一种选择奇数阶正交振幅调制信号预编码星座点方法与流程

文档序号:17000654发布日期:2019-03-02 01:46阅读:252来源:国知局
一种选择奇数阶正交振幅调制信号预编码星座点方法与流程
本发明公开涉及通信领域,尤其涉及一种选择奇数阶正交振幅调制信号预编码星座点方法。
背景技术
:可见光通信(visiblelightcommunication,vlc)技术是指利用可见光波段的光作为载体,在无需光纤灯有线媒介的情况下,直接通过空气传输光信号的通信方式。可见光通信可基于商用led实现,在用于照明的同时也可用于高速通信。作为一种新兴的无线通信手段,可见光通信具有无电磁干扰,频谱资源丰富且无需注册,成本低廉以及保密性高等优势。随着商用led的大规模普及,可见光通信将在未来的军工领域,智能家居,城市安防等领域发挥重要作用。可见光通信在很多场合需要实现远距离,高速率的传输,此时需要将led的直流偏置和信号幅度加大以增大发射光强。然而,此时的led将工作在非线性区,即光强和信号电压峰峰值不再成线性的关系,这将极大的影响通信质量。同时,高速率的数据传输会带来码间干扰,使得系统的性能下降。对于正常奇数阶正交振幅调制,其在预编码阶段无法实现全格雷编码,而在非线性区或者码间干扰较大的情况下全格雷预编码星座点的效果要好于正常的预编码星座点。因此,如果有一种方法可以在线性区选择欧式距离较大的星座点,在非线性区选择全格雷编码的星座点,这样可以有效提升系统性能。然而现有的可见光通信手段中并没有根据偏置电流和信号幅度对其进行有效选择的方案。因此,迫切需要一种能够有效根据不同的偏置电流和信号幅度选择不同预编码星座点的方案,以提升系统在不同偏置电流和信号峰峰值电压的下的性能。技术实现要素:本发明实施例是为了在线性区选择欧式距离较大的常规星座点,在非线性区选择全格雷编码的星座点,以有效提升系统性能为目的开发了一种选择奇数阶正交振幅调制信号预编码星座点方法,能够有效根据不同的偏置电流和信号幅度选择不同预编码星座点的方案,以提升系统在不同偏置电流和信号峰峰值电压的下的性能。本发明实施例提供了一种选择奇数阶正交振幅调制信号预编码星座点的方法,包括以下步骤:设置偏置电流和信号强度峰峰值;选择预编码星座点为常规星座点,调制、接收并记录第一发射信号;根据记录的第一发射信号,对第一发射信号解调并获取第一误码率;选择预编码星座点为全格雷星座点,调制、接收并记录第二发射信号;根据记录的第二发射信号,对第二发射信号解调并获取第二误码率;根据获取的第一误码率和第二误码率,计算得到误码差矫正矩阵;根据设置的偏置电流和信号强度峰峰值以及标准误码差公式,计算得到标准误码差矩阵;根据误码差矫正矩阵和标准误码差矩阵建立模型,根据模型和设置的偏置电流以及信号强度的峰峰值得到合适的预编码星座点。进一步地,根据记录的第一发射信号,对第一发射信号解调并获取第一误码率,具体包括:根据设置的偏置电流和信号强度峰峰值,通过接收端检测装置和解码恢复装置获得第一误码率。进一步地,根据记录的第二发射信号,对第二发射信号解调并获取第二误码率,具体包括:根据设置的偏置电流和信号强度峰峰值,通过接收端检测装置和解码恢复装置获得第二误码率。进一步地,根据获取的第一误码率和第二误码率,计算得到误码差矫正矩阵,具体包括:根据获取的第一误码率和第二误码率得到实际误码差矩阵;优化实际误码差矩阵,得到误码差校正矩阵。本发明实施例提供了一种选择奇数阶正交振幅调制信号预编码星座点的装置,包括:设置装置,用于设置偏置电流和信号强度峰峰值;第一记录装置,用于选择预编码星座点为常规星座点,调制、接收并记录第一发射信号;第一解调装置,用于根据记录的第一发射信号,对第一发射信号解调并获取第一误码率;第二记录装置,用于选择预编码星座点为全格雷星座点,调制、接收并记录第二发射信号;第二解调装置,用于根据记录的第二发射信号,对第二发射信号解调并获取第二误码率;第一计算装置,用于根据获取的第一误码率和第二误码率,计算得到误码差矫正矩阵;第二计算装置,用于根据设置的偏置电流和信号强度峰峰值以及标准误码差公式,计算得到标准误码差矩阵;选择装置,用于根据误码差矫正矩阵和标准误码差矩阵建立模型,根据模型和设置的偏置电流以及信号强度的峰峰值得到合适的预编码星座点。进一步地,第一解调装置,具体包括:第一获取模块,用于根据设置的偏置电流和信号强度峰峰值,通过接收端检测装置和解码恢复装置获得第一误码率。进一步地,第二调制装置,具体包括:第二获取模块,用于根据设置的偏置电流和信号强度峰峰值,通过接收端检测装置和解码恢复装置获得第二误码率。进一步地,第一计算装置,具体包括:第一计算模块,用于根据获取的第一误码率和第二误码率得到实际误码差矩阵;优化模块,用于优化实际误码差矩阵,得到误码差校正矩阵。本发明实施例提供了一种电子设备,包括存储器和处理器,存储器用于存储一条或多条计算机指令,其中,一条或多条计算机指令被处理器执行以实现如上述的一种选择奇数阶正交振幅调制信号预编码星座点的方法。本发明实施例提供了一种存储有计算机程序的计算机可读存储介质,计算机程序使计算机执行时实现如上述的一种选择奇数阶正交振幅调制信号预编码星座点的方法。本发明实施例提供的一种选择奇数阶正交振幅调制信号预编码星座点的方法,有效解决了可见光系统在调制格式为奇数阶下正交振幅调制信号的预编码方法。通过使用本发明的预编码方法可有效提升奇数阶可见光系统的性能,增加系统的通信容量。本发明实现起来相对容易,当模型校正好后,只要将设定的电流值和信号强度峰峰值带入修正后的标准误码差公式即可以判定该电流电压值下的预编码的方式。附图说明图1为本发明实施例一提供的一种选择奇数阶正交振幅调制信号预编码星座点的方法的流程示意图;图2为本发明实施例二提供的一种选择奇数阶正交振幅调制信号预编码星座点的方法的流程示意图;图3为本发明实施例三提供的一种选择奇数阶正交振幅调制信号预编码星座点的装置的示意图。具体实施方式为了使本发明所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。以下描述中,为了说明而不是为了限定,提出了诸如特定内部程序、技术之类的具体细节,以便透彻理解本发明实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本发明。在其它情况中,省略对众所周知的系统、装置、电路以及方法的详细说明,以免不必要的细节妨碍本发明的描述。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。为了说明本发明的技术方案,下面通过具体实施例来进行说明。实施例一本发明实施例一提供了一种选择奇数阶正交振幅调制信号预编码星座点的方法,图1为本发明实施例一提供的一种选择奇数阶正交振幅调制信号预编码星座点的方法的流程示意图。如图1所示,本实施例的一种选择奇数阶正交振幅调制信号预编码星座点的方法,可以包括以下步骤:步骤101,设置偏置电流和信号强度峰峰值;步骤102,选择预编码星座点为常规星座点,调制、接收并记录第一发射信号;步骤103,根据记录的第一发射信号,对第一发射信号解调并获取第一误码率;步骤104,选择预编码星座点为全格雷星座点,调制、接收并记录第二发射信号;步骤105,根据记录的第二发射信号,对第二发射信号解调并获取第二误码率;步骤106,根据获取的第一误码率和第二误码率,计算得到误码差矫正矩阵;步骤107,根据设置的偏置电流和信号强度峰峰值以及标准误码差公式,计算得到标准误码差矩阵;步骤108,根据误码差校正矩阵和标准误码差矩阵建立模型,根据模型和设置的偏置电流以及信号强度的峰峰值得到合适的预编码星座点。以下将解释本实施例的具体流程:将发射端led接入信号发射系统后点亮,并记录发射系统的发射信号,然后选择预编码星座点作为常规星座点,调制发射信号,本实施例的发射信号指的是发射系统中的发射端信号及接收端的信号。接收并记录信号之后,对常规星座点的第一发射信号进行解调,获得第一误码率;接着选择全格雷预编码星座点调制第二发射信号,接收并记录信号之后,对全格雷预编码星座点的第二发射信号进行解调,再次获得第二误码率;根据得到的第二误码率,计算得到实际误码差矩阵,并对实际误码差矩阵进行优化后得到误码差矫正矩阵;同时,将所设置的偏置电流和信号强度峰峰值带入标准误码差公式,并通过计算得到标准误码差矩阵;根据误码差矫正矩阵和标准误码差矩阵对模型进行优化和处理,最后得到可以用来选择合适的预编码星座点的模型。根据优化处理后的模型,只要知道设置的电流和信号强度峰峰值,带入模型即可得到合适的预编码星座点。本实施例的一种选择奇数阶正交振幅调制信号预编码星座点的方法有效解决了可见光系统在调制格式为奇数阶下正交振幅调制信号的预编码方式选择问题。通过使用本发明的预编码方法可有效提升奇数阶可见光系统的性能,增加系统的通信容量,且模型使用相对容易,计算量小。当模型可用时,仅带入偏置电流和信号强度峰峰值即可得到合适的预编码星座点。实施例二本发明实施例二提供了一种选择奇数阶正交振幅调制信号预编码星座点的方法,图2为本发明实施例二提供的一种选择奇数阶正交振幅调制信号预编码星座点的方法的流程示意图。如图2所示,本实施例的一种选择奇数阶正交振幅调制信号预编码星座点的方法,可以包括以下步骤:步骤201,记录偏置电流、信号强度峰的峰值和需要调制的正交振幅调制信号的阶数;步骤202,记录发射端的光功率和接收端的光功率;步骤203,选择预编码星座点作为常规星座点;步骤204,根据记录的第一发射信号、设置的偏置电流值和信号强度峰的峰值,通过信号接收系统和解调恢复系统获得系统的第一误码率;步骤205,选择预编码星座点为全格雷编码星座点;步骤206,根据记录的第二发射信号,设置的偏置电流值和信号强度峰的峰值,通过信号接收系统和解调恢复系统获得系统的误码率值;步骤207,根据以上步骤得到的误码率值计算实际误码差矩阵,并通过优化得到误码差矫正矩阵。步骤208,设置的偏置电流值和信号强度峰峰值代入标准误码差公式,得到标准误码差值;根据标准误码差值,得到标准误码差矩阵;步骤209,根据得到的误码差矫正矩阵和标准误码差矩阵优化所述标准误码差公式,直到模型满足相关要求。本实施例是在实施例一的基础上对实施例一中的各步骤进行详细的解释。以下将用具体的例子来说明本实施例的具体实现方式:步骤201,记录偏置电流、信号强度峰的峰值和需要调制的正交振幅调制信号的阶数;具体为,将发射端led接入发射系统后点亮,并记录发射系统的偏置电流i1和需要调制的正交振幅调制信号的阶数m。步骤202,记录发射端的光功率和接收端的光功率;具体为,测量发射端的光功率ps1;测量接收端的光功率pr1;重复上述步骤m次,记录在m个偏置电流i1,i2,…im下发射端的光功率ps1,ps2,…psm和接收端的光功率pr1,pr2,…prm;其中i1为电流最小值,im为电流最大值,且满足步骤203,选择预编码星座点为常规星座点。步骤204,根据记录的第一发射信号、设置的偏置电流值和信号强度峰的峰值,通过信号接收系统和解调恢复系统获得系统的第一误码率。具体为,设定偏置电流值为i1,信号强度峰峰值电压为vpp1,并通过接收端检测装置和解码恢复装置获得系统的误码率值ber11。设置偏置电流值分别为i1~im,信号强度的峰峰值电压分别为vpp1~vppn,其中vpp1为信号峰峰值电压最小值,vppn为信号峰峰值电压最大值,且满足在每个电流值和信号峰峰值电压下通过接收端检测系统和解调恢复系统获得系统的误码率值ber11,ber12,…berij,…bermn。其中berij表示偏置电流为ii,信号电压峰峰值vppj下测得的误码率。步骤205,选择预编码星座点为全格雷编码星座点。步骤206,根据记录的第二发射信号、设置的偏置电流值和信号强度峰的峰值,通过信号接收系统和解调恢复系统获得系统的第二误码率,即:设置偏置电流值分别为i1~im,信号强度的峰峰值电压分别为vpp1~vppn,其中vpp1为信号峰峰值电压最小值,vppn为信号峰峰值电压最大值,且满足在每个电流值和信号峰峰值电压下通过接收端检测系统和解调恢复系统获得到m*n个误码率值ber′11,ber′12,…ber′ij,…ber′mn。其中ber′ij表示偏置电流为ii,信号电压峰峰值vppj下测得的误码率。步骤207,根据以上步骤得到的误码率值计算实际误码差矩阵,并通过优化得到误码差矫正矩阵,即对在两种星座点下得到的误码率值均取10的对数,并对同一电流电压下的值相减,得到误码差矩阵:对于δber中绝对值大于0.4的点,如果其值为正,则减去0.3,否则加上0.3。将δber中所有值除以1.5,得到最终的误码差校正矩阵δnber。步骤208,设置偏置电流值和信号强度峰的峰值代入标准误码差公式,得到标准误码差值,根据标准误码差值,作为标准误码差矩阵;具体为:分别设置偏置电流值为i1~im,信号强度的峰峰值电压为vpp1~vppn,代入标准误码差公式:得到m*n个标准误码差值,并记作标准误码差矩阵其中,a为误码差常数系数,π为数学圆周率,is1,is2分别为第一,第二电流中心响应值。vpps为电压中心响应值。b为电压电流正弦响应系数,m为正弦幅角系数,c为电压修正系数,w为电压幅值修正系数,d为电流修正系数,f为电流平方修正系数,h为电流第二修正系数,k为第二电流平方修正系数,g为电压正切响应系数,λij为光功率衰减调节因子。步骤209,根据得到的误码差矫正矩阵和标准误码差矩阵优化所述标准误码差公式,使得模型满足相关要求;具体为:计算δnber与n中符号不等的值的个数(0不计算),记为flag。若则表示该模型可用;若不满足该条件,则按照公式计算所有符号不等的误码差值的偏差平方p,q分别为第r个误码差值的电流和电压值下标,r为1到flag之间的某个值,并对所有偏差平方求和,得到偏差平方和若小于0.04,则表示该模型仍然可用,但需要调节(10)中a的值使得如果大于0.04或者调节a的值仍然无法使得则该模型不可用,需要调节is1,is2和vpps的值,直到满足对于已经建立好的模型,设定电流值为i1~im之间的任意值is,信号电压值为vpp1~vppn之间的任意值vpps。将is和vpps代入(10)中的标准误码差公式中,若得到的nons>0,则选择全格雷编码星座点进行预编码,否则选择常规星座点进行预编码。按照本实施例所述方法,对5阶正交振幅调制信号在可见光通信系统中进行了验证性实验。本发明的验证性实验中选取的电流调节范围为50ma到230ma,信号峰峰值电压从0.6v到1.8v,分别取7个点,电流变化间隔为30ma,电压变化间隔为0.2v。验证性实验中,各参量的取值如下:参数取值a-7.991b0.8161c0.4914d0.7946f2.296g-1.3h-0.7033k0.485l6.539m1.117w5.893根据实验测量,得到正常星座点的ber值如下:根据实验测量,得到全格雷预编码星座点的ber值如下:处理后,得到的误码差校正矩阵如下:处理后,得到的标准误码差矩阵如下:通过计算,得到错误数flag=3,满足模型要求。证明该模型可以使用。任意选择三个偏置电流和信号电压峰峰值验证,测得其矫正误码差和标准误码差分别为:序号偏置电流(a)信号电压(v)矫正误码差标准误码差10.070.8-0.1263-0.095520.131.2-0.0029-2.85*10^(-4)30.191.60.13570.1726可以看出,本实施例中的模型在不同的工作点其实测后得到的矫正误码差与通过模型计算得到的标准误码差的符号相同,表示该模型能准确的筛选出合适的预编码方式。其中,本实施例中还需要特别说明的是:本实施例中所述的发射系统包括直流电源、bias-tee、led,无源均衡电路板,随机信号发生器。其中:直流电源为:固纬gpd-4303s直流电源bias-tee为:zfbt-4r2gw-ft+led为:ht-xm50-xm2蓝色灯珠随机信号发生器:泰克awg710无源均衡电路板为自制t型桥式无源均衡电路板。本实施例中的信号接收系统包括pin,接收电路及放大器。其中:pin为:s10784。接收电路为基于max3665的自制接收电路。放大器为:zhl-6a-s+本实施例中的解调恢复系统包括示波器,笔记本电脑及解调软件。其中:示波器为:agilent54855adso笔记本电脑为:dell笔记本电脑。解调软件为:matlab自行编写的解调软件。本实施例的一种选择奇数阶正交振幅调制信号预编码星座点的方法有效解决了可见光系统在调制格式为奇数阶下正交振幅调制信号的预编码方法,通过使用本发明的预编码方法可有效提升奇数阶可见光系统的性能,增加系统的通信容量。本发明实现起来相对容易,当模型校正好后,只要将设定的电流值和信号vpp值带入修正后的标准误码差公式即可以判定该电流电压值下的预编码的方式。实施例三本发明实施例三提供了一种选择奇数阶正交振幅调制信号预编码星座点的装置,如图3所示,本实施例的一种选择奇数阶正交振幅调制信号预编码星座点的装置,包括:设置装置310,用于设置偏置电流和信号强度峰峰值;第一记录装置320,用于选择预编码星座点为常规星座点,调制、接收并记录第一发射信号;第一解调装置330,用于根据记录的第一发射信号,对第一发射信号解调并获取第一误码率;第二记录装置340,用于选择预编码星座点为全格雷星座点,调制、接收并记录第二发射信号;第二解调装置350,用于根据记录的第二发射信号,对第二发射信号解调并获取第二误码率;第一计算装置360,用于根据获取的第一误码率和第二误码率,计算得到误码差矫正矩阵;第二计算装置370,用于根据设置的偏置电流和信号强度峰峰值以及标准误码差公式,计算得到标准误码差矩阵;选择装置380,用于根据误码差矫正矩阵和标准误码差矩阵建立模型,根据模型和设置的偏置电流以及信号强度的峰峰值得到合适的预编码星座点。进一步地,第一解调装置330,具体包括:第一获取模块331,用于根据设置的偏置电流和信号强度峰峰值,通过接收端检测装置和解码恢复装置获得第一误码率。进一步地,第二调制装置350,具体包括:第二获取模块351,用于根据设置的偏置电流和信号强度峰峰值,通过接收端检测装置和解码恢复装置获得第二误码率。进一步地,第一计算装置360,具体包括:第一计算模块361,用于根据获取的第一误码率和第二误码率得到实际误码差矩阵;优化模块362,用于优化实际误码差矩阵,得到误码差校正矩阵。本实施例的装置用于实现上述实施例的选择奇数阶正交振幅调制信号预编码星座点的方法,其实现方法已在上述实施例中做了详细说明和解释,此处将不再赘述。实施例四本发明实施例四提供了一种电子设备,包括存储器和处理器存储器用于存储一条或多条计算机指令,其中,一条或多条计算机指令被所述处理器执行以实现上述任一实施例所述的选择奇数阶正交振幅调制信号预编码星座点的方法。本发明实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序使计算机执行时可以实现上述任一实施例所述的选择奇数阶正交振幅调制信号预编码星座点的方法。所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的装置的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。示例性的,计算机程序可以被分割成一个或多个模块/单元,一个或者多个模块/单元被存储在存储器中,并由处理器执行,以完成本发明。一个或多个模块/单元可以是能够完成特定功能的一系列计算机程序指令段,该指令段用于描述计算机程序在计算机设备中的执行过程。计算机设备可以是桌上型计算机、笔记本、掌上电脑及云端服务器等计算设备。计算机设备可包括,但不仅限于,处理器、存储器。本领域技术人员可以理解,本实施例仅仅是计算机设备的示例,并不构成对计算机设备的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如计算机设备还可以包括输入输出设备、网络接入设备、总线等。处理器可以是中央处理单元(centralprocessingunit,cpu),还可以是其他通用处理器、数字信号处理器(digitalsignalprocessor,dsp)、专用集成电路(applicationspecificintegratedcircuit,asic)、现成可编程门阵列(field-programmablegatearray,fpga)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。存储器可以是计算机设备的内部存储单元,例如计算机设备的硬盘或内存。存储器也可以是计算机设备的外部存储设备,例如计算机设备上配备的插接式硬盘,智能存储卡(smartmediacard,smc),安全数字(securedigital,sd)卡,闪存卡(flashcard)等。进一步地,存储器还可以既包括计算机设备的内部存储单元也包括外部存储设备。存储器用于存储计算机程序以及计算机设备所需的其他程序和数据。存储器还可以用于暂时地存储已经输出或者将要输出的数据。本发明实施例还提供了一种存储有计算机程序的计算机可读存储介质,计算机程序使计算机执行时实现上述任一项的选择奇数阶正交振幅调制信号预编码星座点的方法。本发明实施例提供的一种选择奇数阶正交振幅调制信号预编码星座点的方法,有效解决了可见光系统在调制格式为奇数阶下正交振幅调制信号的预编码方式选择问题。通过使用本发明的预编码方法可有效提升奇数阶可见光系统的性能,增加系统的通信容量。本发明实现起来相对容易,当模型校正好后,只要将设定的电流值和信号强度峰峰值带入修正后的标准误码差公式即可以判定该电流电压值下的预编码的方式。以上详细描述了本发明的具体实施例。应当理解,本领域的普通技术人员无需创造性劳动就可以根据本发明的构思作出诸多修改和变化。因此,凡本
技术领域
中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1