电子装置的制作方法

文档序号:14737351发布日期:2018-06-19 20:46阅读:140来源:国知局
电子装置的制作方法

本发明涉及消费性电子技术领域,更具体而言,涉及一种电子装置。



背景技术:

随着手机支持的功能越来越丰富多样,手机需要设置的功能器件的种类和数量也越来越多,为了实现距离检测、环境光检测与用户的面部3D特征识别等功能,需要在电子设备中配置接近传感器、环境光传感器、红外光摄像头、结构光投射器等功能器件,而为了布置众多的功能器件,会占用手机过多的空间。



技术实现要素:

本发明实施方式提供一种电子装置。

本发明实施方式的电子装置包括:

机壳;

输出模组,所述输出模组安装在所述机壳上,所述输出模组包括封装壳体、结构光投射器、及接近红外灯,所述封装壳体包括封装基板,所述结构光投射器与所述接近红外灯封装在所述封装壳体内并承载在所述封装基板上,所述结构光投射器与所述接近红外灯能够以不同的功率向所述封装壳体外发射红外光线;

显示屏,所述显示屏设置在所述机壳上,所述显示屏形成有透光实体区并包括能够显示画面的正面及与所述正面相背的背面;

光感器,所述光感器设置在所述显示屏的所述背面所在的一侧,所述光感器与所述透光实体区对应,所述光感器用于接收入射到所述光感器上的光线并输出所述光线的目标光强;

安装在所述壳体内的成像模组,所述成像模组包括镜座、安装在所述镜座上的镜筒和部分设置在所述镜座内的基板;和

设置在所述基板上的接近传感器。

在某些实施方式中,所述输出模组还包括芯片,所述结构光投射器与所述接近红外灯形成在一片所述芯片上。

在某些实施方式中,所述封装壳体还包括封装侧壁及封装顶部,所述封装侧壁自所述封装基板延伸并连接在所述封装顶部与所述封装基板之间,所述封装顶部形成有结构光窗口及接近窗口,所述结构光窗口与所述结构光投射器对应,所述接近窗口与所述接近红外灯对应。

在某些实施方式中,所述输出模组还包括接近灯透镜,所述接近灯透镜设置在所述封装壳体内并与所述接近红外灯对应。

在某些实施方式中,所述输出模组还包括金属遮挡板,所述金属遮挡板位于所述封装壳体内并位于所述结构光投射器与所述接近红外灯之间。

在某些实施方式中,所述输出模组上形成有接地引脚、结构光引脚和接近灯引脚,所述接地引脚和所述结构光引脚被使能时,所述结构光投射器发射红外光线;所述接地引脚和所述接近灯引脚被使能时,所述接近红外灯发射红外光线。

在某些实施方式中,所述电子装置还包括透光的盖板,所述机壳开设有机壳接近通孔及机壳结构光通孔,所述接近红外灯与所述机壳接近通孔对应,所述结构光投射器与所述机壳结构光通孔对应,所述盖板设置在所述机壳上。

在某些实施方式中,所述盖板与所述机壳结合的表面形成有仅透过红外光的红外透过油墨,所述红外透过油墨遮挡所述机壳接近通孔及所述机壳结构光通孔中的至少一个。

在某些实施方式中,所述透光实体区包含图像像素,所述电子装置还包括处理器,所述光感器接收所述光线以输出包括所述电子装置外部的环境光强信息的初始光强;所述处理器用于处理所述初始光强以获得只包括所述电子装置外部的所述环境光强信息的所述目标光强。

在某些实施方式中,所述初始光强包括所述环境光强信息及所述显示屏显示图像时的显示光强信息,所述处理器用于实时获取所述显示屏显示图像时的显示光强信息,并在处理所述初始光强时去除所述显示光强信息以获得所述目标光强。

在某些实施方式中,所述成像模组包括可见光摄像头及红外光摄像头中的至少一种。

在某些实施方式中,所述电子装置还包括红外光摄像头、可见光摄像头、受话器、及红外补光灯,所述输出模组、所述红外光摄像头、所述可见光摄像头、所述受话器和所述红外补光灯的中心位于同一线段上,从所述线段的一端到另一端依次为:

所述输出模组、所述红外补光灯、所述受话器、所述红外光摄像头、所述可见光摄像头;或

所述输出模组、所述可见光摄像头、所述受话器、所述红外光摄像头、所述红外补光灯;或

所述红外光摄像头、所述红外补光灯、所述受话器、所述可见光摄像头、所述输出模组;或

所述红外光摄像头、所述可见光摄像头、所述受话器、所述输出模组、所述红外补光灯。

在某些实施方式中,所述电子装置还包括受话器、红外光摄像头、可见光摄像头和红外补光灯,所述电子装置还包括透光的盖板,所述盖板设置在所述机壳上,所述机壳开设有机壳出音孔,所述盖板开设有盖板出音孔,所述受话器与所述盖板出音孔及所述机壳出音孔的位置对应,所述输出模组、所述红外光摄像头、所述可见光摄像头和所述红外补光灯的中心位于同一线段上,所述受话器位于所述线段与所述机壳的顶部之间。

本发明实施方式的电子装置中,输出模组将结构光投射器与接近红外灯集成为一个单封装体结构,集合了发射红外光以红外测距及立体成像的功能,因此,输出模组的集成度较高,体积较小,输出模组节约了实现立体成像和红外测距的功能的空间。另外,由于结构光投射器与接近红外灯承载在同一个封装基板上,相较于传统工艺的结构光投射器与接近红外灯需要分别采用不同晶圆制造再组合到PCB基板上封装,提高了封装效率。同时,光感器设置在显示屏的背面所在的一侧,从而光感器不会占用显示屏边缘与机壳边缘之间的空间,显示屏边缘与机壳边缘之间的间隙可以做得更小,也即是说,显示屏的显示区域可以增大,以提高电子装置的屏占比。接近传感器设置在基板上,可以不需要再设置额外的固定结构固定接近传感器,节约电子装置内的安装空间。

本发明的实施方式的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实施方式的实践了解到。

附图说明

本发明的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:

图1是本发明实施方式的电子装置的结构示意图;

图2是本发明实施方式的电子装置的输出模组的立体示意图;

图3是本发明实施方式的电子装置的输出模组的截面示意图;

图4是本发明实施方式的电子装置的输出模组的立体示意图;

图5是图1的电子装置沿V-V线的部分截面示意图;

图6是图1的电子装置沿VI-VI线的截面示意图;

图7是本发明实施方式的电子装置的接近传感器与成像模组的立体示意图;

图8是本发明实施方式的电子装置的电子元器件的排列示意图;

图9是本发明另一实施方式的输出模组的截面示意图;

图10是本发明另一实施方式的电子装置的结构示意图;

图11是本发明另一实施方式的电子装置沿与图1中的V-V线对应位置截得的部分截面示意图;

图12是本发明又一实施方式的电子装置沿与图1中的V-V线对应位置截得的部分截面示意图;

图13是本发明实施方式的电子装置的输出模组与接近传感器的立体示意图;

图14是本发明另一实施方式的接近传感器与成像模组的立体示意图;

图15至图21是本发明实施方式的电子装置的接近传感器与成像模组的立体示意图。

具体实施方式

以下结合附图对本发明的实施方式作进一步说明。附图中相同或类似的标号自始至终表示相同或类似的元件或具有相同或类似功能的元件。

另外,下面结合附图描述的本发明的实施方式是示例性的,仅用于解释本发明的实施方式,而不能理解为对本发明的限制。

在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。

请参阅图1,本发明实施方式的电子装置100包括机壳20、盖板30、显示屏90和电子元器件。电子元器件包括输出模组10、接近传感器51(如图7)、光感器52、成像模组60(如图7)、受话器70和红外补光灯80。电子装置100可以是手机、平板电脑、笔记本电脑、智能手表、智能手环、柜员机等,本发明实施例以电子装置100是手机为例进行说明,可以理解,电子装置100的具体形式可以是其他,在此不作限制。

请参阅图2和图3,输出模组10为单封装体结构,输出模组10包括封装壳体11、结构光投射器12和接近红外灯13。

封装壳体11用于同时封装结构光投射器12和接近红外灯13,或者说,结构光投射器12和接近红外灯13同时封装在封装壳体11内。封装壳体11包括封装基板111、封装侧壁112和封装顶部113。封装壳体11可以是由电磁干扰(Electromagnetic Interference,EMI)屏蔽材料制成,以避免外界的电磁干扰对输出模组10产生影响。

封装基板111用于承载结构光投射器12和接近红外灯13。在制造输出模组10时,结构光投射器12和接近红外灯13可以形成在一片芯片14上,再将结构光投射器12、接近红外灯13和芯片14一同设置在封装基板111上,具体地,可以将芯片14粘结在封装基板111上。同时,封装基板111也可以用于与电子装置100的其他零部件(例如电子装置100的机壳20、主板等)连接,以将输出模组10固定在电子装置100内。

封装侧壁112可以环绕结构光投射器12和接近红外灯13设置,封装侧壁112自封装基板111延伸,封装侧壁112可与封装基板111结合。较佳地,封装侧壁112与封装基板111为可拆卸地连接,以便于取下封装侧壁112后对结构光投射器12和接近红外灯13进行检修。封装侧壁112的制作材料可以是不透红外光的材料,以避免结构光投射器12或接近红外灯13发出的红外光穿过封装侧壁112。

封装顶部113与封装基板111相对,封装顶部113与封装侧壁112连接。封装顶部113形成有结构光窗口1131及接近窗口1132,结构光窗口1131与结构光投射器12对应,结构光投射器12发射的结构光(红外光)从结构光窗口1131穿出;接近窗口1132与接近红外灯13对应,接近红外灯13发射的红外光从接近窗口1132穿出。封装顶部113与封装侧壁112可以一体成形得到,也可以分体成形得到。在一个例子中,结构光窗口1131和接近窗口1132为通孔,封装顶部113的制作材料为不透红外光的材料。在另一例子中,封装顶部113由不透红外光的材料和透红外光的材料共同制造而成,具体地,结构光窗口1131和接近窗口1132由透红外光的材料制成,其余部位由不透红外光的材料制成,进一步地,结构光窗口1131和接近窗口1132可以形成有透镜结构,以改善从结构光窗口1131和接近窗口1132射出的红外光发射角度,例如结构光窗口1131形成有凹透镜结构,以使穿过结构光窗口1131的光线发散向外射出;接近窗口1132形成有凸透镜结构,以使穿过接近窗口1132的光线聚拢向外射出。

结构光投射器12与接近红外灯13可以形成在一片芯片14上,进一步减小结构光投射器12与接近红外灯13集成后的体积,且制备工艺较简单。结构光投射器12可向外发射结构光,结构光可形成红外激光散斑图案,结构光投射到目标物体表面,由红外光摄像头62(如图1所示)采集被目标物体调制后的结构光图案,通过对被调制的结构光图案进行分析计算获取目标物体的深度图像(此时,结构光投射器12用于立体成像)。在本发明实施例中,结构光投射器12包括投射器光源121、镜架122、投射器透镜123和衍射光学元件(diffractive optical elements,DOE)124。投射器光源121发出的光束经投射器透镜123准直或汇聚后由衍射光学元件124扩束并以一定的光束图案向外发射。具体地,投射器光源121可以形成在芯片14上,投射器透镜123和衍射光学元件124可以固定在镜架122上,例如通过胶粘的方式固定在镜架122上。接近红外灯13可发射红外光,红外光穿过接近窗口1132并到达物体表面,电子装置100的接近传感器51(如图7所示)接收被物体反射的红外光以检测物体到电子装置100的距离(此时,接近红外灯13用于红外测距)。

结构光投射器12与接近红外灯13能够以不同的功率向封装壳体11外发射红外光线,具体地,结构光投射器12与接近红外灯13可以同时发射红外光线,输出模组10同时用于立体成像和红外测距;也可以结构光投射器12发射光线而接近红外灯13不发射光线,输出模组10仅用于立体成像;也可以结构光投射器12不发射光线而接近红外灯13发射光线,输出模组10仅用于红外测距。请结合图4,在本发明实施例中,输出模组10上形成有接地引脚15、结构光引脚16和接近灯引脚17。接地引脚15、结构光引脚16和接近灯引脚17可以形成在封装基板111上,当接地引脚15和结构光引脚16被使能时(即,接地引脚15和结构光引脚16接入电路导通时),结构光投射器12发射红外光线;当接地引脚15和接近灯引脚17被使能时(即,接地引脚15和接近灯引脚17接入电路导通时),接近红外灯13发射红外光线;当接地引脚15、结构光引脚16和接近灯引脚17被使能时(即,接地引脚15、结构光引脚16和接近灯引脚17接入电路导通时),结构光投射器12发射红外光线,且接近红外灯13发射红外光线。

请参阅图1和图5,机壳20可以作为输出模组10的安装载体,或者说,输出模组10可以设置在机壳20内。机壳20包括顶部21和底部22,在用户正常使用电子装置100的状态下,顶部21位于底部22的上方,如图1所示,输出模组10设置在顶部21和底部22之间。请结合图6,机壳20开设有安装槽25,安装槽25开设在顶部21和底部22之间。机壳20可以是电子装置100的中壳或外壳。

请参阅图6,显示屏90设置在机壳20上并封闭安装槽25以形成封闭的安装空间。显示屏90形成有透光实体区91与非透光区94,透光实体区91不包含图像像素且被多个图像像素围绕,图像像素分布在非透光区94内,换言之,非透光区94为显示屏90的显示区,非透光区94用于实现显示屏90的显示功能。透光实体区91的材料包括但不限于玻璃。电子装置100外的光线可穿过透光实体区91进入电子装置100,而无需破坏显示屏90的完整性。显示屏90包括能够显示画面的正面92及与正面92相背的背面93。具体地,当显示屏90发光并显示画面时,显示屏90发出的光线从正面92射出显示屏90;当显示屏90安装到机壳20上时,安装槽25与正面92位于背面93的相背两侧(即,背面93位于正面92与安装槽25之间)。在本发明实施例中,输出模组10可以设置在显示屏90边缘与顶部21之间,由于本发明实施方式的输出模组10可以占用较小的体积,因此,机壳20内用于设置显示屏90的体积将可以对应增大,以提高电子装置100的屏占比。在其他实施方式中,显示屏90可以为全面屏开设有缺口,显示屏90包围住输出模组10,而输出模组10从显示屏90的缺口露出。在某些实施方式中,透光实体区91与周围的非透光区94等厚且连续。

请参阅图1和图5,机壳20还开设有机壳接近通孔23和机壳结构光通孔24。输出模组10设置在机壳20内时,接近红外灯13与机壳接近通孔23对应,结构光投射器12与机壳结构光通孔24对应。其中接近红外灯13与机壳接近通孔23对应指接近红外灯13发出的光线可从机壳接近通孔23穿过,具体地,可以是接近红外灯13与机壳接近通孔23正对,也可以是接近红外灯13发射的光线经导光元件作用后穿过机壳接近通孔23。结构光投射器12与机壳结构光通孔24对应同理,在此不作赘述。在如图5所示的实施例中,机壳接近通孔23与机壳结构光通孔24可以是互相间隔的,当然,在其他实施例中,机壳接近通孔23与机壳结构光通孔24也可以是互相连通的。

盖板30可以是透光的,盖板30的材料可以是透光的玻璃、树脂、塑料等。盖板30设置在机壳20上,盖板30包括与机壳20结合的内表面32,以及与内表面32相背的外表面31,输出模组10发出的光线依次穿过内表面32和外表面31后穿出盖板30。在如图5所示的实施例中,盖板30覆盖机壳结构光通孔24和机壳接近通孔23,盖板30的内表面32上涂覆有红外透过油墨40,红外透过油墨40对红外光有较高的透过率,例如可达到85%或以上,且对可见光有较高的衰减率,例如可达到70%以上,使得用户在正常使用中,肉眼难以看到电子装置100上被红外透过油墨40覆盖的区域。具体地,红外透过油墨40可以覆盖内表面32上不与显示屏90对应的区域。

红外透过油墨40还可以遮挡机壳接近通孔23及机壳结构光通孔24中的至少一个,即,红外透过油墨40可以同时遮盖机壳接近通孔23和机壳结构光通孔24(如图5所示),用户难以通过机壳接近通孔23和机壳结构光通孔24看到电子装置100的内部结构,电子装置100的外形较美观;红外透过油墨40也可以遮盖机壳接近通孔23,且未遮盖机壳结构光通孔24;或者红外透过油墨40也可以遮盖机壳结构光通孔24,且未遮盖机壳接近通孔23。

请参阅图6,光感器52为单封装体结构。光感器52安装在安装槽25内并位于显示屏90的背面93所在的一侧,换言之,光感器52位于显示屏90的下方。光感器52与透光实体区91对应,具体地,电子装置100外的可见光能够穿过透光实体区91并传递到光感器52上。光感器52接收环境光中的可见光,并检测可见光的强度,以作为控制显示屏90的显示亮度的依据。本实施方式中,光感器52先安装在安装槽25内再将显示屏90安装到机壳20上,光感器52可以与显示屏90接触或间隔设置。在其他实施方式中,光感器52可先安装在显示屏90上并使光感器52与透光实体区91对应,然后再将显示屏90及光感器52同时安装到机壳20上。

请参阅图3和图7,接近传感器51为单封装体结构。接近红外灯13向外发出的红外光,被外界物体反射后,由接近传感器51接收,接近传感器51依据接收到的被反射的红外光判断外界物体与电子装置100之间的距离。

请参阅图1和图7,成像模组60可以是可见光摄像头61与红外光摄像头62中的一个或两个。成像模组60包括镜座63、镜筒64和图像传感器65。镜筒64安装在镜座63上,图像传感器65收容在镜座63内。镜座63包括安装面631,安装面631位于镜筒64与图像传感器65之间。在如图7所示的实施例中,接近传感器51设置在安装面631上,具体地,接近传感器51在安装面631所在的平面正投影至少部分落入到安装面631上,如此,接近传感器51与成像模组60设置得较紧凑,二者共同占用的横向空间较小。

请参阅图1,受话器70用于在受到电源的激励时向外发出声波信号,用户可通过受话器70进行通话。红外补光灯80用于向外发射红外光,红外光被外界物体表面反射后,电子装置100的红外光摄像头62接收被物体反射的红外光以获取物体的影像信息。

在如图1所示的实施例中,成像模组60包括可见光摄像头61和红外光摄像头62,输出模组10、可见光摄像头61、红外光摄像头62、受话器70和红外补光灯80的中心位于同一线段上。具体地,从线段的一端到另一端依次为输出模组10、红外补光灯80、受话器70、红外光摄像头62、可见光摄像头61(如图8所示);或者从线段的一端到另一端依次为输出模组10、可见光摄像头61、受话器70、红外光摄像头62、红外补光灯80(如图1所示);或者从线段的一端到另一端依次为红外光摄像头62、红外补光灯80、受话器70、可见光摄像头61、输出模组10;或者从线段的一端到另一端依次为红外光摄像头62、可见光摄像头61、受话器70、输出模组10、红外补光灯80。当然,输出模组10、红外光摄像头、受话器70、可见光摄像头61、红外补光灯80的排列方式不限于上述的举例,还可以有其他,例如各电子元器件的中心排列成圆弧形、中心排列成矩形等形状。

进一步地,请结合图7,接近传感器51可以设置在红外光摄像头62的安装面631上,也可以设置在可见光摄像头61的安装面631上,当然,接近传感器51也可以不设置在安装面631上,接近传感器51可以与输出模组10相邻设置,以容易接收到由接近红外灯13发射,且由外界物体反射回的红外光;接近传感器51也可以与受话器70相邻设置,当用户接听电话时,接近传感器51容易检测到用户的耳朵贴近受话器70。

综上,本发明实施方式的电子装置100中,输出模组10将结构光投射器12与接近红外灯13集成为一个单封装体结构,集合了发射红外光以红外测距及立体成像的功能,因此,输出模组10的集成度较高,体积较小,输出模组10节约了实现立体成像和红外测距的功能的空间。另外,由于结构光投射器12与接近红外灯13承载在同一个封装基板111上,相较于传统工艺的结构光投射器12与接近红外灯13需要分别采用不同晶圆制造再组合到PCB基板上封装,提高了封装效率。同时,光感器52设置在显示屏90的背面93所在的一侧,从而光感器52不会占用显示屏90边缘与机壳20边缘之间的空间,显示屏90边缘与机壳20边缘之间的间隙可以做得更小,也即是说,显示屏90的显示区域可以增大,以提高电子装置100的屏占比。

请参阅图3,在某些实施方式中,输出模组10还包括接近灯透镜19。接近灯透镜19设置在封装壳体11内并与接近红外灯13对应。接近红外灯13发射的红外光在接近灯透镜19的作用下汇聚到接近窗口1132中射出,减少发射到封装侧壁112和封装顶部113的其他区域的光量。

请参阅图3,在某些实施方式中,输出模组10还包括金属遮挡板18,金属遮挡板18位于封装壳体11内,且金属遮挡板18位于结构光投射器12与接近红外灯13之间。金属遮挡板18位于结构光投射器12与接近红外灯13之间,金属遮挡板18一方面可以屏蔽结构光投射器12与接近红外灯13相互之间的电磁干扰,结构光投射器12与接近红外灯13的发光强度和时序不会互相影响,另一方面金属遮挡板18可以用于隔绝结构光投射器12所在腔体与接近红外灯13所在的腔体,光线不会从一个腔体中进入另一个腔体。

请参阅图9,在某些实施方式中,输出模组10还包括光学封罩1a。光学封罩1a由透光材料制成,光学封罩1a形成在封装基板111上并位于封装壳体11内。光学封罩1a包裹住接近红外灯13。具体地,光学封罩1a可以通过灌胶注模成型工艺形成,光学封罩1a可以采用透明的热固性环氧树脂制成,以在使用中不易软化,光学封罩1a可以固定接近红外灯13的位置,且使得接近红外灯13在封装壳体11内不易晃动。

请参阅图1和图6,在某些实施方式中,透光实体区91包含图像像素,电子装置100还包括处理器96,光感器52接收入射到光感器52上的光线以输出包括电子装置100外部的环境光强信息的初始光强。处理器96用于处理初始光强以获得只包括电子装置100外部的环境光强信息的目标光强。

具体地,透光实体区91包括图像像素,透光实体区91可用于显示图像信息,同时,环境光线可从透光实体区91穿过并进入电子装置100。在某些实施方式中,透光实体区91的透光率可大于等于50%。可以理解,入射到光感器52上的光线既包括了穿过透光实体区91的环境光线的部分,又包括了透光实体区91的图像像素在显示内容时向电子装置100内部发射的显示光线的部分。处理器96根据透光实体区91显示的内容可以确定光感器52接收到的透光实体区91向光感器52发射的显示光线,从而处理器96可以根据初始光强、及光感器52接收显示光线产生的光强共同确定只包括电子装置100外部的环境光强信息的目标光强。本实施方式的电子装置100能够得到电子装置100外部的环境光强信息,以作为控制显示屏90的显示亮度的依据。

请参阅图1,在某些实施方式中,初始光强包括环境光强信息及显示屏90显示图像时光感器52接收到的显示光强信息,处理器96用于实时获取显示屏90显示图像时光感器52接收到的显示光强信息,并在处理初始光强时去除显示光强信息以获得目标光强。

请参阅图10,在某些实施方式中,机壳20还开设有机壳出音孔(图未示),盖板30还开设有盖板出音孔35,受话器70与盖板出音孔35及机壳出音孔的位置对应。输出模组10、红外光摄像头62、可见光摄像头61和红外补光灯80的中心位于同一线段上,受话器70位于该线段与机壳20的顶部21之间。

受话器70的中心不位于该线段上,节约了盖板30上各电子元器件(输出模组10、红外光摄像头62、可见光摄像头61、红外补光灯80等)占用的横向空间。在如图10所示的实施例中,盖板出音孔35开设在盖板30的边缘位置,且机壳出音孔靠近顶部21开设。

请参阅图11,在某些实施方式中,盖板30上还可以开设有盖板结构光通孔34,盖板结构光通孔34与机壳结构光通孔24对应,结构光投射器12发射的红外光穿过机壳结构光通孔24后可以从盖板结构光通孔34中穿出电子装置100。此时,盖板30上与机壳接近通孔23对应的位置可以设置红外透过油墨40,用户难以通过机壳接近通孔23看到电子装置100的内部的接近红外灯13,电子装置100的外形较美观。

请参阅图12,在某些实施方式中,盖板30上还可以开设盖板接近通孔33,盖板接近通孔33与机壳接近通孔23对应,接近红外灯13发射的红外光穿过机壳接近通孔23后可以从盖板接近通孔33中穿出电子装置100。此时,盖板30上与机壳结构光通孔24对应的位置可以设置红外透过油墨40,用户难以通过机壳结构光通孔24看到电子装置100的内部的结构光投射器12,电子装置100的外形较美观。

请参阅图13,在某些实施方式中,接近传感器51可以设置在封装基板111上。具体地,封装基板111的一部分用于承载结构光投射器12和接近红外灯13,或者说与封装侧壁112围成的空间对应;封装基板111的另一部分向外伸出,接近传感器51可以固定在封装基板111上且位于封装壳体11外。封装基板111上可铺设线路,线路可以是结构光投射器12和接近红外灯13的控制和驱动线路,在一个例子中,线路为FPC的形式,FPC可以同时与接近传感器51连接,以用于同时传输接近传感器51的控制和驱动信号。

请参阅图14,在某些实施方式中,成像模组60还包括基板66,图像传感器65设置在基板66上,接近传感器51还可以固定在基板66上。具体地,基板66上设置有FPC,基板66的一部分位于镜座63内,另一部分从镜座63内伸出,FPC的一端位于镜座63内且用于承载图像传感器65,另一端可以与电子装置100的主板连接。接近传感器51设置在基板66上时,接近传感器51设置在镜座63外,接近传感器51也可以与FPC连接。

成像模组60可以是可见光摄像头61与红外光摄像头62中的一个或两个。具体地,接近传感器51可以固定在可见光摄像头61的基板66上;接近传感器51可以固定在红外光摄像头62的基板66上。

进一步的,基板66还包括补强板,补强板设置在与接近传感器51相背的一侧,以增加基板66的整体强度,使得FPC不易发生绕折,同时接近传感器51设置在基板66上时不易发生晃动。在一个例子中,接近传感器51还可以固定在镜座63的外侧壁上,例如通过粘结的方式固定在镜座63的外侧壁上。

请参阅图15,在某些实施方式中,上述实施方式的电子装置100及成像模组60可替换为以下结构:成像模组60包括图像传感器65、相机壳体67及镜头模组68。相机壳体67的顶面670为阶梯面,顶面670包括第一子顶面671、第二子顶面672、及第三子顶面673,第二子顶面672与第一子顶面671倾斜连接并与第一子顶面671形成切口675,第三子顶面673与第二子顶面672倾斜连接,第二子顶面672位于第一子顶面671与第三子顶面673之间以连接第一子顶面671与第三子顶面673。第二子顶面672与第一子顶面671之间的夹角可以为钝角或直角,第二子顶面672与第三子顶面673之间的夹角可以为钝角或直角。切口675开设在相机壳体67的一个端部上,也就是说,切口675位于顶面670的边缘位置。第三子顶面673开设有出光通孔674,镜头模组68收容在相机壳体67内并与出光通孔674对应。图像传感器65收容在相机壳体67内并与镜头模组68对应,电子装置100外的光线能够穿过出光通孔674及镜头模组68并传递到图像传感器65上,图像传感器65将光信号转换为电信号。接近传感器51设置在第一子顶面671处。本实施方式中,成像模组60可以是可见光摄像头61。在其他实施方式中,成像模组60可以是红外光摄像头62。

本实施方式的成像模组60开设有切口675,并且将接近传感器51设置在第一子顶面671上,使接近传感器51与成像模组60设置得较紧凑,二者共同占用的横向空间较小,节约了电子装置100内的安装空间。

请继续参阅图15,在某些实施方式中,上述实施方式的接近传感器51设置在第一子顶面671上并位于相机壳体67的外部,具体地,整个接近传感器51沿垂直于第一子顶面671的投影均可以位于第一子顶面671内(如图15所示);或者,部分接近传感器51沿垂直于第一子顶面671的投影位于第一子顶面671内。也就是说,接近传感器51至少有一部分位于第一子顶面671的正上方,如此,接近传感器51与成像模组60设置得较紧凑,二者共同占用的横向空间较小,进一步节约了电子装置100内的安装空间。

请参阅图16,上述实施方式的第一子顶面671开设有透光孔676,接近传感器51位于相机壳体67内并与透光孔676对应。电子装置100外部的光线能够穿过透光孔676并传递到接近传感器51上。本实施方式的接近传感器51设置在相机壳体67内,使接近传感器51与相机壳体67的结构更加稳定并便于将接近传感器51与成像模组60安装到机壳20上。

请参阅图17,在某些实施方式中,上述实施方式的第一子顶面671开设有透光孔676,接近传感器51位于相机壳体67内并与透光孔676对应。成像模组60还包括基板66,图像传感器65设置在基板66上,接近传感器51还可以固定在基板66上并收容在相机壳体67内。具体地,基板66上设置有FPC,FPC的一端位于相机壳体67内且用于承载图像传感器65,另一端可以与电子装置100的主板连接。在其他实施方式中,接近传感器51也可以与FPC连接。

本实施方式的接近传感器51设置在相机壳体67内,使接近传感器51与相机壳体67的结构更加稳定并便于将接近传感器51与成像模组60安装到机壳20上;同时,成像模组60设置基板66并将接近传感器51设置在基板66上,使接近传感器51能够稳固地安装在相机壳体67内。

请参阅图18,在某些实施方式中,上述实施方式的电子装置100及成像模组60可替换为以下结构:成像模组60为双摄模组,包括两个图像传感器65、相机壳体67及两个镜头模组68。相机壳体67的顶面670为阶梯面,顶面670包括第一梯面677、低于第一梯面677的第二梯面678、及第一连接面679a。第一连接面679a与第二梯面678倾斜连接并与第二梯面678形成切口675,第一连接面679a与第一梯面677倾斜连接,第一连接面679a位于第一梯面677与第二梯面678之间以连接第一梯面677与第二梯面678。第一连接面679a与第一梯面677之间的夹角可以为钝角或直角,第一连接面679a与第二梯面678之间的夹角可以为钝角或直角。切口675开设在相机壳体67的一个端部上,也就是说,切口675位于顶面670的边缘位置。两个出光通孔674均开设在第一梯面677上并均位于切口675的同一侧,两个出光通孔674的中心连线与切口675的延伸方向垂直。两个镜头模组68均收容在相机壳体67内并与两个出光通孔674分别对应,两个图像传感器65收容在相机壳体67内并与两个镜头模组68分别对应,电子装置100外的光线能够穿过出光通孔674及镜头模组68并传递到图像传感器65上。本实施方式中,成像模组60可以是可见光摄像头61,此时两个镜头模组68均为可见光摄像头61对应的镜头模组。接近传感器51设置在第二梯面678上并位于相机壳体67外。在其他实施方式中,成像模组60可以是红外光摄像头62,此时两个镜头模组68均为红外光摄像头62对应的镜头模组。在又一实施方式中,成像模组60包括可见光摄像头61及红外光摄像头62,此时其中镜头模组68为红外光摄像头62对应的镜头模组,另一个镜头模组68为可见光摄像头61对应的镜头模组。

本实施方式的成像模组60开设有切口675,并且将接近传感器51设置在第二梯面678上,使接近传感器51与成像模组60设置得较紧凑,二者共同占用的横向空间较小,节约了电子装置100内的安装空间。

请参阅图19,在某些实施方式中,上述实施方式的切口675开设在顶面670的中间位置上,第一梯面677被切口675分隔成第一子梯面677a与第二子梯面677b,第一子梯面677a与第二子梯面677b分别位于切口675的相对两侧,两个出光通孔674分别开设在第一子梯面677a及第二子梯面677b上,安装在相机壳体67内的镜头模组68也位于切口675的相对两侧。此时,切口675由第二梯面678、第一连接面679a及第二连接面679b围成,第一连接面679a倾斜连接第一子顶面677a与第二梯面678并位于第一子顶面677a与第二梯面678之间,第二连接面679b倾斜连接第二子顶面677b与第二梯面678并位于第二子顶面677b与第二梯面678之间。本实施方式中,第一梯面677与第二梯面678平行,第一连接面679a与第一子梯面677a的夹角为钝角,第二连接面679b与第二子梯面677b的夹角为钝角。在其他实施方式中,第一连接面679a与第一子梯面677a的夹角为直角,第二连接面679b与第二子梯面677b的夹角为直角。相对于将切口675开设在顶面670的边缘位置,本实施方式的切口675开设在顶面670的中间位置能够使切口675的宽度更宽,从而便于将接近传感器51设置在第二梯面678上。

请参阅图18及图19,在某些实施方式中,上述实施方式的接近传感器51设置在第二梯面678上并位于相机壳体67的外部。具体地,当切口675开设在顶面670的边缘位置时,整个接近传感器51沿垂直于第二梯面678的投影均可以位于第二梯面678内(如图18所示);或者,部分接近传感器51沿垂直于第二梯面678的投影位于第二梯面678内。也就是说,接近传感器51至少有一部分位于第二梯面678的正上方。当切口675开设在顶面670的中间位置上时,整个接近传感器51沿垂直于第二梯面678的投影均可以位于第二梯面678内(如图19所示)。如此,接近传感器51与成像模组60设置得较紧凑,二者共同占用的横向空间较小,进一步节约了电子装置100内的安装空间。

请参阅图20,上述实施方式的第二梯面678开设有透光孔676,接近传感器51位于相机壳体67内并与透光孔676对应。电子装置100外部的光线能够穿过透光孔676并传递到接近传感器51上。本实施方式的接近传感器51设置在相机壳体67内,使接近传感器51与相机壳体67的结构更加稳定并便于将接近传感器51与成像模组60安装到机壳20上。

请参阅图21,在某些实施方式中,上述实施方式的第二梯面678开设有透光孔676,接近传感器51位于相机壳体67内并与透光孔676对应。成像模组60还包括基板66,图像传感器65设置在基板66上,接近传感器51还可以固定在基板66上并收容在相机壳体67内。具体地,基板66上设置有FPC,FPC的一端位于相机壳体67内且用于承载图像传感器65,另一端可以与电子装置100的主板连接。在其他实施方式中,接近传感器51也可以与FPC连接。

本实施方式的接近传感器51设置在相机壳体67内,使接近传感器51与相机壳体67的结构更加稳定并便于将接近传感器51与成像模组60安装到机壳20上;同时,成像模组60设置基板66并将接近传感器51设置在基板66上,使接近传感器51能够稳固地安装在相机壳体67内。

在本说明书的描述中,参考术语“某些实施方式”、“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。

此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个所述特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个,除非另有明确具体的限定。

尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1