一种同频段偏振复用空间激光通信光端机的制作方法

文档序号:14197006阅读:208来源:国知局

本发明属于激光通信技术领域,特别是涉及到一种同频段偏振复用空间激光通信光端机。



背景技术:

自由空间激光通信是指采用激光束作为信息载体在自由空间信道之间进行的通信。激光通信具有速率高、隐蔽性强、抗干扰能力强等优点,在军用以及民用通信中具有广阔的应用空间。

偏振复用技术可以在使用相同波长的情况下将通信速率提高一倍,因此利用偏振复用技术是实现高速空间激光通信的重要手段。

申请专利号为“cn106656325a”公开了一种高速的单光源双向自由空间激光通信系统。基站下行信号经电光调制器调制产生,经第一空间-光纤耦合装置耦合入射到自由空间,后有第一光学天线正向射出,终端的第二光学天线接收到基站信号后,经第二空间-光纤耦合装置耦合入射到光耦合器中,一部分光信号有终端的第二接收模块探测接收,得到下行信号数据;另一部分光信号入射到反射式半导体光放大中,经反射式半导体光放大擦除再调制、放大并反射回光耦合器,再经由原路由第二光学天线逆向回射到基站,回射的光信号被基站的第一接收模块探测接收,得到上行信号数据。但是其采用光纤环行器解决发射光与接收光的分离,存在通信收发隔离度差的问题。



技术实现要素:

本发明为了解决现有技术存在通信接收与发射隔离度差的问题,提供一种同频段偏振复用空间激光通信光端机。

本发明解决技术问题的技术方案是:

一种同频段偏振复用空间激光通信光端机,其包括望远镜、快速反射镜、λ/4波片、偏振分光棱镜、法拉第旋光器一、法拉第旋光器二、偏振分光器一、偏振分光器二、p光激光发射机、s激光发射机、保偏光纤一、保偏光纤二、光纤准直镜一、光纤准直镜二、窄带滤光片一二、窄带滤光片二、检偏器一、检偏器二、耦合镜组一、耦合镜组二、接收光纤一、接收光纤二、s光接收光端机和p光接收光端机;

通信光接收过程为:

左旋圆偏振光与右旋圆偏振光同时通过望远镜缩束、再入射到快速反射镜调整角度、然后两束光经过λ/4波片,透过λ/4波片后改变偏振态为p光与s光,然后p光与s光入射至偏振分光棱镜;

p光经过偏振分光棱镜透射至法拉第透镜一,p光经过法拉第透镜一后偏振方向发生45°旋转,然后p光进入偏振分光器一,在偏振分光器一内部透射,然后p光依次进入窄带滤光片一与检偏器一滤除杂散光,然后p光进入耦合透镜组一,被耦合透镜组一耦合进接收光纤一,最后p光经过接收光纤一进入p光通信接收机;

s光经过偏振分光棱镜反射至法拉第透镜二,s光经过法拉第透镜二后偏振方向发生45°旋转,然后s光进入偏振分光器二、在偏振分光器二内部反射,然后s光依次进入窄带滤光片二与检偏器二滤除杂散光、然后s光进入耦合透镜组二、被耦合透镜组二耦合进接收光纤二,最后s光经过接收光纤二进入s光通信接收机;

通信光发射过程为:

p激光发射机产生p光,p光经过保偏光纤一传输至光纤准直镜一,经过光纤准直镜一准直进入空间,然后p光进入偏振分光器,在偏振分光器内部反射后再进入法拉第旋光器一,透过法拉第旋光器一后偏振方向发生45°旋转,再经过偏振分光棱镜,透过偏振分光棱镜与s光合并在一起;

s激光发射机产生s光,s光经过保偏光纤二传输至光纤准直镜二,经过光纤准直镜二准直进入空间,然后s光进入偏振分光器,在偏振分光器内部透射后再进入法拉第旋光器二,透过法拉第旋光器二后偏振方向发生45°旋转,再经过偏振分光棱镜,在偏振分光棱镜内部反射后与p光合并在一起;

合束后p光与s光同时进入λ/4波片,p光与s光经过λ/4波片后分别变为左旋圆偏振光与右旋圆偏振光,左旋圆偏振光与右旋圆偏振光再经过快速反射调整发射方向,然后经过望远镜扩束后射向通信对象。

本发明的有益效果:一种同频段偏振复用空间激光通信光端机,采用偏振分光器、偏振分光棱镜、法拉第旋光器等器件的组合实现了空间通信光端机发射光与接收光的高隔离度分离,同时该方案应用了偏振复用技术,同等条件下可将空间激光通信速率提高一倍。

附图说明

图1为本发明一种同频段偏振复用空间激光通信光端机结构示意图;

图中:1、望远镜,2、快速反射镜,3、λ/4波片,4、偏振分光棱镜,5、法拉第旋光器一,6、法拉第旋光器二,7、偏振分光器一,8、偏振分光器二,9,p光激光发射机,10、s激光发射机,11、保偏光纤一,12、保偏光纤二,13、光纤准直镜一,14、光纤准直镜二,15、窄带滤光片一,16、窄带滤光片二,17、检偏器一,18、检偏器二,19、耦合镜组一,20、耦合镜组二,21、接收光纤一,22、接收光纤二,23、s光接收光端机,24、p光接收光端机。

具体实施方式

以下结合附图对本发明作进一步的详细说明。

如图1所示,一种同频段偏振复用空间激光通信光端机,其包括望远镜1、快速反射镜2、λ/4波片3、偏振分光棱镜4、法拉第旋光器一5、法拉第旋光器二6、偏振分光器一7、偏振分光器二8、p光激光发射机9、s激光发射机10、保偏光纤一11、保偏光纤二12、光纤准直镜一13、光纤准直镜二14、窄带滤光片一二15、窄带滤光片二16、检偏器一17、检偏器二18、耦合镜组一19、耦合镜组二20、接收光纤一21、接收光纤二22、s光接收光端机23和p光接收光端机24。

通信光接收过程为:

左旋圆偏振光与右旋圆偏振光同时通过望远镜1缩束、再入射到快速反射镜2调整角度、然后两束光经过λ/4波片3,透过λ/4波片3后改变偏振态为p光与s光,然后p光与s光入射至偏振分光棱镜4。

p光经过偏振分光棱镜4透射至法拉第透镜一5,p光经过法拉第透镜一5后偏振方向发生45°旋转,然后p光进入偏振分光器一7,在偏振分光器一7内部透射,然后p光依次进入窄带滤光片一15与检偏器一17滤除杂散光,然后p光进入耦合透镜组一19,被耦合透镜组一19耦合进接收光纤一21,最后p光经过接收光纤一21进入p光通信接收机23。

s光经过偏振分光棱镜4反射至法拉第透镜二6,s光经过法拉第透镜二6后偏振方向发生45°旋转,然后s光进入偏振分光器二8、在偏振分光器二8内部反射,然后s光依次进入窄带滤光片二16与检偏器二18滤除杂散光、然后s光进入耦合透镜组二20、被耦合透镜组二20耦合进接收光纤二22,最后s光经过接收光纤二22进入s光通信接收机24。

通信光发射过程为:

p激光发射机9产生p光,p光经过保偏光纤一11传输至光纤准直镜一13,经过光纤准直镜一13准直进入空间,然后p光进入偏振分光器7,在偏振分光器7内部反射后再进入法拉第旋光器一5,透过法拉第旋光器一5后偏振方向发生45°旋转,再经过偏振分光棱镜4,透过偏振分光棱镜4与s光合并在一起。

s激光发射机10产生s光,s光经过保偏光纤二12传输至光纤准直镜二14,经过光纤准直镜二14准直进入空间,然后s光进入偏振分光器8,在偏振分光器8内部透射后再进入法拉第旋光器二6,透过法拉第旋光器二6后偏振方向发生45°旋转,再经过偏振分光棱镜4,在偏振分光棱镜4内部反射后与p光合并在一起。

合束后p光与s光同时进入λ/4波片3,p光与s光经过λ/4波片3后分别变为左旋圆偏振光与右旋圆偏振光,左旋圆偏振光与右旋圆偏振光再经过快速反射2调整发射方向,然后经过望远镜1扩束后射向通信对象。

所述望远镜1即可为透射式望远镜也可为反射式望远镜,口径取决于通信距离远近。

所述法拉第旋光器一5与法拉第旋光器二6可使入射线偏振光振动方向旋转45°。

所述偏振分光器一7、偏振分光器二8与偏振分光棱镜4的光矢量振动方向相差45°。

所述偏振分光器一7、偏振分光器二8为格兰棱镜,隔离度大于80db。

所述p光激光发射机9与s激光发射机10发射波段为980nm、1064nm.1330nm或者1550nm波段,通信速率大于5.0gbps。

所述保偏光纤一11与保偏光纤二12为单模领结型光纤,只能通过一个振动方向的光。

所述窄带滤光片一二15和窄带滤光片二16的光谱带宽小于5nm,透过率>95%。

所述检偏器一17和检偏器二18的消光比>2000:1,透过率>99.8%。所述p光通信接收机23与s光通信接收机24可为相干通信接收机也可为直接探测接收机。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1