰功耗时期期间对电池的影响最小化。在各种示例中,运动员网络集线器106可以在负载影响电池之前微秒级的时段拉取大量电流。

关于电噪声,运动员网络集线器106可以包含返回路径路由,该返回路径路由被设计成使在无线通信标签500和主体区域网络集线器600之间的噪声耦合最小化,并且提供对供电的滤波,以提供到达无线通信标签500和主体区域网络集线器600的清洁电力。关于射频干扰,在各种示例中,UWB覆盖从3GHz到10Ghz的频率,存在对以2.4GHz运行的BLE无线电干扰的可能性。UWB具有对于内置于协议的技术基础中的窄带系统的拒绝,因为围绕RF干扰的运动员网络集线器106的优化可以主要集中在BLE的性能上。天线502、602的布置可以被设计成使在第一和第二无线协议之间的串扰最小化,并且可以实现设计考虑,以确保电隔离和RF隔离,例如金属隔离和接地措施。另外,天线502、602中的一个或两个天线可以被选择为具有正交射频模式,以使BLE能量到UWB天线中的耦合最小化,反之亦然。

图9是在示例实施例中对于被构造为辅助设备118的运动球900的描绘。运动球900包括多个短程无线通信标签902,其被配置为与外围设备(诸如,本文所示的腕戴式设备108)通信。在各种示例中,标签902被配置为根据近场通信(NFC)协议或根据在多种其它无源无线协议中的任何一种协议进行通信。在这样的示例中,腕戴式设备108类似地被配置为根据NFC或者具有几英寸或更小范围的可选模态来进行主动通信。

当标签902中的一个或更多个标签处于腕戴式设备108的通信范围内时,腕戴式设备108检测标签902的接近,并由此检测运动球900的接近。在标签900处于腕戴式设备108的通信范围内时以及只要标签900在腕戴式设备108的通信范围内时,腕戴式设备108就可以发送关于运动球900接近运动员网络集线器106的信息。基于由主网络集线器112接收到的所确定的运动球900接近腕戴式设备108,可以推断运动员200对运动球900的拥有(无论是单独的还是有竞争的),并且相应地确定分析。

图10是在示例实施例中,对于运动球900接近腕戴式设备108并且因此接近主体区域网络102中的一部分网络的描绘。在所示的示例中,标签902被嵌入在运动球900的壁1000中。标签902包括线圈1002,诸如,次级线圈。腕戴式设备108激励天线1004(例如,初级线圈),并且当标签902在天线1004的通信范围1006内时,标签902被激励并且经由线圈1002向天线1004发送关于运动球900的确认信号和/或信息,诸如运动球900标识。在接收到来自标签902的信号之后,腕戴式设备108可以经由主体区域网络102发送指示运动球900已经被检测到并且在腕戴式设备108附近的信号。

在各种示例中,运动员200可以在每个手腕上佩戴腕戴式设备108以检测运动球900的接近,而不管运动员200可以使用哪只手来控制或试图控制运动球900。此外,虽然上面的示例是相对于腕戴式设备108进行描述的,但是应当理解的是,只要在外围设备108和运动球900(或者通常的辅助设备118)之间利用的无线协议足以区分靠近运动员200的运动球900和可以假定运动员为了游戏运动而正在控制或试图控制的运动球900,就可以使用位于运动员200身上任意位置处的任何外围设备108。在一示例中,将踝部或脚穿戴式设备用于运动项目(诸如,足球),其中,运动球900主要由运动员的脚控制。

图11是在示例实施例中的用于实现系统100的流程图1100。虽然参考系统100具体描述了流程图1100,但是应当认识和理解的是,可以参考任何合适的系统来实现流程图1100。

在1102处,主体区域网络由运动员网络集线器与外围设备通过根据第一无线协议进行无线通信来形成。在一示例中,外围设备中的至少一个外围设备被配置为感测运动员相关的数据。在一示例中,主体区域网络由运动员网络集线器的主体区域网络集线器形成,主体区域网络集线器被配置为根据第一无线协议进行通信。在一示例中,主体区域网络集线器包括被配置为根据第一无线协议进行通信的天线和通信模块。

在1104处,运动员网络集线器与运动场上的运动赛事的运动员相关联。在一示例中,外围设备被配置为与运动员相关联。在一示例中,运动员网络集线器集成在被配置为由运动员穿戴的服装或物品中的至少一个中。

在1106处,使运动员网络集线器相对于参与体育运动的运动员固定。

在1108处,利用定位电路生成定位包。

在1110处,运动员网络集线器根据与第一无线协议不同的第二无线协议发送定位信息。在一示例中,经由无线通信标签发送定位信息,该无线通信标签耦合到主体区域网络集线器,被配置为根据第二无线协议进行通信。在一示例中,发送定位信息包括根据第二无线协议将定位包发送到中继网络集线器中的至少一些。

在1112处,来自外围设备的数据由运动员网络集线器根据第一无线协议接收。在一示例中,数据是与运动员相关的生理数据。在一示例中,数据指示辅助设备接近外围设备之一。在一示例中,辅助设备是在体育运动中使用的装备。在1106处,由运动员网络集线器、中继网络集线器和主网络集线器通过至少部分地根据第二无线协议进行通信来形成广域网。中继网络集线器被配置为从运动员网络集线器接收定位信息,并且其中,中继网络集线器中的至少一个或主网络集线器被配置为基于定位信息确定运动员网络集线器的定位。在一示例中,中继网络集线器中的每个具有相对于参照物的相对已知定位,并且其中,中继网络集线器中的至少一个或主网络集线器被配置为确定运动员网络集线器的取决于参照物的定位。在一示例中,在中继网络集线器中的至少一个相对于参照物处于固定位置。在一示例中,参照物是运动场。

在一示例中,中继网络集线器中的每个还包括无线通信标签,该无线通信标签包括天线、定位电路、数据端口和微控制器,该微控制器被配置为管理定位电路以及经由数据端口进行的数据接收和发送。在一示例中,运动员网络集线器包括无线通信标签,其中,发送定位信息包括经由天线向中继网络集线器发送数据包,并且其中基于数据包来确定在运动员网络集线器和中继网络集线器之间的距离。

在1114处,经由中继网络集线器的天线接收定位信息,中继网络集线器的天线被配置为根据第二无线协议进行通信。在一示例中,定位信息基于在运动员网络集线器和中继网络集线器之间的距离。

在1116处,采用中继网络集线器的定位电路来确定定位。在一示例中,确定运动员网络集线器的定位是通过三角测量由中继网络集线器中的多个中继网络集线器的定位电路确定的距离信息。

在1118处,将关于运动员的数据从运动员网络集线器发送到中继网络集线器中的至少一个。

在1120处,将关于运动员的数据从至少一个中继网络集线器发送到主网络集线器,其中,主网络集线器被配置为执行以下中的至少一个:基于数据确定分析,以及使得数据呈现在用户接口上。

在1122处,中继网络集线器中的至少一个中继网络集线器相对于参照物动态地重新定位。在一示例中,沿着约束装置动态地重新定位至少一个中继网络集线器。在一示例中,至少一个中继网络集线器是配置的自主交通工具的部件,动态地重新定位至少一个中继网络集线器包括相对于参照物重新定位自主交通工具。

在一示例中,动态地重新定位至少一个中继网络集线器至少部分地是基于运动员网络集线器相对于参照物的移动。在一示例中,参照物是运动场,其中,运动员网络集线器与在运动场上从事体育运动的运动员相关联并相对于运动员固定,并且至少部分地基于运动员在运动场上的移动来动态地重新定位至少一个中继网络集线器。在一示例中,动态地重新定位至少一个中继网络集线器包括将保持中继网络集线器处于中继网络集线器的通信范围内。

在1124处,基于中继网络集线器中的至少一个中继网络集线器的当前位置来确定已知定位。

示例

在示例1中,一种系统,包括:运动员网络集线器,该运动员网络集线器配置为通过根据第一无线协议进行无线通信来与外围设备形成主体区域网络并且根据与第一无线协议不同的第二无线协议发送定位信息;以及中继网络集线器,该中继网络集线器被配置为与运动员网络集线器和主网络集线器通过至少部分地根据第二无线协议进行通信来形成广域网,其中,中继网络集线器被配置为从运动员网络集线器接收定位信息,并且其中,中继网络集线器的至少一个或主网络集线器中被配置为基于定位信息来确定运动员网络集线器的定位。

在示例2中,示例1的系统可选地还包括:中继网络集线器中的每个具有相对于参照物的相对已知定位,并且其中,中继网络集线器中的至少一个或主网络集线器被配置为确定运动员网络集线器的取决于参照物的定位。

在示例3中,示例1和2中的任何一个或更多个示例的系统可选地还包括:中继网络集线器中的至少一个相对于参照物处于固定位置。

在示例4中,示例1-3中的任何一个或更多个示例的系统可选地还包括:中继网络集线器中的这至少一个中继网络集线器相对于参照物是动态地可重新定位的,并且被配置为基于中继网络集线器中的至少一个中继网络集线器的当前位置来确定已知定位。

在示例5中,示例1-4中的一个或更多个示例的系统可选地还包括:至少一个中继网络集线器沿着约束装置是动态地可重新定位的。

在示例6中,示例1-5中的任何一个或更多个示例的系统可选地还包括:至少一个中继网络集线器是被配置为相对于参照物是动态地可重新定位的自主交通工具的部件。

在示例7中,示例1-6中的任何一个或更多个示例的系统可选地还包括:至少一个中继网络集线器被配置成至少部分地基于运动员网络集线器相对于参照物的移动是动态地可重新定位的。

在示例8中,示例1-7中的任何一个或更多个示例的系统可选地还包括:参照物是运动场,其中,运动员网络集线器被配置为与在运动场上从事体育运动的运动员相关联并相对于该运动员固定,并且其中至少一个中继网络集线器被配置为至少部分地基于运动员在运动场上的移动而是动态地可重新定位的。

在示例9中,示例1-8中的任何一个或更多个示例的系统可选地还包括:至少一个中继网络集线器被配置成是动态地可重新定位的,以保持处于中继网络集线器的通信范围中。

在示例10中,示例1-9中的任何一个或更多个示例的系统可选地还包括:参照物是运动场,并且其中运动员网络集线器被配置为与运动场上的运动赛事的运动员相关联。

在示例11中,示例1-10中的任何一个或更多个示例的系统可选地还包括:外围设备被配置为与运动员相关联。

在示例12中,示例1-11中的任何一个或更多个示例的系统可选地还包括:外围设备中的至少一个外围设备被配置为感测关于运动员的数据,并且根据第一无线协议将该数据发送到运动员网络集线器。

在示例13中,示例1-12中的任何一个或更多个示例的系统可选地还包括:运动员网络集线器被配置为将数据发送到中继网络集线器中的至少一个中继网络集线器,这至少一个中继网络集线器被配置为将关于运动员的数据发送到主网络集线器,并且主网络集线器被配置为执行以下中的至少一个:基于数据确定分析,以及使得数据呈现在用户接口上。

在示例14中,示例1-13中的任何一个或更多个示例的系统可选地还包括:中继网络集线器包括天线和定位电路,该天线被配置为根据第二无线协议进行通信,该定位电路被配置为确定定位信息。

在示例15中,示例1-14中的任何一个或更多个示例的系统可选地还包括:定位信息基于在运动员网络集线器和中继网络集线器之间的距离。

在示例16中,示例1-15中的任何一个或更多个示例的系统可选地还包括:中继网络集线器中的至少一个或主网络集线器被配置为通过三角测量由中继网络集线器中的多个中继网络集线器的定位电路确定的距离信息,确定运动员网络集线器的定位。

在示例17中,示例1-16中的任意一个或更多个示例的系统可选地还包括:中继网络集线器中的每个还包括无线通信标签,该无线通信标签包括天线、定位电路、数据端口和微控制器,该微控制器被配置为管理定位电路以及经由数据端口进行的数据接收和发送。

在示例18中,示例1-17中的任意一个或更多个示例的系统可选地还包括:运动员网络集线器包括无线通信标签,其中,定位电路被配置为经由天线向中继网络集线器发送数据包,并且其中,中继网络集线器的定位电路被配置为基于数据包确定在运动员网络集线器和中继网络集线器之间的距离。

在示例19中,示例1-18中的任何一个或更多个示例的系统可选地还包括:运动员网络集线器包括主体区域网络集线器和无线通信标签,该主体区域网络集线器被配置为根据第一无线协议进行通信,该无线通信标签耦合到主体区域网络集线器,被配置为根据第二无线协议进行通信。

在示例20中,示例1-19中的任何一个或更多个示例的系统可选地还包括:主体区域网络集线器包括被配置为根据第一无线协议进行通信的天线和通信模块。

在示例21中,示例1-20中的任何一个或更多个示例的系统可选地还包括:无线通信标签包括定位电路和天线,该定位电路被配置为生成定位包,该天线被配置为根据第二无线协议将定位包发送到在中继网络集线器中的至少一些中继网络集线器。

在示例22中,示例1-21中的任何一个或更多个示例的系统可选地还包括:运动员网络集线器被配置为相对于参与体育运动的运动员固定。

在示例23中,示例1-22中的任何一个或更多个示例的系统可选地还包括:运动员网络集线器被配置为接收从外围设备发送的数据,并将该数据发送到在中继网络集线器中的至少一个中继网络集线器。

在示例24中,示例1-23中的任何一个或更多个示例的系统可选地还包括:数据是与运动员相关的生理数据。

在示例25中,示例1-24中的任何一个或更多个示例的系统可选地还包括:数据指示辅助设备与外围设备之一的接近度。

在示例26中,示例1-25中的任何一个或更多个示例的系统可选地还包括:辅助设备是在体育运动中使用的装备。

在示例27中,示例1-26中的任何一个或更多个示例的系统可选地还包括:运动员网络集线器集成在被配置为由运动员穿戴的服装或物品中的至少一个中。

在示例28中,一种运动员网络集线器,其包括示例1-27中的任何一个或更多个示例中的运动员网络集线器。

在示例29中,一种中继网络集线器,其包括示例1-27中的任何一个或更多个示例中的中继网络集线器之一。

在示例30中,一种外围设备,其包括示例1-27中任何一个或更多个示例中的外围设备之一。

在示例31中,一种主集线器设备,其包括示例1-27中的任何一个或更多个示例中的主集线器设备。

在示例32中,一种方法,包括:采用运动员网络集线器通过根据第一无线协议进行无线通信与外围设备形成主体区域网络;采用运动员网络集线器根据与第一无线协议不同的第二无线网络协议发送定位信息;以及采用中继网络集线器与运动员网络集线器和主网络集线器通过至少部分地根据第二无线协议进行通信来形成广域网,其中,中继网络集线器被配置为从运动员网络集线器接收定位信息,并且其中中继网络集线器中的至少一个或主网络集线器被配置为基于定位信息来确定运动员网络集线器的定位。

在示例33中,示例32的方法可选地还包括:中继网络集线器中的每个具有相对于参照物的相对已知定位,并且其中,中继网络集线器中的至少一个或主网络集线器被配置为确定运动员网络集线器的取决于参照物的定位。

在示例34中,示例32和33中的任何一个或更多个示例的方法可选地还包括:中继网络集线器中的至少一个中继网络集线器相对于参照物处于固定位置。

在示例35中,示例32-34中的任何一个或更多个示例的方法可选地还包括:相对于参照物动态地重新定位中继网络集线器中的至少一个中继网络集线器,并且基于中继网络集线器中的至少一个中继网络集线器的当前位置来确定已知定位。

在示例36中,示例32-35中的一个或更多个示例的方法可选地还包括:沿着约束装置动态地重新定位至少一个中继网络集线器。

在示例37中,示例32-36中的任何一个或更多个示例的方法可选地还包括:至少一个中继网络集线器是配置的自主交通工具的部件,动态地重新定位至少一个中继网络集线器包括相对于参照物重新定位自主交通工具。

在示例38中,示例32-37中的任何一个或更多个示例的方法可选地还包括:至少部分地基于运动员网络集线器相对于参照物的移动而动态地重新定位至少一个中继网络集线器。

在示例39中,示例32-38中的任何一个或更多个示例的方法可选地还包括:参照物是运动场,其中,运动员网络集线器与在运动场上从事体育运动的运动员相关联并相对于该运动员固定,并且动态地重新定位至少一个中继网络集线器至少部分地基于运动员在运动场上的移动。

在示例40中,示例32-39中的任何一个或更多个示例的方法可选地还包括:动态地重新定位至少一个中继网络集线器包括:保持中继网络集线器处于中继网络集线器的通信范围中。

在示例41中,示例32-40中的任何一个或更多个示例的方法可选地还包括:参照物是运动场,并且还包括将运动员网络集线器与运动场上的运动赛事的运动员相关联。

在示例42中,示例32-41中的任何一个或更多个示例的方法可选地还包括:外围设备被配置为与运动员相关联。

在示例43中,示例32-42中的任何一个或更多个示例的方法可选地还包括:外围设备中的至少一个外围设备被配置为感测关于运动员的数据,并且还包括由运动员网络集线器根据第一无线协议接收该数据。

在示例44中,示例32-43中的任何一个或更多个示例的方法可选地还包括:将关于运动员的数据从运动员网络集线器发送到中继网络集线器中的至少一个中继网络集线器,以及将关于运动员的数据从至少一个中继网络集线器发送到主网络集线器,其中,主网络集线器被配置为执行以下中的至少一个:基于数据确定分析,以及使得数据呈现在用户接口上。

在示例45中,示例32-44中的任何一个或更多个示例的方法可选地还包括:经由中继网络集线器的天线接收定位信息并且采用中继网络集线器的定位电路确定定位,中继网络集线器的该天线被配置为根据第二无线协议进行通信。

在示例46中,示例32-45中的任何一个或更多个示例的方法可选地还包括:通过三角测量由中继网络集线器中的多个中继网络集线器的定位电路确定的距离信息,确定运动员网络集线器的定位。

在示例47中,示例32-46中的任意一个或更多个示例的方法可选地还包括:中继网络集线器中的每个还包括无线通信标签,该无线通信标签包括天线、定位电路、数据端口和微控制器,该微控制器被配置为管理定位电路以及经由数据端口进行的数据接收和发送。

在示例48中,示例32-47中的任意一个或更多个示例的方法可选地还包括:运动员网络集线器包括无线通信标签,其中,发送定位信息包括将数据包经由天线发送到中继网络集线器,并且其中基于数据包确定在运动员网络集线器和中继网络集线器之间的距离。

在示例49中,示例32-48中的任何一个或更多个示例的方法可选地还包括:形成主体区域网络是采用运动员网络集线器的主体区域网络集线器,该主体区域网络集线器被配置为根据第一无线协议进行通信,并且经由无线通信标签发送定位信息,该无线通信标签耦合到主体区域网络集线器,被配置为根据第二无线协议进行通信。

在示例50中,示例32-49中的任何一个或更多个示例的方法可选地还包括:主体区域网络集线器包括被配置为根据第一无线协议进行通信的天线和通信模块。

在示例51中,示例32-50中的任何一个或更多个示例的方法可选地还包括:采用定位电路生成定位包,其中,发送定位信息包括根据第二无线协议将定位包发送到中继网络集线器中的至少一些中继网络集线器。

在示例52中,示例32-51中的任何一个或更多个示例的方法可选地还包括:相对于参与体育运动的运动员固定运动员网络集线器。

在示例53中,示例32-52中的任何一个或更多个示例的方法可选地还包括:采用运动员网络集线器接收从外围设备发送的数据,并将该数据发送到在中继网络集线器中的至少一个中继网络集线器。

在示例54中,示例32-53中的任何一个或更多个示例的方法可选地还包括:数据是与运动员相关的生理数据。

在示例55中,示例32-54中的任何一个或更多个示例的方法可选地还包括:数据指示辅助设备与外围设备之一的接近度。

在示例56中,示例32-55中的任何一个或更多个示例的方法可选地还包括:辅助设备是在体育运动中使用的装备。

在示例57中,示例32-56中的任何一个或更多个示例的方法可选地还包括:运动员网络集线器集成在被配置为由运动员穿戴的服装或物品中的至少一个中。

如本文所使用的,术语“存储器”是指能够暂时或永久地存储数据的机器可读介质,并且可以被视为包括但不限于,随机存取存储器(RAM),只读存储器(ROM),缓冲存储器、闪速存储器、铁电RAM(FRAM)和高速缓冲存储器。术语“机器可读介质”应视为包括能够存储指令的单种介质或多种介质(例如,集中式或分布式数据库,或相关联的高速缓存和服务器)。术语“机器可读介质”还应被视为包括能够存储供机器执行的指令(例如,软件)的任何介质或多种介质的组合,使得指令在被机器的一个或更多个处理器执行时引起机器执行本文所述的任何一种或更多种方法。因此,“机器可读介质”是指单个存储装置或设备,以及包括多个存储装置或设备的“基于云的”存储系统或存储网络。相应地,术语“机器可读介质”应被理解为包括但不限于呈固态存储器、光学介质、磁性介质或其任何适当组合的形式的一个或更多个数据存储库(datarepositories)。

在整个本说明书中,多个实例可以实现被描述为单个实例的部件、操作或结构。虽然一种或更多种方法的各个操作被示出和描述为单独的操作,但可以同时执行这些单独的操作中的一个或更多个,并且不需要以所示顺序执行操作。在示例配置中作为单独部件提出的结构和功能可以被实现为组合结构或部件。类似地,作为单个部件提出的结构和功能可以被实现为单独的部件。这些和其他变化、修改、添加和改进落入本文中的主题的范围内。

某些实施例在本文中被描述为包括逻辑或多个部件、模块或机构。模块可以构成软件模块(例如,被包含在机器可读介质上或发送信号中的代码)或硬件模块。“硬件模块”是能够执行某些操作的有形单元并且可以以某种物理方式配置或布置。在各种示例实施例中,一个或更多个计算机系统(例如,独立计算机系统、客户端计算机系统或服务器计算机系统)或计算机系统的一个或更多个硬件模块(例如,处理器或一组处理器)可通过软件(例如,应用或应用部分)被配置为操作以执行如本文所述的某些操作的硬件模块。

在一些实施例中,硬件模块可以以机械方式、电子方式或其任何合适的组合来实现。例如,硬件模块可以包括被永久配置为执行某些操作的专用电路或逻辑。例如,硬件模块可以是专用处理器,诸如现场可编程门阵列(FPGA)或ASIC。硬件模块还可以包括由软件临时配置为执行某些操作的可编程逻辑或电路。例如,硬件模块可以包括被包含在通用处理器或其他可编程处理器内的软件。将认识到,在专用和永久配置的电路中或在(例如,由软件配置的)临时配置的电路中机械地实现硬件模块的决定可以由成本和时间考虑来促成。

因此,短语“硬件模块”应理解为包括有形实体,即物理构造、永久配置(例如,硬连线)或临时配置(例如,编程)以用某种方式操作或执行本文所述的某些操作的实体。如本文所使用的,“硬件实现的模块”是指硬件模块。考虑到其中硬件模块被临时配置(例如,编程)的实施例,每个硬件模块不需要在时间的任何一个实例处被配置或实例化。例如,在硬件模块包括由软件配置成为专用处理器的通用处理器的情况下,通用处理器可以在不同的时间被配置为分别不同的专用处理器(例如,包括不同的硬件模块)。因此,软件可以例如将处理器配置为在一个时间实例构成特定的硬件模块,并在不同的时间实例构成不同的硬件模块。

硬件模块可以向其他硬件模块提供信息并从其他硬件模块接收信息。因此,所描述的硬件模块可以被认为是通信耦合的。在多个硬件模块同时存在的情况下,可以通过在两个或更多个硬件模块之间或之中的信号发送(例如,通过适当的电路和总线)来实现通信。在其中在不同时间配置或实例化多个硬件模块的实施例中,这样的硬件模块之间的通信可以例如通过在多个硬件模块访问的存储器结构中存储信息和获取信息来实现。例如,一个硬件模块可以执行操作并将该操作的输出存储在其通信耦合到的存储器设备中。然后,另外的硬件模块可以在稍后的时间访问存储器设备以获取和处理所存储的输出。硬件模块还可以发起与输入或输出设备的通信,并且可以对资源(例如,信息集合)进行操作。

本文所述的示例方法的各种操作可以至少部分地由(例如,通过软件)临时配置或永久地配置为执行相关操作的一个或更多个处理器来执行。无论是临时还是永久配置,这样的处理器可以构成操作以执行本文所述的一个或更多个操作或功能的处理器实现的模块。如本文所使用的,“处理器实现的模块”是指使用一个或更多个处理器实现的硬件模块。

类似地,本文描述的方法可以至少部分地是处理器实现的,处理器是硬件的示例。例如,方法的至少一些操作可以由一个或更多个处理器或处理器实现的模块执行。此外,一个或更多个处理器还可以操作以支持在“云计算”环境中或作为“软件即服务”(SaaS)的相关操作的执行。例如,至少一些操作可以由一组计算机(作为包括处理器的机器的示例)执行,其中这些操作可以经由网络(例如,因特网)以及经由一个或更多个适当的接口(例如,应用程序接口(API))访问。

某些操作的执行可以分布在一个或更多个处理器中,不仅驻留在单个机器内,而且部署在多个机器上。在一些示例实施例中,一个或更多个处理器或处理器实现的模块可以位于单个地理定位(例如,在家庭环境、办公室环境或服务器场内)。在其他示例实施例中,一个或更多个处理器或处理器实现的模块可以分布在多个地理定位上。

本说明书的一些部分是根据对在机器存储器(例如,计算机存储器)内被存储为位或二进制数字信号的数据的操作的算法或符号表示来呈现的。这些算法或符号表示是数据处理领域中的普通技术人员用于将其工作的实质传达给本领域的其他技术人员的技术的示例。如本文所使用的,“算法”是得出期望结果的操作的自洽序列或类似处理。在这个背景下,算法和操作涉及对物理量的物理操纵。通常但不一定,这样的量可以采取能够被机器存储、访问、传送、组合、比较或以其他方式操纵的电、磁或光信号的形式。有时,主要是出于常见使用的原因,使用诸如“数据”、“内容”、“位”、“值”、“元素”、“符号”、“字符”、“术语”、“数”、“数字”等的词语来提及这样的信号是方便的。然而,这些词仅仅是方便的标签,并且与适当的物理量相关联。

除非另有明确说明,否则本文中使用诸如“处理”、“计算”、“运算”、“确定”、“呈现”、“显示”等之类的词语的讨论可以指机器(例如,计算机)的动作或过程,该机器操纵或转换被表示为在一个或更多个存储器(例如,易失性存储器、非易失性存储器或其任何合适的组合)、寄存器或接收、存储、发送或显示信息的其他机器部件内的物理(例如,电子、磁或光的)量的数据。此外,除非另有明确说明,否则如在专利文件中普遍的,本文所使用的术语“一个(a)”或“一个(an)”包括一个实例或不止一个实例。最后,如本文所使用的,连接词“或”是指非排他性的“或”,除非另有明确说明。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1