振膜式扬声器及可产生三维立体声效果的耳机的制作方法

文档序号:18186970发布日期:2019-07-17 05:24阅读:336来源:国知局
振膜式扬声器及可产生三维立体声效果的耳机的制作方法

本实用新型专利是对美国专利US8515103以及中国专利201110063904.5的继续改进,涉及一种用于音响系统和通信系统的耳机,特别涉及适用于耳机的振膜式扬声器以及包含多个扬声器(声音驱动器)的耳机。



背景技术:

在现有技术中,市场上已经存在有各种具有多个扬声器的小型耳机,即在小型耳机中安装多个声音驱动器,有平行排列的,也有前后排列的。耳塞式耳机是特殊设计的耳机,其小型耳罩要求特殊的闭合/独立的从声源到音效空间和回响空间、到声音输出单元、直至进入听者耳道的声音环境,并且越直接越密闭越好。对于耳塞式耳机有三种基本要求:小尺寸、低/中/高音音频的真实立体声音效和听者佩戴/听者耳朵收听的舒适度。这些要求必须在非常小的、密闭的、独立的声音空间和外放环境及结构中来实现,特别是如何在如此小的耳罩内的前后部的结构和扬声器结构一起配合如何达到前后声波都能相通和谐振而产生具有Z轴深度的三维立体声。

市面上有些双扬声器前后排列的入耳耳机采用通气路或声道的方式把后端扬声器声音导向音响端口输出。例如,松下电器的中国专利201180002097.4就是在前后端扬声器的第一框架和第二框架之间安排一个通气路,把第二单元扬声器的声音通向第一单元声音混合后导向音响端口。但这样的设计有三个问题,第一个问题是通气路只对第一单元和第二单元的前面声波进行通气,第一单元和第二单元扬声器背面的后面结构都是封闭的,没有通气路相通的后面声波;第二个问题是通气路从第二单元边上绕道传输到前端的距离太长太窄,减弱第二单元的声波力度;第三个问题是第一单元和第二单元扬声器的后端采用封闭或是“斥力”和“抵消彼此”或是后方的声音直接放射到耳罩后方外的空间,都没有任何后端音效和谐振结构和功能;因此,也就无法产生具有更好的Z轴深度的三维立体声。

AKG声学有限公司的专利中国200910127446.X是采用把第一换能器设置在第二换能器的声道中传输声音,并且在第二换能器前面密封形成声道。这样的设计有个问题,就是前腔室被密封,传输声音的声道密封在前端耳塞区里,第二换能器后面的空间和前腔室是不相通的,也就没有任何声波可以传输到后面后端空间进行谐振,无法产生具有Z轴深度的三维立体声。

关于双音频同轴耳机有两个美国专利申请,美国专利申请号2009/0279729A1和美国专利申请公开号2010/0046783A1。这两个专利申请论述了与双频同轴的耳机,一个低音频喇叭及其磁铁和另一个高音频喇叭及其磁铁共享同轴并相反设置。这些共享同轴而相反方向设置的低音频和高音频被分开各自输出,无法被独立地设置或架构,因而不能产生立体声多声波谐振和输出。对于这些双频同轴反置的耳机来说没有足够深的声音空间。

因此,为了解决以上问题和不足,如何在如此小的耳罩内的前部后部的结构和多扬声器结构一起配合如何达到前后声波都能最大程度地和最优化地相通和谐振而产生具有更好的Z轴深度的三维立体声就是需要解决的问题。

申请号为201110063904.5的中国专利提供了一种耳机,特别是指一种包含了多个扬声器(即声音驱动器)的耳塞式耳机,包括一耳罩,一声音输出单元连接到耳罩前部,所述耳罩包括前部、后部、一设置于前部的前端音效单元、一设置于前部的前端声音谐振器、一设置于后部的后端声音谐振器和一设置于后部的后端音效单元,所述耳罩的前部设有一个或多个前端扬声器,所述耳罩的后部设有一个或多个后端扬声器,所述耳罩内设有一声音控制器,并且,通过在相同轴线上或不同轴线上前后排布的多个扬声器以制造逼真的三维立体声空间或效果,从而获得了具有X-Y-Z三维立体声效果和立体声音质,该音质具有在二维上更宽的声音及第三维深度上立体声的实时立体声。

在201110063904.5专利的基础上,如何通过技术手段提供一种能够营造具有更好的Z轴深度的三维立体声及其效果的耳机是值得进行深入研究的。此外,扬声器是耳机的重要组成部件,其性能也会直接影响耳机的性能,对于耳机的扬声器的改进显然也对营造具有更好的Z轴深度的三维立体声及其效果具有积极作用。



技术实现要素:

本实用新型的目的是提供一种能够有效提升耳机音效的振膜式扬声器。

为达到上述目的,本实用新型采用了下列技术方案:振膜式扬声器,包括扬声器单元,所述的扬声器单元一侧设有振膜单元,其特征在于,所述的扬声器单元上设有贯通扬声器单元的声波通道单元,所述的扬声器单元包括磁铁单元,所述的磁铁单元的边缘设有轭铁单元,所述的振膜单元设置于声波通道单元的一侧,所述的扬声器单元还包括振膜驱动单元。本实用新型公开了在扬声器耳罩内与前、后音效单元和前、后谐振器一起配合的一种振膜式扬声器,振膜单元设置于声波通道单元的一侧并与声波通道单元组合为一个声波产生传输相通和谐振体系,并和后端声音谐振器配合。

作为优选,所述的振膜单元包括一层振膜单元、多层复合振膜单元和多层组合振膜单元中的任意一种或多种的组合。

作为优选,所述的振膜驱动单元包括设置于磁铁单元处的环形音圈单元,所述的环形音圈单元与所述的振膜单元相连接或者分离。

作为优选,所述的磁铁单元设有环形槽体,所述的环形音圈单元设置于环形槽体内。

作为优选,所述的磁铁单元上设有所述声波通道单元,所述的声波通道单元内壁设有环形音圈单元。

作为优选,所述的振膜驱动单元包括与振膜单元相连接的中心振动杆,所述的中心振动杆位于声波通道单元内。

作为优选,所述的声波通道单元包括设置于振膜单元之后的通声孔单元。

作为优选,所述的声波通道单元还包括设置于振膜单元和通声孔单元之间的空间结构。

作为优选,所述的声波通道单元包括至少一个设置在磁铁单元或/和轭铁单元上的通声孔单元。

作为优选,所述的声波通道单元还包括设置于所述的磁铁单元或/和所述的轭铁单元之间且贯通扬声器单元的海绵体。

作为优选,所述的振膜单元上设有响应力增强结构。

作为优选,所述的响应力增强结构包括涂覆在振膜单元上的镀膜层。

本实用新型的另一目的是提供一种可产生三维立体声效果的耳机。

为达到上述目的,本实用新型采用了下列技术方案:采用上述振膜式扬声器的可产生三维立体声效果的耳机,其特征在于:

包括一扬声器罩和设置于扬声器罩内的扬声器组合系统,所述的扬声器罩包括了一前部、一后部、一设置于所述前部的前端音效单元、一设置于所述前部的前端声音谐振器、一设置于后部的后端声音谐振器和一设置于后部的后端音效单元;

所述的扬声器组合系统包括至少一个设置在所述扬声器罩前部的前端扬声器和至少一个设置在所述扬声器罩后部的后端扬声器;

至少一个所述的后端扬声器为所述的振膜式扬声器,所述的振膜式扬声器包括扬声器单元,所述的扬声器单元上设有贯通扬声器单元的声波通道单元,所述的声波通道单元两端分别与前端声音谐振器和后端声音谐振器相连通;

一设置于所述扬声器罩内的声音控制器;

以及一与所述扬声器罩连接的声音输出单元。

作为优选,所述的扬声器罩的前部或后部或前端音效单元或后端音效单元中的任意一个或者多个上具有配合声波的指向性或导向性的形状;所述的前端声音谐振器或/和后端声音谐振器具有配合声波的指向性或导向性的空间。

作为优选,所述的具有配合声波的指向性或导向性的形状包括喇叭弧状或锥状或直状或各种弯曲状中的任意一种或者多种的组合;所述的具有配合声波的指向性或导向性的空间包括喇叭弧状或锥状或直状或各种弯曲状中的任意一种或者多种的组合形成的空间。

作为优选,所述的前端扬声器为所述的振膜式扬声器或者为动铁扬声器。

作为优选,所述的前端扬声器设置在所述的声音输出单元内。

作为优选,所述的前端扬声器的振膜单元的第一中心轴线与后端扬声器的振膜单元的第二中心轴线平行或者重合。

作为优选,所述的前端扬声器的振膜单元的中心轴线及所述后端扬声器的振膜单元的中心轴线相互成一定角度设置。

作为优选,所述的前端扬声器的振膜单元的中心轴线和所述后端扬声器的振膜单元的中心轴线互相垂直。

本实用新型中的前后是相对位置,并非狭义地仅理解为相对于声音输出单元的前后排列,即并非仅指声音输出单元、前端扬声器和后端扬声器的前后依次排列。前端扬声器和后端扬声器的确定可以以扬声器在同一时刻产生的声波到达声音输出单元的先后为标准,先到达者为前端扬声器,后到达者为后端扬声器。在确定前端扬声器和后端扬声器后,前部、后部、前端音效单元、后端音效单元、前端声音谐振器、后端声音谐振器即可相应地确定。

本实用新型专利提供了一种耳机,特别是指一种包含了多个扬声器(即声音驱动器)的耳塞式耳机,将一个或多个扬声器元件安置在耳机耳罩的前端部分,另将一个或多个扬声器元件安置在耳机耳罩的后端部分,耳罩的前后端分别具有前、后音效单元和前、后谐振器,并且在扬声器前后排列组合中,前、后扬声器的外部和内部多重系统和结构和技术和设置和配合更好地实现多种的前、后扬声器的前、后声波的最大化和最优化地相通并达到最佳谐振,从而产生更好的X-Y-Z的三维立体声效果及低/中/高音音频的输出的第三维(Z轴)更深深度声音回响空间,营造更好的更真实的三维立体声及其效果。

本专利在多扬声器前后排列组合中,多种前后扬声器的外部/内部多重系统、结构、技术、设置和配合,特别是扬声器的振膜单元、环形音圈单元和声波通道单元作为结构或系统协调配合来实现更好的前后扬声器声波最大化和最优化相通、传输和谐振,以产生更好的X-Y-Z的三维立体声效果及低/中/高音音频的输出的第三维(Z轴)深度声音回响空间,营造具有更好的Z轴深度的三维立体声及其效果。在同一轴上或不同轴上前后设置扬声器并在扬声器耳罩内具有前后音效单元和谐振单元,并且在多扬声器前后排列组合中,前后扬声器内部系统的振膜单元/环形音圈单元和声波通道单元的多重结构配合更好地实现多种前后声波的最大化和最优化的相通传输并达到最佳谐振和输出的耳机,上述结构使此耳机能达到包含低音、中音、高音的音频更好的三维立体声及其效果。

在一方面,耳机包括一个扬声器罩(耳罩),其设有一个包括直线分布的多扬声器的单元(扬声器组合系统),这些扬声器保证至少有一个扬声器设置在至少一个另外的扬声器之前,前后的扬声器共享一个中心轴线或者是对应声波的不同的中心轴。耳机的耳罩还同时包含了一个设置于耳罩前端的前端音效单元和一个设置于耳罩前端的类似前端声音谐振单元或者是前端声音回响区域的前端声音谐振器。在耳罩的后端设置有类似于后端声音谐振单元或后端声音回响区域的后端声音谐振器以及后端音效单元。并且在多扬声器前后排列组合中,前后扬声器的外部/内部多重结构、技术和设置配合,特别是扬声器的振膜单元、环形音圈单元和声波通道单元作为结构或系统协调配合更好地实现多种前后声波的最大化和最优化相通和谐振。耳机的耳罩被设计为均匀的或不规则的结构使得和前后音效单元及前后声音谐振器相对应。在耳罩里还设置了类似于声音控制单元或者是声音配置单元的声音控制器,一个与耳罩连接的声音输出单元,一个声音平衡孔单元,以上使得耳机的音效、输出和声音方向为三个维度(X-Y-Z轴)的更好的三维立体声。

在一方面,一个包括了多个扬声器的单元设置在耳机的耳罩单元中。该单元包括了一个设置在耳罩前端的小型扬声器,一个设置在耳罩后端的大型扬声器,该些扬声器在共享中心轴线上对齐设置或不同中心轴线交叉设置。上述小型扬声器被设于前端,大型扬声器被设于后端是为了构成足够的声音回响区域达到三维(X-Y-Z)立体声效果,即真实的三维立体声效果。前端的扬声器和后端的扬声器共同配合达到二维(X-Y)立体声宽度效果,同时后端的大型扬声器和前端的小型扬声器一组共同配合为耳机的X-Y-Z三维立体声音效和X-Y-Z三维立体声空间创造了第三维(Z)的深度声音。

同时,本实用新型在多个扬声器排列组合中,前后端扬声器的外部和内部多重系统、结构、技术和设置,特别是扬声器的振膜单元、环形音圈单元和声波通道单元协调配合同时同步配合更加有利于前后声波最大化和最优化相通和谐振,以产生更深的和更好的具有Z轴深度的三维立体声。

在一方面,本实用新型在多个扬声器前后排列组合中,前后端扬声器的内部结构的振膜具有声波透射谐振并和后端各种通孔单元同时同步相互配合实现前后端声波最大化和最优化相通和传输及谐振,更加有利于产生更深的更真实的具有Z轴深度的三维立体声。

同时,本实用新型在多个扬声器前后排列组合中,前后端扬声器的内部结构的振膜具有产生和传输和谐振声波并和后端各种通孔单元同时同步相互配合实现前后端声波最大化和最优化相通和传输及谐振,更加有利于产生更深的更真实的具有Z轴深度的三维立体声。

同时,本实用新型在多个扬声器排列组合中,前后端扬声器的内部结构的振膜单元具有产生、传输声波、透射和谐振声波并和后端各种通声单元、后端音效单元和后端声音谐振器同时同步相互配合实现更好优化的前后端声波最大化和最优化相通和传输及谐振,更加有利于产生更深的更真实的具有Z轴深度的三维立体声。

有很多方法可以得到耳机的更好的三维立体声音效。前端和后端的扬声器及其振膜单元和各种通声单元可以是不同的尺寸,也可以是相同的尺寸,可在共享中心轴线上前后排列,以便与音效单元及谐振单元配合产生更加均衡、平均的三维立体声声波、音效和输出。

不同尺寸的或者是相同尺寸的前端和后端扬声器及其振膜单元可在不同中心轴线上前后排列,与前端和后端扬声器的外部结构的所有音效单元、所有谐振单元及声音控制器同时同步共同配合产生更好的三维(X-Y-Z)立体声声波、效果和输出。

有很多方法可以得到耳机的更好的三维立体声音效。前端和后端的扬声器的内部结构的后端通声或通孔单元,可以是多种结构和形状和位置和排列和尺寸,以便同时同步配合前后扬声器振膜单元的传输前后声波并与前端和后端扬声器的外部结构的所有音效单元及所有谐振单元配合产生均衡、平均的更好的三维立体声声波、音效和输出。

本实用新型另一种的扬声器排列方式还包括将前端和后端扬声器及其振膜单元相互设置成一定角度。举例来说,前端扬声器可设置于耳机方向的直线上,与后端扬声器方向可设置成某个特定角度,0到90度,最好是25度角,也可以前端扬声器和后端扬声器一体与水平线呈角度设置,例如,与水平线呈纵向,横斜向,横向的各个角度设置。这个将前端或/和后端扬声器分别或一体呈角度设置或同时将前端和后端扬声器及其振膜单元呈多角度设置的排列方式可形成更好的三维声音音波、效果和输出。

本实用新型在多个扬声器前后排列组合中,前后端扬声器的振膜单元具有产生和传输声波并和后端各种传输和谐振的通孔单元同时同步相互配合可以是多种多样多结构的,可以是相互紧密相通,可以是同轴同方向,不同轴的,不同方向的,不同角度的,以达到实现更好优化的前后端声波相通和传输及谐振,更加有利于产生更深的具有Z轴深度的三维立体声。

耳机的耳罩形状直接关系到耳罩外和/或耳罩内的配合前端扬声器的前端音效单元。耳罩的形状,通常称为声音效果壁/单元的外部,可以设计成规则的或不规则的,以与内部的音效单元配合。外部前端音效单元和内部前端音效单元可以仅仅只是共同包括了外部壁/表面和内部壁/表面的一个单元或多个单元,也可以是不同的单元,也可以是相互连接的,也可以是相互独立的。前端音效单元与在相同轴线或不同轴线上排布的多个扬声器发生的声波配合,或者,与呈角度设置的前端和后端的多个扬声器配合达到三维的声音效果和输出。相同的原理还可应用于后端音效单元。

进一步,耳机的耳罩形状也可以是仅仅为了外观设计,与耳罩内部的各个部件可以有直接关联,或部分关联,也可以是没有直接关联。例如,耳罩形状可以是包括规则或不规则的前部或后部或上部或下部或左部或右部,或者是多部分多层面的规则或不规则的外观设计。也就是说,耳罩形状的设计可以是和前后扬声器的设置是相关一致的,也可以是不相关不一致的,也可以是部分相关部分一致的。耳罩形状的设计可以是自由多种多样的。

前后声音谐振器是在扬声器罩前部和后部的配合前后扬声器产生声音(声波)谐振共鸣或和声的空间或腔体或区域,通常是前端音效单元和后端音效单元的壁/表面的一个单元或多个单元,也可以是不同的单元,也可以是相互连接的,也可以是相互独立的单元所围成的声波谐振空间或区域。

声音控制器与前端和后端的多个扬声器配合,连接和分频,并分析、管理和配置所有的数字化的原始音乐数据到前端和后端的扬声器里,产生在前端音效单元里、声音谐振器里、耳罩前端、耳罩后端和后端音效单元和后端声音谐振器里运行的声波,营造出二维的更宽广的立体声以及同时在第三维深度的立体声。

声音输出单元设置在扬声器罩的前端输出三维立体声,同时,声音输出单元的内壁通道传输和谐振声波。

简而言之,本实用新型通过在相同轴线上或不同轴线上前后排布前端和后端多个扬声器及其振膜单元、环形音圈单元声波通道单元配合产生、传输和最大优化前后声波,以制造逼真的三维立体声空间或效果,从而获得了具有X-Y-Z三维立体声效果和输出的高立体声音质,该音质具有在二维(X-Y)上更宽的声音及第三维(Z)深度上立体声的实时立体声。

本实用新型的另一方面是前端扬声器后方设置一后端扬声器及其振膜单元、环形音圈单元、声波通道单元和后端谐振系统,用于制造产生立体声效果的最大化和最优化第三维(Z)深度的立体声声波和用于X-Y-Z三维立体声效果的在二维(X-Y)上更宽的立体声。

本实用新型的另一个方面是在扬声器内部系统中设置包括振膜单元和环形音圈单元和/或声波通道单元的振膜驱动单元,用于制造产生立体声效果的最大化和最优化第三维(Z)深度的立体声声波和用于X-Y-Z三维立体声效果的在二维(X-Y)上更宽的立体声。

本实用新型的另一个目的是提供一个具有前后排列(即沿同一轴线上或不同的平行轴线)设置的多个扬声器的耳机,与声波、声波产生和传输单元、声波传输单元、音效单元、声音谐振器、声音控制器、声音平衡孔单元及声音输出单元配合,保证最大化和最优化的X-Y-Z三维立体声效果和输出的同时同步。

本实用新型的另一个目的是提供一个具有不同形状或功能耳罩的耳机。耳罩内设有具有不同形状和功能的前后音效单元、前后声音谐振器和声音平衡孔单元,其与处于同一轴线或不同轴线上排布的前后多个扬声器及其振膜单元、环形音圈单元和声波通道单元配合以在最大化和最优化X-Y-Z三个维度上获得更好的立体声空间和效果。声音谐振器能提供更好的和声。

本实用新型的另一个目的是提供一个具有前端和后端扬声器且前端或后端扬声器及其振膜单元、环形音圈单元和声波通道单元和后端声音谐振器排布设置成一定角度的耳机,以使耳机获得最大化和最优化X-Y-Z三维立体声空间和效果。

本实用新型的另一个目的是提供一个具有多个不同数量的前后端的扬声器的耳机,该些扬声器处于同一轴线或不同轴线前后排布,或者是一个具有多个不同尺寸的前后端扬声器的耳机,例如在前端设置一个小型扬声器在后端设置一个大型扬声器,例如在前端设置两个小型扬声器在后端设置一个大型扬声器,或者例如所有的前端或后端的扬声器及其振膜单元都是同一个尺寸或者都是不同的尺寸,同方向排列,不同方向排列,相对排列,错位排列,等等,以期达到更好的更深度的第三维的立体声效果的深度。

本实用新型的另一个目的是提供一个具有多个不同数量的前后端的扬声器的耳机,该些扬声器处于同一轴线或不同轴线前后排布,或者是一个具有多个不同尺寸的前后端扬声器的耳机,例如在前端设置一个小型扬声器在后端设置一个大型扬声器,并且前端小型扬声器设置在直接连着前壳单元的声音输出通道内,作为另一种前后端扬声器前后排列组合系列组合包含前后端扬声器的后端振膜单元、环形音圈单元和声波通道单元及其相关部件组合结构。这样设计的优越性是将前扬声器前移到最前面的声音输出通道内,整体体积减小,更符合人耳的人体结构和佩戴舒适性;前扬声器前移,前端声波更接近人耳耳道内的耳膜而音响效果更加直接和良好;前端音效单元和前端声音谐振器的空间也相应前移,前后声波的谐振空间加大加长,前后扬声器之间的距离也相应加长,后端振膜单元、环形音圈单元和声波通道单元在前后端的空间伸沿到最后面的更多更加有利于前后声波的最大化最优化谐振和直接传输。后端声波谐振和传输Z轴方向范围加大到最大范围,Z轴纵深方向深度加长到最大深度,从而产生具有最大化和最优化最深深度效果的X-Y-Z的三维立体声。

本实用新型的另一个目的是在非常有限的小空间进行多层结构的前后配置进行前后声波传输谐振和输出的最大量化,配合前后扬声器的振膜结构和层次和材料,振膜单元结构,环形音圈单元,多通孔结构(声波通道单元),在前后音效单元和前后声音谐振器同时同步产生具有最大Z轴深度的三维立体声。

附图说明

本实用新型的其它目的和特征可从以下的详细描述与相关的附图中更为明确。然而,设计这些图片的目的仅是为了说明而非用来限制本实用新型。在这些附图中,不同的视图中的近似的参考字符表示近似的元件。

图1是本实用新型第一种实施方式耳机的侧视图。

图1A是图1所示耳机相关的相关主要部件的侧视图。

图1AA是图1所示耳机相关的主要部件的后侧视图。

图1AAA是图1所示耳机的振膜式扬声器侧视图。

图1B是本实用新型另一种实施方式耳机的侧视图。

图1C是本实用新型另一种实施方式耳机的侧视图。

图1D是本实用新型的一种实施方式耳机内主要部件的侧视图。

图1E是本实用新型的另一种实施方式耳机内主要部件的侧视图。

图1F是图1到图5A所示实施方式耳机相关的立体声声波/电声频率声波曲线图。

图1FF是图1到图5A所示实施方式耳机相关的立体声声波/电声频率声波曲线图。

图1G是图1到图5A所示实施方式耳机相关的立体声声波/电声频率声波曲线图。

图2是本实用新型另一种实施方式耳机的侧视图。

图2A是图2所示耳机相关的主要部件的侧视图。

图3是本实用新型另一种实施方式耳机的侧视图。

图3A是图3所示耳机相关的主要部件的侧视图。

图3AA是图3所示耳机相关的主要部件的后侧视图。

图4是本实用新型另一种实施方式耳机的侧视图。

图4A是图4所示耳机相关主要部件的侧视图。

图4AA是图4所示耳机相关的主要部件的后侧视图。

图5是本实用新型另一种实施方式耳机的侧视图。

图5A是图5所示耳机相关主要部件的侧视图。

具体实施方式

下面结合附图和实施例对本实用新型作进一步的详细说明,。

为了使本实用新型所解决的技术问题、技术方案及有益效果更加清楚明白,下面结合附图和具体实施例对本实用新型做进一步的说明,但本实用新型的保护范围并不限于所描述的实施例,相反,本实用新型包括落入所附权利要求的范围内的全部修改、变型以及等同物。

本实用新型公开了在扬声器耳罩内与前、后音效单元和前、后谐振器一起配合的一种振膜式扬声器,,包括扬声器单元,所述的扬声器单元一侧设有振膜单元,其特征在于,所述的扬声器单元上设有贯通扬声器单元的声波通道单元,所述的扬声器单元包括磁铁单元,所述的磁铁单元的边缘设有轭铁单元,所述的振膜单元设置于声波通道单元的一侧,所述的扬声器单元还包括振膜驱动单元。振膜单元设置于声波通道单元的一侧并与声波通道单元组合为一个声波产生传输相通和谐振体系,并和后端声音谐振器配合。

具体地说,所述的振膜单元包括一层振膜单元、多层复合振膜单元和多层组合振膜单元中的任意一种或多种的组合。其中,一层振膜单元指仅有一层振膜;多层复合振膜单元指多层振膜复合在一起;多层组合振膜单元指多层振膜相互独立设置,振膜之间间隔设置或相邻振膜接触设置。

具体地说,所述的振膜驱动单元包括设置于磁铁单元处的环形音圈单元,所述的环形音圈单元与所述的振膜单元相连接或者分离。

具体地说,所述的磁铁单元设有环形槽体,所述的环形音圈单元设置于环形槽体内。

具体地说,所述的磁铁单元上设有所述声波通道单元,所述的声波通道单元内壁设有环形音圈单元。

具体地说,所述的振膜驱动单元包括与振膜单元相连接的中心振动杆,所述的中心振动杆位于声波通道单元内。

具体地说,所述的声波通道单元包括设置于振膜单元之后的通声孔单元。

具体地说,所述的声波通道单元还包括设置于振膜单元和通声孔单元之间的空间结构。

具体地说,所述的声波通道单元包括至少一个设置在磁铁单元或/和轭铁单元上的通声孔单元。

具体地说,所述的声波通道单元还包括设置于所述的磁铁单元或/和所述的轭铁单元之间且贯通扬声器单元的海绵体。

具体地说,所述的振膜单元上设有响应力增强结构。

具体地说,所述的响应力增强结构包括涂覆在振膜单元上的镀膜层。

为了实现本实用新型目的,本实用新型还公开了一种采用振膜式扬声器的可产生三纬立体声效果的耳机,其特征在于:

包括一扬声器罩和设置于扬声器罩内的扬声器组合系统,所述的扬声器罩包括了一前部、一后部、一设置于所述前部的前端音效单元、一设置于所述前部的前端声音谐振器、一设置于后部的后端声音谐振器和一设置于后部的后端音效单元;

所述的扬声器组合系统包括至少一个设置在所述扬声器罩前部的前端扬声器和至少一个设置在所述扬声器罩后部的后端扬声器;

至少一个所述的后端扬声器为所述的振膜式扬声器,所述的振膜式扬声器包括扬声器单元,所述的扬声器单元上设有贯通扬声器单元的声波通道单元,所述的声波通道单元两端分别与前端声音谐振器和后端声音谐振器相连通;

一设置于所述扬声器罩内的声音控制器;

以及一与所述扬声器罩连接的声音输出单元。

具体地说,所述的扬声器罩的前部或后部或前端音效单元或后端音效单元中的任意一个或者多个上具有配合声波的指向性或导向性的形状;所述的前端声音谐振器或/和后端声音谐振器具有配合声波的指向性或导向性的空间。

具体地说,所述的具有配合声波的指向性或导向性的形状包括喇叭弧状或锥状或直状或各种弯曲状中的任意一种或者多种的组合;所述的具有配合声波的指向性或导向性的空间包括喇叭弧状或锥状或直状或各种弯曲状中的任意一种或者多种的组合形成的空间。

具体地说,所述的前端扬声器为所述的振膜式扬声器或者为动铁扬声器。

具体地说,所述的前端扬声器设置在所述的声音输出单元内。

具体地说,所述的前端扬声器的振膜单元的第一中心轴线与后端扬声器的振膜单元的第二中心轴线平行或者重合。

具体地说,所述的前端扬声器的振膜单元的中心轴线及所述后端扬声器的振膜单元的中心轴线相互成一定角度设置。

具体地说,所述的前端扬声器的振膜单元的中心轴线和所述后端扬声器的振膜单元的中心轴线互相垂直。

本实用新型中的前后是相对位置,并非狭义地仅理解为相对于声音输出单元的前后排列,即并非仅指声音输出单元、前端扬声器和后端扬声器的前后依次排列。前端扬声器和后端扬声器的确定可以以扬声器在同一时刻产生的声波到达声音输出单元的先后为标准,先到达者为前端扬声器,后到达者为后端扬声器。在确定前端扬声器和后端扬声器后,前部、后部、前端音效单元、后端音效单元、前端声音谐振器、后端声音谐振器即可相应地确定。

附图1到1E演示了一种耳机1000,其可以是在内部设置了多个扬声器的可提供三维立体声效果的入耳式耳机的左部或右部,还演示了一个包括多个含有可用于提供低/中/高音音频的X-Y-Z三维立体声效果的前/后扬声器1018A和1018B的扬声器罩单元1006。如图1到1E所示的实施例中,前/后扬声器1018A和1018B沿着相同的轴线前后设置或设置在不同的轴线,也可以共享中心轴线1088。

为入耳式耳机1000设计的扬声器罩单元,即耳罩1006,具有一个包含了两个前后排布在前端和后端的扬声器(声音驱动器)1018A和1018B,同时前端扬声器1018A与一个前端音效单元1032和一个前端声音谐振器1036/1036A构成阵列和同时同步相互配合;同时后端扬声器1018B与一个后端音效单元1032B和一个后端声音谐振器1036B构成阵列和同时同步相互配合。所述前后端音效单元1032/1032B可以设计为配合声波的指向性或导向性的各种形状,比如,各种配合喇叭弧形或各种锥形或各种直形或各种弯曲形或以上各种混合,同样同时可以产生具有更好指向性和导向性的声波的反弹和回响的音效。所述前后端声音谐振单元1036/1036B,可以设计为配合声波的指向性或导向性的各种形状和/或空间,比如,各种喇叭弧状或各种锥状或各种直状或各种弯曲状或以上各种混合,同样同时可以生产声音的谐振。为了将这两个扬声器(双声音驱动器)构成上述前端和后端的前后阵列,其中一个扬声器1018A设置在耳机的前端处理声音的高音频率部分,另一个扬声器1018B设置在耳机的后端处理声音的低音和中音的频率。相反地,前端扬声器1018A可以处理低音,后端扬声器1018B可以控制声音的中音和高音频率部分。为了处理不同的声音频率,可以设计很多种不同的扬声器排布方式。

小型高精度驱动器1018A被直接设置在耳机的前端,大型高精度驱动器1018B和一个可以得到强烈低音和共鸣分频管理的声音控制器1080/1080A被排布在小型驱动器1018A的后端。在本实施例中,声音控制器1080/1080A是多扬声器的频率配置和连接单元。在耳机前后端排布双扬声器1018A和1018B为耳机营造了一个逼真的有舞台效果的声音传输系统或说是一个X-Y-Z三个维度的(三维)立体声效果和空间,因为双扬声器1018A和1018B在为二维声音的X-Y轴上,以宽广的横向方式产生立体声,同时,在后端的大型扬声器1018B从后端到前端传送非常强烈的低音和中音,通过和前端扬声器1018A的配合,在具有声波指向性或导向性的前后端音效单元1032/1032B和前后端声音谐振器1036/1036B里,前后扬声器1018A/1018B的前后声波1018AW/1018BW/1018ABW/1018BBW经过后端扬声器的振膜单元1052B/1052BB和环形音圈单元1054B和中心通声孔单元1058B并与后端声音谐振器1036B配合产生和相通和谐振而深入垂直的方式提供了第三维的(Z轴深度)立体声,从而获得三个维度(X-Y-Z轴)包括低/中/高音音频的更好的更逼真的立体声环绕效果。

不同的扬声器设置包括了:前端和后端扬声器面向同一个方向,前端和后端扬声器面向同一方向并成一定角度或错位,前端和后端扬声器面对面相对设置,前端和后端扬声器相对设置并成一定角度或错位。

因此,听者可以在有力的声波中通过Z轴的深度感听到从最后端到最前端的强烈的三维立体声。同时,听者可以听到通过X-Y轴从前端、左端、右端、后端、从各个方向传来的逼真的细致的3D环绕立体声。这种立体声确保从三个维度(三维,X-Y-Z)播放包括低/中/高音音频的全频声音。

三维立体声是为了获得三个维度(X-Y-Z)的声音空间和效果。低/中/高音这三种声音的音频仅仅只能产生不同的音量和内容,可能是在X-Y两个维度的声音空间内,或者可能是在X-Y-Z三个维度的声音空间内。Z轴的立体声深度是X-Y-Z三维立体声空间和效果的主要决定因素。只有获得了Z轴的立体声深度,低/中/高音这三种声音的音频才能被同时同步的获得构成X-Y-Z三维声音空间和效果。CN201110063904.5专利对X-Y-Z三维立体声及其效果都有详细和具体的说明。

前端扬声器1018A和后端扬声器1018B的尺寸的优选设置是:在前端设置一个小型声音驱动器并在后端设置一个大型声音驱动器,或者是在前端和后端设置尺寸相同的声音驱动器,又或者是在前端设置一个大型声音驱动器并在后端设置一个小型声音驱动器,等等,视情况而定。

为应用到图1至图5A所示的不同的耳机实施例中,由前后端扬声器1018A/1018B及其前后振膜单元1052A/B/BB和音圈单元1054A/B和通声孔单元1058A/B构成的双驱动前/后阵列单元的排列方式、设计、功能、形状、形式、尺寸、结构、位置、类型和材料可以根据需要改变。

图1到1E详细地演示了入耳式耳机1000的多种外部/内部结构和系统。

如图1-1E耳机1000的各个放大图所示,小型扬声器1018A和大型扬声器1018B配合工作形成双驱动前后阵列单元。前端扬声器1018A传输的前端声波1018AW和后端声波1018ABW或可是高音音频的。后端扬声器1018B传输的前端声波1018BW和后端声波1018BBW或可是低音和中音音频的。前后声波1018AW/1018BW和1018ABW/1018BBW通过后端振膜单元1052B/1052BB和环形音圈单元1054B和后端中心通声孔单元1058B产生和传输到后端声音谐振器谐振和输出共同构成了在X-Y-Z三轴的三维立体声效果,换句话说,一个包括了低/中/高音音频的三维(X-Y-Z)立体声。声波线1018AW/1018ABW和1018BW/1018BBW可以等距的平行设置,可以交叉,或者也可以根据前端和后端扬声器的排布位置设置成呈不同角度。

扬声器1018A和1018B的外部结构之间存在间距1084。前端扬声器声波1018AW/1018ABW和后端扬声器声波1018BW/1018BBW之间存在声音深度1086。声音深度或前后声波距离深度1086是逼真的具有Z轴效果的三维立体声效果的关键因素。声音深度或前后声波距离深度1086直接与间距1084相关并且和前后端音效单元1032/1032B及前后端声音谐振单元1036/1036A/1036B配合获得沿Z轴第三维度上的深度的声音。也可以理解为,声音深度或前后声波距离深度1086和间距1084使得多声波到达声音输出口因距离不同而出现时间差,因而产生了前后声波。

扬声器1018A和1018B的位置设置非常重要,比较适宜的设置是在前端和后端成前后阵列的沿着一个共享的轴线分别设置,例如相同的中心轴线1088,此中心轴线1088在图1实施例中也代表了耳罩1006的水平轴。轴线1088是多个扬声器1018A和1018B的中心点线,也是前后扬声器1018A和1018B的声波1018AW/1018ABW和1018BW/1018BBW的中心轴线,也是后端扬声器1018B的后端振膜单元1052B/1052BB和环形音圈单元1054B和后端中心通声孔单元1058B产生和传输声波谐振的中心轴线。这些前端和后端扬声器1018A和1018B均前后排布且均与轴线1088呈90度直角。

扬声器沿着相同的轴线1088设置使得声波1018AW/1018ABW和1018BW/1018BBW及深度1086在相同的波形、波率和波距上加强获得均匀及平均的三维立体声效果。类似地,这种有相同的中心轴1088的扬声器前后阵列排布也使得声音焦点及声波1018AW/1018ABW和1018BW/1018BBW的声波线均匀地平均地的分布在三维立体声空间的中心区域。

更重要地是,声波深度1086决定了在Z轴的前后排布的双驱动阵列单元1018A/1018B的三维立体声深度扩展,得到在X-Y-Z轴上的声音效果。如果深度1086过大了,则在Z轴的前后排布的双驱动阵列单元1018A/1018B的三维立体声深度扩展就会反应过度。如果深度1086过小,则会减弱在Z轴的前后排布的双驱动阵列单元1018A/1018B的三维立体声深度扩展。故需要进行大量的实验,针对不同种类的扬声器确定在准确位置上的距离深度1086,这不仅仅是为了Z轴的声音效果或扩展,也同时有助于X-Y轴的声音效果或扩展。

首先,深度1086的数值需要准确设置以在沿着X,Y和Z轴的所有三个维度上达到更好的声音效果。

其次,同时,当前后扬声器的前后声波1018AW/1018ABW和1018BW/1018BBW在前后声音谐振器1036/1036A/1036B内配合工作时,深度1086会被影响。前后声音谐振器1036/1036A/1036B由外部形状和内部的空间配合获得某种确定的声音回响/和声效果。由于声波、回声、再回声和声音重力场的自然属性,不同尺寸、形状和结构的前后端音效单元1032/1032B及声音谐振器1036/1036A/1036B会形成不同的三维立体声回响及和声效果。如果对于扬声器声波1018AW/1018ABW和1018BW/1018BBW的工作来说,声音谐振器1036/1036A/1036B过紧或过小,深度1086会扭曲。如果对于扬声器声波1018AW/1018ABW和1018BW/1018BBW的工作来说,声音谐振器1036/1036B过松或过大,则深度1086会被减弱或效果不好。

再次,当扬声器声波1018AW/1018ABW和1018BW/1018BBW与前后音效单元1032/1032B共同配合工作时,深度1086会被影响。音效单元1032/1032B由外部形状和内部形状配合获得某种声音效果,通常是一制造声音效果的外壳,或一内部的声音作用部件或壁,可以是相连单元,也可以是不同单元。如果音效单元1032/1032B对于扬声器声波1018AW/1018ABW和1018BW/1018BBW的工作来说太直或太卷,深度1086可能会被扭曲或减弱或效果不佳。

在扬声器罩1006内具有一非常小、有限且封闭的声音工作空间。故在此非常有限的声音工作空间中,扬声器1018A和1018B产生各自的声波1018AW/1018ABW和1018BW/1018BBW、前后阵列里相同的轴线1088、深度1086、间距1084、前后端音效单元1032/1032B、前后端声音谐振器1036/1036A/1036B和声音输出单元1020都很重要,他们共同配合并实时地产生X-Y-Z维度内的三维立体声。

由于声波是三维的,并且具有指向性或导向性,当前端声波1018AW和1018BW波动至非常靠近前端区域1032/1036和耳罩1006与声音输出单元1020相连的前端1006A时,后端声波1018ABW和1018BBW波动至非常靠近耳机罩1006的具有后端声音谐振器1036B和后端音效单元1032B的后端1006B。因为扬声器主要用来向前传输声音,前端声波1018AW和1018BW会从具有声波指向性设计结构的前端音效单元1032和前端声音谐振器单元1036/1036A上作用和反弹回来,经过后端扬声器1018B的后端振膜单元1052B/1052BB和环形音圈单元1054B和后端中心通声孔单元1058B(作为结构或系统)产生相通和传输和谐振,从而形成返回后端声波1018ABW和1018BBW进入具有声波指向性设计结构的后端音效单元1032B和后端声音谐振器1036B进行相通传输和谐振并输出。然而,扬声器是设计用来向前和向后传输声音,因此在耳罩后端1006B的后端音效单元1032B和后端声音谐振器1036B里谐振后的后端声波1018ABW和1018BBW向前端方向传输声波直接从前端声音输出单元1020出现。孔1006C设置在耳罩1006的前端和后端以平衡前后两端声波的气压。扬声器甚至要向每个方向传输声音,例如360度传输,同时也具有指向性或导向性。后端声波1018ABW和1018BBW产生和经过后端振膜单元1052B/1052BB和环形音圈单元1054B和后端中心通声孔单元1058B,波动至耳罩后端1006B,通过与后端声音谐振器1036B和后端音效单元1032B同时同步配合形成后端声音谐振的Z轴深度效果并向前传输从而产生X-Y-Z三维立体声。后端声音谐振器1036B可以是一个后端部1006B内的声音回响区域或一个后端声音谐振单元,也包含后钮单元1016的内腔空间区域。在耳机罩上的一个或多个后端孔1006C释放后端声波1018ABW和1018BBW的气压以更好的平衡前后端回响和声音输出得到三维立体声效果。后端音效单元1032B包括后端部1006B内的音效单元1032B内壁和外壁以及后端的后钮部件1016的内壁和外壁。

因此,后端扬声器的后端振膜单元1052B/1052BB和环形音圈单元1054B背后直接连通后端通声孔单元1058B再直接连通后端音效单元1032B和后端声音谐振器1036B而构成一个前后声波同步同时产生传输谐振输出的整体循环系统来产生最大量化的Z轴音效输出更好的X-Y-Z三维立体效果。

后端孔单元1006C可设置在耳罩1006的前端,在边上,或是在耳机底端,且视情况可是任意种类、任意尺寸和形状。

针对不同形状和功能的耳罩1006,可以设计不同形状和声波导向性功能的前后端音效单元1032/1032B、可作为和声单元的前后端声音谐振器1036/1036B、和声音平衡孔单元1006C,它们可以与前端和后端排布在相同的轴线或不同的轴线的多个扬声器配合以获得在三个维度(X-Y-Z)中更好的立体声空间和效果。

耳机的扬声器罩1006形状直接关系到扬声器罩外和/或扬声器罩内的前后端音效单元1032/1032B和前后端声音谐振器1036/1036B。在综合考虑声波的指向性或导向性之下,扬声器罩1006的形状,包含前端1006A和后端1006B,通常称为声音效果壁/单元的外部,可以设计成规则的或不规则的,也可以设计为配合声波的指向性或导向性的各种形状和/或空间,比如,各种配合喇叭弧形状或各种锥形状或各种直形状或各种弯曲形状或以上各种混合,以与内部内侧的音效单元1032/1032B配合。外部前后端音效单元和/或内部前后端音效单元1032/1032B可以仅仅只是共同包括了外部壁/表面和内部壁/表面的一个单元,也可以是不同的单元或壁,或多个相连或独立单元,也可以设计为配合声波的指向性或导向性的各种形状和/或空间,比如,各种配合喇叭弧形状或各种锥形状或各种直形状或各种弯曲形状或以上各种混合。前后端音效单元1032/1032B与在相同轴线或不同轴线上排布的多个扬声器发生的声波配合,或者,与呈角度设置的前端和后端的多个扬声器配合达到更好的三维的声音效果和输出。相同的原理还可应用于后端音效单元1032B。

耳机的扬声器罩1006的前端部1006A内包含声音输出单元1020,前端扬声器1018A,前端音效单元1032,前端声音谐振器1036/1036A,等等。耳机的扬声器罩1006的后端部1006B内包含后端扬声器1018B,后端音效单元1032B,后端声音谐振器1036B,声音平衡孔1006C,声音控制器1080,等等。声音控制器1080也可以安排在前端1006A内。

同时,在综合考虑声波的指向性或导向性之下,耳机的扬声器罩1006的前端部1006A内可设置为一个配合前端扬声器1018A的前端声音回响区域或一个前端声音谐振单元的前端声音谐振器1036/1036A还包括前端扬声器1018A和前端声音输出单元1020之间的空间和在前端扬声器1018A与后端扬声器1018B之间的区域,也包含了扬声器罩前部单元1006A的侧壁及其相应空间,可以设计为配合声波的指向性或导向性的各种形状和/或空间,比如,各种喇叭弧状或各种锥状或各种直状或各种弯曲状或以上各种混合。基于声波、回声、再回声和声音重力场的自然属性,前端音效单元1032和前端声音谐振器1036/1036A与声波1018AW和1018BW配合以获得三维立体回响及和声效果。前端音效单元1032和前端声音谐振器1036/1036A的不同的尺寸、形状和结构形成了不同的三维立体声回响及和声效果。

在综合考虑声波的指向性或导向性之下,耳机的扬声器罩1006的后端部1006B的外部后端音效单元和配合后端扬声器1018B的内部后端音效单元1032B可以共同包括了后端1006B外部壁/表面和内部壁/表面的一个单元,也可以是不同的单元,或相连或分开,可以设计为配合声波的指向性或导向性的各种形状,比如,各种配合喇叭弧形或各种锥形或各种直形或各种弯曲形或以上各种混合。后端音效单元1032B与在相同轴线或不同轴线上排布的多个扬声器发生的声波配合,或者,与呈角度设置的前端和后端的多个扬声器配合达到三维的声音效果和输出。

同样的,在综合考虑声波的指向性或导向性之下,耳机的扬声器罩1006的后端部1006B内可设置为配合后端扬声器1018B的一个后端声音回响区域或一个后端声音谐振单元的后端声音谐振器1036B还包括后端扬声器1018B的空间和在后端扬声器1018B与后端1006B一直到底部单元1016之间的区域或空间,也包含了扬声器罩后部单元1006B的侧壁及其相应空间,可以设计为配合声波的指向性或导向性的各种形状和/或空间,比如,各种配合喇叭弧状或各种锥状或各种直状或各种弯曲状或以上各种混合。基于声波、回声、再回声和声音重力场的自然属性,后端音效单元1032B和后端声音谐振器1036B与后端声波1018ABW和1018BBW配合以获得三维立体回响及和声效果。后端音效单元1032B和声音谐振器1036B的不同的尺寸、形状和结构形成了不同的三维立体声回响及和声效果。

这样,耳机的扬声器罩1006的前端部1006A内包含声音输出单元1020输出和谐振前后声波,前端扬声器1018A,前端音效单元1032,前端声音谐振器1036/1036A,一直到耳机的扬声器罩1006的后端部1006B内包含的后端扬声器1018B的后端振膜单元1052B/1052BB和环形音圈单元1054B背后直接连通后端通声孔单元1058B再直接连通后端音效单元1032B和后端声音谐振器1036B而结构成一个前后声波同时同步产生传输谐振输出的整体循环系统,从前端部1006A的最前端一直到后端部1006B的最后端都充分产生最大量化的Z轴音效输出最优化的X-Y-Z三维立体效果。

其实,所述的前后声波同时同步产生传输谐振输出的整体循环系统是人体工程学的声波产生谐振输出的自然立体声效果和原理应用到耳机研究和发展,特别是小型入耳式耳机里多扬声器如何排列组合产生更好的保真和还原原来真实声音的三维立体声效果。

人体工程学应用到耳机如何更好地产生和传输和谐振和输出三维立体声。人的声音是从肺部气体流动到喉头声门连接的声带振动产生声波再到口腔谐振后输出的。前部的腔体口腔而连接嘴巴出声,后部的腔体是肺部到声门连接声带,中间的喉头声门连接的具有膜腔的声带是发声体,而声带及其膜腔的结构是很复杂的,声带双/两面膜壁及其腔体是接受气流振动而发声的。基于这样的人体工程学,本实用新型就把前后扬声器1018A/B的振膜1052A/1052B/1052BB及其音圈1054B连接通气孔单元1058A/B作为声带及其膜腔连接声门产生和传输和谐振声波的结构和功能,后端声音谐振器1036B作为肺部气体传输和谐振的结构和功能,前端声音谐振器1036作为口腔气体流通传输谐振的结构和功能,再由声音输出口单元1020作为嘴巴输出三维立体声。

这里,特别是前后扬声器1018A/B振膜单元1052A/1052B/1052BB和环形音圈1054A/1054B和通气孔单元1058A/B的复合结构是应用了声带及其双面膜腔和声门的复合发声结构和原理。人体工程学中,声带的双面膜壁/腔对气流流动的感应产生振动而发声;声门对气流双向传输影响到声带的双面膜壁的前后声波振动,同时,声带及其膜腔和声门相互连接和配合对气流的双向传输直接产生声带振动而发声。因此,前后扬声器1018A/B的振膜单元和音圈单元和通声单元1052A/1052B/1052BB/1054B/1058A/B和前后音效单元1032/1032B和前后声音谐振器1036/1036A/1036B同步同时相互共同配合为一个发声和传输和谐振的基本体,由声音输出单元1020输出三维立体声。众所周知,肺部气流越深,发出的声音就越洪亮,越有立体感。肺部腔体深度的变化产生声音深度(Z轴)的变化。这也是应用人体工学到振膜单元1052B/BB和音圈单元1054B和通声单元1058B的另一个目的---前后声波的谐振和多重谐振和透射的传输。具体的应用在图1到5A及其说明中有详细说明,并适用与从图1到图5A里的所有实例和说明。

前后端音效单元1032/1032B和前后端声音谐振单元1036/1036B的尺寸、形状、功能、结构、设计和材料可以变化。

可采用声波/电平/频率控制单元的计算机化的声音控制器1080设置在包含了多个扬声器中心单元的耳机扬声器罩单元1006内。同时,所述声音控制器1080还包含了声音单元1080A。声音单元1080A控制了包含前端扬声器1018A和后端扬声器1018B的多扬声器单元的声音系统及/或者声音音频配置和连接系统。

声音控制器1080通过线缆和声音分频元件将高音引入第一个扬声器1018A,并将低音/中音的声音音频引入第二个扬声器1018B,在双扬声器直线呈阵列排布下、三维声音效果中,为强有力的低音和回响/和声立体声而获得及最佳平衡立体声效果。线缆的连接方式可以采用并联或是串联或是其它任何连接方式。

当耳机1000包括1个、2个、3个或更多个扬声器时,声音控制器1080分析并管理所有的声音电平和频率,分频并引导和连接这些声音到合适的扬声器以获得最好的三维可调立体声效果。

声音控制器1080的设计、功能、材料、形状、尺寸、类型和位置可变。

耳机1000有左耳机部分和右耳机部分。每个耳机部分具有包括了一个声音控制器1080和两个扬声器1018A和1018B的扬声器罩单元1006。相应地,在一个耳机1000可以共有两个声音控制器1080、两个扬声器1018A和两个扬声器1018B,以创造逼真的三维立体声效果。

声音控制器1080和声音单元1080A可被整合到一部分或不同部分。声音控制器1080和声音单元1080A的尺寸、设计、方式、系统、位置和材料均可变。

扬声器罩单元1006的前部耳壳1006A连接的声音输出单元1020中有一声音传输和过滤单元1020B,该单元包括专为耳塞式耳机设计的内设声音输出单元1020BB和声音输出通道1020BBB。

声音传输和过滤单元1020B和声音输出单元1020BB被设计为蘑菇头的形状或鸭嘴的形状,这种设计是为了完整、紧密和舒适的将声音传输至用户的耳道,并将外界的噪音隔离,通过从特殊排布的声源1018A和1018B的前后振膜1052A/1052B和中心通孔单元1058B到前后声音效果区域1032/1032B和前后回响区域1036/1036B、到声音输出单元1020在耳罩1006中形成一个特殊的声音环境,将X-Y-Z三维立体声效果和输出直接和无缝的传输至用户的耳道中。

声音输出通道1020BBB集中了从扬声器单元到声音输出单元1020BB的所有声音以得到耳塞式耳机的立体声输出。

同时,声音输出单元1020BB具有隔离外界噪音和不需要声音的声音隔离功能。

声音传输单元1020B的蘑菇头或鸭嘴造型是可以因为不同的需要针对使用者的耳朵拆卸和更换的,同时也可以变更成其它的例如耳塞式造型、挂耳式造型或贴耳式造型等的声音输出设计。

声音传输/集中单元1020,1020B,1020BB和1020BBB与扬声器罩单元1006和1006A/1006B/1006AB的尺寸、设计、形状、位置、方式和材料都是可变的。

声音输出单元1020直接和扬声器罩前部前端1006A相连。

扬声器罩单元1006的前盖1006A相连的声音输出单元1020为入耳式声音输出传输声音。声音输出单元1020也可以包括声流孔、隔音和噪音过滤器,这些声流孔、隔音和噪音过滤器由任意合适的软且有弹性的材料制造,例如织品、皮革、软塑料、橡胶或海绵材料。声音输出单元1020中的噪音过滤器单元可以设置很多过滤层以达到隔音和噪音过滤的效果。声音输出单元1020可设置多个小孔传输声音和过滤噪音。噪音过滤器最大化地阻隔了噪音,使环境声音最小化,在密闭的耳罩单元1006和用户耳朵间创造了更好的立体声环境。

如图1至5A中所示实施例中的各种三维立体声耳机的扬声器系统1000和所有相关单元亦可被使用在任意头戴设备、头戴式耳机、耳罩或助听设备中。

扬声器基座固定点1082用于将前端扬声器1018A固定在罩1006内,也可以应用到后端扬声器1018B。为应用到图1至5所示的实施例中,扬声器固定点1082的设计、功能、尺寸、形状、位置和材料如果需要都是可变的,例如,扬声器固定点单元1082可以包含和设计和结构为1-3个微型支架点,也可以为1-3个微型点胶点,每个微型支架点或是微型点胶点的长宽度尺寸优选在1-3毫米,以不影响任何前后声波的流通和传输和谐振为主要设计方向,等等。

扬声器罩单元1006设置有前部(前端前壳)1006A和后部(后端后壳)1006B,并设置有前后壳相连的连接单元1006AB。连接单元1006AB常用来作为扬声器罩1006的前后部(壳)1006A/1006B的连接中间线。连接单元1006AB可以是各种形状的,例如,纵向直线形状的,也可以是横向直线形状的,或是有角度直线形状的,也可以是弧线形状的,规则的或不规则的,也可以是各种位置的,可以在中间的,也可以靠前或靠后或靠上或靠下,也可以设计为配合声波的指向性或导向性的各种形状或功能结构,例如,各种喇叭弧形状或各种锥形状或各种直形状或各种弯曲形状或以上各种混合。不论连接单元1006AB的形状如何,扬声器罩单元1006是以靠近声音输出单元1020/1020BB/1020BBB的部分为前部1006A(前端前壳),靠近另一端的为后部1006B(后端后壳)。扬声器罩单元1006的前部1006A(前端前壳)和后部1006B(后端后壳)可以是同等的尺寸或形状或设计或材料或内外结构或纵横设置,也可以是不同的尺寸或形状或设计或材料或内外结构或纵横设置。

单元1006/1006A/1006B/1006AB的设计、功能、尺寸、形状、位置、方法和材料可变。

数据线1046可以将耳机1000与任意合适的音频/视频播放器连接。数据线1046也可以被无线单元(未标注)取代。数据线单元1046上可安装具有音量/播放器控制器(未标注)的麦克风。

声音控制器1080配置音乐播放器、音源、立体声频率到扬声器1018A和1018B中。声音控制器1080包括一使用4.7微法电容的电容器单元1080A,可以更准确地配置来自音乐播放器的音源数字信号。电容器单元1080A可以采用任意容量,可以是任意种类、尺寸、或电容类型。优选地,声音控制器1080采用线路或电子元件配置高音音频到前端扬声器1018A,且同时配置低音/中音频率到后端扬声器1018B。当然,为了获得更好的立体声输出且减少数字声音的损失和扭曲,立体声的可行配置方式有很多种。例如,声音控制器1080可配置低音音频到前端扬声器1018A,同时配置高音/中音频率到后端扬声器1018B。

当应用到如图1至5所示的所有实施例中时,以上所描述的所有单元和特征的位置、尺寸、设计、结构,形状、功能和材料可视情况需要改变。

图1A和1AA和1AAA所示是展示图1的实施例里的前后端扬声器1018A/1018B主要部件及其内部结构和外部系统和设置和配合系统,需要结合图1及其详细说明。

前后端扬声器1018A/1018B前后排列组合系列1050包含前后端扬声器1018A/1018B的振膜单元和/或复合振膜单元1052A/1052B和环形音圈单元1054B和后端贯通的中心通声孔1058B(声波通道单元)及其相关组合结构(即多层振膜复合结构)。

后端扬声器1018B的内部系统和结构包含振膜单元1052B/1052BB,环形音圈单元1054B,磁铁单元1056B,轭铁单元1060B,扬声器后端中心通声孔单元1058B,阻尼单元1066B。

振膜单元1052B/1052BB和环形音圈单元1054B相连组合为多层振膜复合结构或系统的主体。振膜单元1052B是一层或多层振膜组合或多层振膜复合,多层振膜1052B的边缘可以是相连或分开。环形音圈单元1054B和振膜单元1052B/1052BB直接相连,也可以是分成多个环形音圈单元对应于振膜单元各自相连,也就是一个环形音圈单元对应一个或多个振膜单元,或一个振膜单元对应一个或多个环形音圈单元,由此,在振膜单元1052B和环形音圈单元1054B之间就形成多层次或多区域的音效单元和谐振空间的振膜音效结构1052BB。振膜音效结构1052BB的多层次音效单元类似多腔(蜂窝效果)同步同时把声波多层透射谐振传输和音效的强化和优化,同时,因为多重声波谐振的蜂窝结构及其效应而使得多重声波加强放大谐振而又不相互干扰而产生杂音或变音。蜂窝结构产生同频声波归类谐振而互不干扰的多声波加强谐振和放大和传输。例如,蜂窝设计和结构的某一层次(比较细窄)归类吸收传输和谐振高频声波,另一层次归类吸收传输和谐振中频声波,再有一层次(比较大口)归类吸收传输和谐振低频声波。由此,振膜单元1052B和多层次或多区域的音效单元和谐振空间的振膜(音效)结构1052BB常常作为一个整体的振膜单元1052B/1052BB。而且,振膜单元1052B/1052BB的声波透射和谐振是同步同时进行的。当环形音圈单元1054B在磁铁单元1056B中感得电信号的流动变化而产生振动,从而带动振膜单元1052B及音效结构1052BB同步振动而产生声波1018BW发出声音展现声波X-Y轴中的一个维度的立体声。振膜单元及音效结构1052B/1052BB具有很好的声波谐振和优化效果从而产生更好的声波和传输。

同时,振膜单元1052B/1052BB和环形音圈单元1054B对应于扬声器后端中心通声孔单元1058B相通而组合成多层振膜复合单元1052B/1052BB/1054B/1058B的主体结构或系统的整体。由于声波传播具有三维属性,也同时具有导向性,所以,振膜单元1052B/1052BB的声波1018BW向前传输的同时,也从前端音效单元1032和谐振器单元1036/1036A上反弹回来向后端传输,通过振膜单元1052B/1052BB向后传输进入后端中心通孔单元1058B后传输到扬声器罩的后端1006B里的后端声音谐振器1036B进行谐振和输出。

这样,后端扬声器1018B的外部系统就包含和配合的后端部单元1006B内的后端音效单元1032B和后端声音谐振器1036B里形成谐振,产生后端声波1018BBW。

当然,振膜单元1052B也可以是单层振膜或是单层双面振膜或多层振膜组合或复合为一层的结构。多层振膜组合为一层的振膜单元1052B也具有音效结构1052BB的多层音效单元和谐振空间类似多快面(窗格效果)把声波多层透射谐振传输和音效的强化和优化。所以,振膜单元1052B和多层次或多区域的音效单元和谐振空间的振膜(音效)结构1052BB常常作为一个整体的振膜单元1052B/1052BB。

进一步,图1AAA(放大图)进一步展示复合振膜驱动单元的振膜单元1052B/1052BB和环形音圈单元1054B和通声孔单元1058B组合作为多层振膜复合单元1052B/1052BB/1054B/1058B的结构和声波流程。在振膜单元1052B和环形音圈单元1054B之间形成多层次或多区域的音效单元和谐振空间的振膜音效结构1052BB。多层次或多区域的音效单元和谐振空间的振膜音效结构1052BB可以包括中心音效和谐振区域(中心蜂窝)1052BW1;侧边音效和谐振区域(侧边蜂窝)1052BW2。当声波以振膜单元1052B/1052BB为声源中心区域前后振动发声和传输时,中心蜂窝1052BW1和侧边蜂窝1052BW2也是前后运动和通声孔单元1058B一起配合进行前后声波的传输和谐振。因此,振膜驱动单元1052B/BB/1054B/1058B可以包含振膜单元1052B/1052BB和环形音圈单元1054B和通声孔单元1058B及其蜂窝音效和谐振区域1052BW1/2。振膜驱动单元1052B/BB/1054B也可以包含振膜单元1052B/1052BB和环形音圈单元1054B及其蜂窝音效和谐振区域1052BW1/2。多重声波谐振的蜂窝音效和谐振区域1052BW1/2使得多重声波加强放大谐振而又不相互干扰而产生杂音或变音,同步放大,同步立体深邃。声波同频率相谐振的自然属性,蜂窝结构产生同频声波归类谐振而互不干扰的多声波加强谐振和放大和传输。例如,蜂窝设计和结构的1052BW2归类吸收传输和谐振高频声波,蜂窝设计和结构的1052BW1归类吸收传输和谐振低频和中频声波。

前端扬声器1018A内部结构包含前端振膜单元1052A,环形音圈单元1054A,磁铁单元1056A,前端通声孔单元1058A,轭铁单元1060A,阻尼单元1066A。振膜单元1052A和音圈单元1054A相连。当环形音圈单元在磁铁单元1056A中感得电信号的流动变化而产生振动,从而带动振膜单元1052A振动而产生声波1018AW发出声音展现声波X-Y轴中的一个维度的立体声。由于声波传播具有三维属性,也同时具有导向性,所以,振膜单元1052A的声波1018AW在向前传输时,也从前端扬声器1018A的外部结构包含和配合的前端部单元1006A内的前端音效单元1032和谐振器单元1036/1036A上反弹回来向后端传输,通过后端扬声器振膜单元1052B向后传输进入后端中心通孔单元1058B后传输到扬声器罩的后端单元1006B内的后端音效单元1032B和后端声音谐振器1036B里形成谐振,产生后端声波1018ABW,与后端扬声器1018B的后端声波1018BBW一起从耳罩后端1006B里的最后端单元1016向前输出到耳罩前端1006A的最前端的声音输出单元1020/1020BBB展现X-Y-Z轴中的更深的Z轴深度的第三个维度立体声并向前传输,从而实现三维立体声及其效果。

多扬声器前后排列组合系列1050的前后端扬声器1018A/1018B的外部系统包含前后部单元1006A/1006B内的前后端音效单元1032/1032B和前后端声音谐振器单元1036/1036B,并和前后端扬声器1018A/1018B的内部结构同时同步配合一起工作产生具有更深的Z轴深度的三维立体声。

后端扬声器1018B可以采用直射式动圈扬声器结构---扬声器振膜完全开放地直接进行和接触前后声波产生和传输。并且,后端扬声器振膜单元1052B/1052BB和环形音圈单元1054B和后面直接和后端中心通孔单元1058B相连进而和后端1006B空腔相通。这样,前后端声波1018AW/1018BW和1018ABW/1018BBW就通过(透射)后端扬声器振膜单元1052B/1052BB和后端中心通孔1058B而相通流动输出。后端中心通孔单元1058B正中对着振膜单元1052B/1052BB中心的目的就是为了使前后声波1018AW/1018BW和1018ABW/1018BBW通过后端扬声器振膜单元1052B/1052BB集中在后端音腔的音效单元1032B和后端声音谐振器1036B里平衡稳定谐振和传输和优化和输出。

后端扬声器振膜单元1052B/1052BB和环形音圈单元1054B和后面直接和后端中心通孔单元1058B的配合可以是采用声波放射的指向特性来设计和结构,指导或是引导前后声波或是各种声波到预定好的空间里进行声波谐振和优化和传输,例如,引导前后声波进入后端通孔单元1058B并进入后端音效单元1032B和后端声音谐振器1036B进行谐振后输出,从而产生具有最大深度的Z轴的三维立体声及其效果。

这样的后端扬声器振膜单元1052B/1052BB和环形音圈单元1054B和后端中心通孔单元1058B的配合结构(即多层振膜复合结构)就实现了后端扬声器振膜单元1052B/1052BB和环形音圈单元1054B作为前后端声波流通谐振传声的最大量化的优化作用和传输效果。这样配合结构的优点是声波频响曲线表现平坦,稳定,高中低音频清晰,因而达到高保真的三维立体声及其效果。

当然,在前后扬声器振膜单元1052A/1052B/1052BB和环形音圈单元1054B和后端通声孔单元1058A/1058B的多层振膜复合结构里,如果需要,可以配合多个声波阻尼单元或阻尼膜单元1066A/1066B来平衡和优化各种前后声波和改善频响,有助于前后声波相互谐振而不相互干扰。这是因为声波具有散射性,同时也具有很强的指向特性。声波阻尼单元1066A/1066B可以引导声波向需要的方向和规律和音效和频响发展。

如果需要的话,声波阻尼单元1066A/1066B也可以应用到图1到图5A里的前端声音输出单元1020里或是任何声波所在的腔体里或通道里或通孔口等等。声波阻尼单元1066A/1066B可以是各种结构和尺寸和位置和多种多样的,例如,可以是海绵材料,薄片材料,弹力多孔材料,圆柱形,园片形,长方形,厚的,薄的,等等。

前后端振膜单元1052A/1052B/1052BB可以有多种多样的设计,形状,结构,体系,方式,材料,尺寸,位置,等等。例如,振膜的材料优选地采用密度小透音快频率宽高保真的塑料聚酯薄膜,也可以是酚醛塑料膜或是尼龙膜。振膜的形状为圆形,中心部分设计成弓弧形状也可以加上增强筋以增大振膜有效面积。例如,后端振膜单元1052B/1052BB,综合考虑到声波的指向特性,可以是喇叭形的,直片形的,圆形的,弧线式样的,双重两面的,多重或单层多面的,一层双膜面,多层多膜面,多层振膜同方向或相对,涂漆的,镀料的,双面镀料的,有孔的,无孔的,折线/叠或光面,多层相同或多层不同,直径尺寸可以和后端扬声器1018B的直径一样或接近或小些,优选在5毫米到15毫米,厚度优选在小于0.01到0.3毫米,等等。如果应用到头戴设备、头戴式耳机、耳罩或助听设备或耳挂式或耳罩式耳机的扬声器上,所有尺寸就要相应地大些。

前后端中心通声孔单元1058A/1058B可以有多种多样的设计,形状,结构,体系,方式,材料,尺寸,位置,等等。例如,后端中心通声孔单元1058B,综合考虑到声波的散射性和指向性,可以是直通形的,直通形带喇叭口的,喇叭形的,弧线式样的,涂漆的,镀料的,有壁孔的,无壁孔的,有磁体孔套的,有金属孔套的,孔直径尺寸优选在小于0.2毫米到3毫米,孔深度优选在小于0.5毫米到5毫米,等等。如果应用到头戴设备、头戴式耳机、耳罩或助听设备或耳挂式或耳罩式耳机的扬声器上,所有尺寸就要相应地大些。同时,后端通声孔单元1058B的(空间)结构对声波也同时同步可以进行传输和谐振。

后端中心通声孔单元1058B直接和后端单元1006B的后端声音谐振器1036B相通。所以,后端中心通声孔单元1058B的孔壁和孔口沿可以成为后端音效单元1032B的一部分。后端中心通声孔1058B的孔内腔和空间也可以成为后端声音谐振器1036B的一部分。

前后音圈单元1054A/1054B是直接连接振膜单元1052A/1052B/1052BB的振动系统中的振动。环形音圈单元1054B和单层振膜单元或多层复合振膜单元1052B/1052BB直接相连,也可以是分成多个音圈对应于多层振膜各自相连,也就是一个环形音圈对应一个振膜单元,环形音圈单元1054B可以是单一多层多格的,也可以是多重多层多格的,从而在振膜单元1052B/1052BB和环形音圈单元1054B之间就形成多层次或多区域的音效单元和谐振空间的音效结构1052BB。音效结构1052BB的多层音效单元类似多腔(蜂窝效果)1052BW1/2把多声波多层透射传输和音效的同步同时更加强化和优化,同时,各个声波又不相互干扰。环形音圈单元1054A/1054B的音圈部分优选地采用音质表现更加清晰的铜包银线,也可以选用铜漆包线或是铜包铝线等等。前后振膜单元1052A/1052B/1052BB和前后环形音圈单元1054A/1054B组合成振膜驱动单元或体系。

前后磁铁单元1056A/1056B是通过音频信号电流产生磁场变化而引起环形音圈单元和振膜单元振动发声声波的关键部件。磁铁单元1056A/1056B的永磁材料优选为钕铁硼或是稀土合金或是铝镍钴合金等等,以达到磁路平衡稳定,体积微型化,磁力大幅度增强。

前后轭铁单元1060A/1060B是连接和紧绷住振膜单元1052A/1052B/1052BB的膜边缘以让振膜单元1052A/1052B/1052BB和环形音圈单元1054A/1054B一起得到充分和自由的振动。轭铁单元1060A/1060B和磁铁单元1056A/1056B可以是连合为一体的,也可以是分开连接的。

前后的环形音圈单元1054A/1054B和磁铁单元1056A/1056B和前后轭铁单元1060A/1060B和声波阻尼单元或阻尼膜单元1066A/1066B和轭铁单元1060A/1060B可以有多种多样的设计,形状,结构,体系,方式,材料,尺寸,位置,等等。

由于前后扬声器1018A/1018B是前后同轴排列,前后声波1018AW/1018BW和1018ABW/1018BBW具有共同声波中心轴线1088。声波中心轴线1088也是前后喇叭1018A/1018B排列的中心轴线。声波轴线1088贯通整个扬声器罩1006前后端1006A/1006B,包含了声音输出单元1020到后线钮单元1016,因此,也是X-Y-Z轴三维立体声的具有Z轴深度的整体声波轴线。

前端扬声器1018A和后端扬声器1018B或和多个扬声器可以是相同类型的,也可以是不相同类型的,也可以是混合类型的,也可以是包含相同的单元部件和结构和材料和尺寸和方法和系统和配置的,也可以是不相同的,也可以是部分相同,部分不相同的,可以是一样的,也可以是不一样的,或是部分一样,部分不一样,并且都可在本申请的任意附图和任意实例中使用、应用或者互换,以用于所有类型的耳机1000。

这样,前后声波1018AW/1018BW/1018ABW/1018BBW从扬声器罩1006前端部1006A里的前端扬声器1018A和前端音效单元1032和前端声音谐振器1036/1036A,一直到扬声器罩1006后端部1006B里的后端扬声器1018B的后端振膜单元1052B/1052BB和环形音圈单元1054B和背后直接连通后端通声孔单元1058B再直接连通后端音效单元1032B和后端声音谐振器1036B,共同形成前后声波同时同步产生传输谐振输出的整体循环系统,从前端部1006A的最前端声音输出单元1020一直到后端部1016的最后端都充分产生最大量化的Z轴音效输出最优化的X-Y-Z三维立体效果。

在图1到图1E的实例中,后端扬声器1018B的振膜单元1052B/1052BB的透声结构和功能和后端中心通声孔单元1058B配合进行前后端声波1018AW/1018BW和1018ABW和1018BBW的相通和传输,从后端单元1006B里的最后端向前传输,从而实现具有更深深度的Z轴深度的三维立体声效果。因为后端声波1018ABW/1018BBW和前端声波1018AW/1018BW具有声波深度距离1084/1086的最优化的Z轴深度声音效果,从而实现更好的更深的X-Y-Z的三个维度和空间的立体声。

耳机1000的后端扬声器1018B的振膜单元1052B/1052BB具有透声谐振结构和功能和作用。扬声器振膜是扬声器中产生声音和传输声音的最主要部件。振膜的振动产生声波发出声音。在振膜产生声波的同时,也具有传声的结构和功能和作用。古代乐器的振膜是以天然材料制做来产生和传输声音,例如,笛子的振膜采用芦膜或竹膜,鼓的振膜采用动物皮,二胡的振膜采用蟒皮,等等。双面鼓的双面鼓膜敲击发声,声波产生和传输到鼓筒腔里谐振优化放大,然后再由双面鼓膜传输到外面形成鼓声。二胡的琴膜发声声波产生和传输到琴筒里谐振优化放大,然后再由琴膜传输到外面形成二胡声。笛子的笛膜发声声波产生和传输到笛管里谐振优化放大,然后再由笛膜传输到外面形成笛声。

也就是说,鼓和二胡和笛子的振膜在产生声波发出声音的同时,这些声波传输到鼓腔内,二胡的琴筒(腔)内,笛子的声管内,进行谐振后再通过振膜的透声结构和功能向外传输,形成鼓声,二胡琴声,和笛声。鼓膜具有适合鼓声声波产生和传输的内部结构和功能和作用。二胡琴膜具有适合二胡琴声声波产生和传输的内部结构和功能和作用。笛膜具有适合笛声声波产生和传输的内部结构和功能和作用。

耳机采用的振膜都是人工制造的材料。入耳式耳机的人造振膜的质量要求很高。人造振膜的质量要求主要集中在声速大和密度低来产生声音的灵敏度越高越好,音频响应力越宽广越好,音质透射性越大越好。人工材料的振膜确实实现了声速大和密度低这两个对声波传输属性的要素。声学工业中,人工材料的振膜在电子传声器和电子扬声器中应用最为广泛和类似。电子扬声器和电子传声器的振膜一般采用塑料聚酯膜或是金属膜片或涂有金属的塑料膜,也可以采用合金铝膜片或其它金属膜片。

声波具有放射和反射和透射现象也是声传播的一个重要特征。由于人造振膜具有良好的透射声波和透射率,当声波遇到人造振膜面时,几乎所有的声波能量都能透射到振膜面的另一个侧面。这种声波能量放射和反射和透射的性质是由声学性质决定的。

因此,后端扬声器1018B的振膜单元1052B/1052BB可以是很薄的,一般在小于0.01毫米到0.3毫米之间,甚至可以达到微米(μm)。其人工材料有利于极大的声速,其密度也随着减薄相当疏散而利于声波的产生和传输,因而增加其对声波的响应力积极敏感,从而形成其对声波透射的特性阻抗非常接近于声波本身的特性阻抗。所以,后端扬声器1018B的振膜单元1052B/1052BB振膜具有类似或接近于声波的全部透射。换句话说,后端扬声器1018B的振膜单元1052B/1052BB对声波来说几乎是透明---透声的,即成为透明---透声的振膜,同时也加宽了振膜单元1052B/1052BB共振或谐振的声波波峰,特别是通过振膜单元1052B之间就形成多层的音效单元和谐振空间的音效结构1052BB的多层音效单元类似多腔(蜂窝效果)1052BW1/2把多声波多层透射谐振传输和音效的同时同步更加强化和优化,同时,多声波又不相互干扰。

例如,后端扬声器1018B的镍材质的振膜单元1052B/1052BB的厚度在10-5米(0.01毫米),而人耳能听到的普通声波(20Hz到20kHz)的波长是两个相邻的波峰或两个波谷之间的距离,一般在17毫米到7米之间,可见,波长远远大于振膜厚度,振膜具有很强的声波透射性。这样,后端扬声器1018B的振膜单元1052B/1052BB本身也同时具有声波传输的中间层效应。当这振膜单元1052B/1052BB材料上的复合结构的中间层的厚度比层中的声波波长相比很小,那么这中间层在声学上就好象不存在一样,声波仍旧可以全部透过,达到了振膜对声波传输的透声功能和声波优化作用。特别是通过复合振膜1052B之间就形成多层的音效单元和谐振空间的音效结构1052BB的多层音效单元类似多腔(蜂窝效果)1052BW1/2把多声波多层透射谐振传输和音效的同步同时更加强化和优化,同时,多声波又不相互干扰。

同时,后端扬声器1018B的振膜单元1052B/1052BB的结构上也使用和涂上涂料或镀层以利于声波透射。这种增透效应与光学器件的镀膜增透原理是一样的,声学教材中称为匹配层技术。例如,后端动圈扬声器1018B的多层复合振膜单元1052B/1052BB(材料上和涂/镀料上的复合)采用塑料薄膜或纤维薄膜或任何人造材料薄膜的薄膜型结构可以镀镍或镀铝或镀镍或其他金属镀层或任何液晶聚合物来提高对声波更好的灵敏度和透射传输和响应能力,达到其对声波透射的特性阻抗非常接近于声波本身的特性阻抗,所以,后端扬声器1018B的振膜单元1052B/1052BB具有类似或接近于声波的全部透射和优化。特别是通过复合振膜1052B之间就形成多层的音效单元和谐振空间的音效结构1052BB的多层音效单元类似多腔(蜂窝效果)1052BW1/2把多声波多层透射谐振传输和音效的同步同时更加强化和优化,同时,多声波又不相互干扰。

后端扬声器1018B采用直射式动圈扬声器结构---扬声器振膜单元1052B/1052BB和环形音圈单元1054B完全开放地直接接触声波.并且,后端扬声器振膜单元1052B/1052BB后面直接和后端中心通声孔单元1058B和后端空腔1006B相通。这样,前后端声波1018AW/1018BW和1018ABW/1018BBW就通过(透射)后端扬声器振膜单元1052B/1052BB和环形音圈单元1054B和后端中心通声孔1058B而相通配合同时同步流动输出。因此,后端扬声器振膜单元1052B/1052BB和环形音圈单元1054B和后端中心通声孔单元1058B的连通结构(即多层振膜复合结构)就实现了后端扬声器振膜单元1052B/1052BB作为前后声波1018AW/1018BW和1018ABW/1018BBW流通的优化作用和谐振效果,从而产生具有更好的Z轴深度的三维立体声。

前端扬声器1018A可以采用和后端扬声器1018B一样的扬声器及其配置,也可以是不一样的结构或尺寸或材料或单元或技术及其配置。也就是说,前后端扬声器1018A和1018B可以是一样的,也可以是不一样的,也可以是前端扬声器单元1018A可以包含多个扬声器,也可以是后端扬声器单元1018B可以包含多个扬声器。通常,前面扬声器1018A体积小,一般在5-10毫米直径的动圈喇叭或是2-3毫米长方形的动铁喇叭,后面的扬声器1018B体积大些,一般在10-16毫米直径的动圈喇叭。当然,也可以前面扬声器1018A体积大,后面的扬声器1018B体积小些,或是前后扬声器1018A/1018B的体积都一样。

前面扬声器1018A可以是动圈振膜喇叭,也可以是动铁喇叭,或是其它形式的喇叭。后面扬声器1018B也可以是动圈振膜喇叭,也可以是动铁喇叭,或是其它形式的喇叭。

前后扬声器1018A和1018B的尺寸,规格,种类,设计,结构,外形,系统,方式,等等都可以是多种多样的,也可以相互应用和相互替换的。

前后扬声器1018A/1018B的振膜1052A/1052B/1052BB,可以是一样的,也可以是不一样的,其各自的设计,材料,尺寸,规格,工艺,结构,种类,外形,系统,方式,等等都可以是多种多样的,也可以相互应用和相互替换的。

前后端中心通声孔单元1058A/1058B的设计,材料,工艺,结构,尺寸,规格,种类,外形,系统,方式,等等都可以是多种多样的,也可以相互应用和相互替换的。进一步,前后端中心通声孔单元1058A/1058B的位置可以配合前后振膜1052A/1052B/1052BB传输声波的需要而任意设计在任何地方和角度。

后端扬声器1018B的磁铁单元1056B包含有磁铁结构的南北磁极,在电流信号通过时,产生电流和磁性的波动,引起环形音圈单元1054B的振动,从而带动复合振膜1052B/BB振动产生声波1018B发出声音。轭铁单元1060B是连接和固定住振膜单元1052B/BB的膜边缘以让振膜单元1052B/BB紧绷并和音圈1054B一起得到充分和自由的振动。磁铁单元1056B和轭铁单元1060B可以是连合为一体的,也可以是分开连接的。

前端扬声器的磁铁单元1056A包含有磁铁结构的南北磁极,在电流信号通过时,产生电流和磁性的波动,引起环形音圈单元1054A的振动,从而带动振膜单元1052A振动产生声波1018A发出声音。轭铁单元1060A是连接和固定住振膜单元1052A的边缘以让振膜单元1052A紧绷并和音圈1054A一起得到充分和自由的振动。磁铁单元1056A和轭铁单元1060A可以是连合为一体的,也可以是分开连接的。

前后端扬声器1018A/1018B前后排列组合1050可以具有多样变化的组合方式,例如,可以是两个扬声器以上的组合,也可以是扬声器一前一后,二前一后,一前二后,二前二后,多前多后,也可以同方向的,不同方向的,角度排列的,面面相对结构,面面错开或角度相对,等等多样的组合。

当应用到如图1至5A所示的所有实施例中时,以上所有各个单元和特征的位置、尺寸、设计、形状、功能和材料可视情况需要改变。

图1B是在图1到图1AA基础上发展来的另一个实例。前后端扬声器1018A/1018B前后排列组合1050为面面相对结构。

前后端扬声器1018A/1018B前后排列组合1050的面面相对结构也会产生很好的优秀三维立体声效果。多扬声器前后排列面面相对结构使得前后扬声器1018A/1018B之间的距离1084及其声波距离1086更加明确和清晰。这样,前后扬声器1018A/1018B的振膜1052A/1052B/1052BB也是面面相对。作为各自声波的声源,振膜单元1052A和1052B/1052BB之间的距离也就是前后扬声器之间的深度距离1084。前端振膜单元1052A的发声声波到声音输出单元1020BBB的距离为前端声波距离1086A;后端振膜单元1052B/1052BB的发声声波到声音输出单元1020BBB的距离为后端声波距离1086B。也就是说,深度距离1084也就是等同于后端声波距离1086B减前端声波距离1086A的声波深度距离1086。在这个基础上,具有Z轴深度的声波距离1086和前后扬声器的前后排列距离1084是一样的。这样就更加方便于距离1084和声波深度1086的设计,规划,安排,结构,方式,位置,等等,以产生更好的具有Z轴深度的三维立体声及其效果。

由于是前后端扬声器1018A/1018B面面相对结构,前后端扬声器1018A/1018B的振膜1052A/1052B/1052BB也是面面相对排列结构。此种排列组合要重新安排前后扬声器1018A/1018B的前后声波1018AW/1018BW和1018ABW/1018BBW的频率和波动和谐振,以避免各个声波之间的直接重叠或对抗或排斥,造成声波输出的混淆。

例如,在前后端扬声器1018A/1018B的前后振膜单元1052A/1052B/1052BB之间采用相互避让和推挽的振动模式。这种相互避让和推挽的振动模式涉及到整个前后振膜单元1052A/1052B/1052BB和前后磁铁单元1056A/1056B和前后音圈1054A/1054B的整体设计和材料和结构的变化,甚至还可能涉及到声音控制器单元1080及其电子音频信号的变化,例如,采用不同的振膜单元或环形音圈单元或磁铁材料和结构,这样,前后振膜1052A/1052B/1052BB的频率之间形成互补和互让,从而产生更好的三维立体声。再例如,采用声音控制器1080的分频管理,高中低音分频到前后振膜单元1052A/1052B/1052BB的分开处理,来达到前后振膜单元1052A/1052B的频率之间形成互补和互让,从而产生更好的三维立体声及其效果。

图1C是在图1到图1B基础上发展来的另一个实例。前后端扬声器1018A/1018B前后排列组合1050为90度直角前后排列结构。由于是前后端扬声器1018A/1018B的90度直角前后排列结构,前后端扬声器1018A/1018B的振膜1052A/1052B/1052BB也是90度直角前后排列结构。前后端扬声器1018A/1018B前后排列组合1050的直角前后排列结构也会产生很好的优秀三维立体声及其效果。

此时,前后端扬声器1018A/1018B的振膜1052A/1052B/1052BB产生的前后声波1018AW/1018BW和1018ABW/1018BBW也形成一个直角关系。后端扬声器1018B的声波中心线1088SB和前端扬声器1018A的声波中心线1088SA是90度直角,这就需要重新安排前后扬声器1018A/1018B的前后声波1018AW/1018BW和1018ABW/1018BBW的频率和波动和谐振,以达到最佳组合而产生的三维立体声效果。这样排列的好处之一就是前端音效单元1032和前端声音谐振器单元1036的空间加大而优化音质。

当前端扬声器1018A的振膜单元1052A的前面空间加大时,由此产生的前端声波1018AW就会有更多的谐振空间以达到更饱满的声波播放的效果。如果前端扬声器1018A是以高音为主的话,此时的高音表现就会更加嘹亮和奔放。前端声波线1088SA直接向上在前端音效单元1032和前端声音谐振器单元1036的加大空间里播放和输出。

同时,后端扬声器1018B的振膜单元1052B/1052BB的前面响应空间也相应加大了,由此产生的后端声波1018BW和1018ABW/1018BBW就会直接从后端振膜单元1052B/1052BB和后端中心通声孔单元1058B输出到更多的谐振空间里以达到更直接的声波播放的效果。振膜单元1052B/1052BB是一层或多层复合振膜组合,多层振膜单元1052B的边缘可以是相连或分开。环形音圈单元1054B和多层振膜单元1052B/1052BB直接相连,可以分成多个环形音圈单元结构对应于多层振膜结构各自相连,或可以是一个环形音圈单元结构对应一个振膜单元结构或多个振膜单元结构,或者也可以是一个振膜单元结构对应于一个或多个环形音圈单元结构,由此,在多层复合振膜单元1052B和环形音圈单元1054B之间就形成多层次或多区域的音效单元和谐振空间的音效结构1052BB。音效结构1052BB的多层次音效单元类似多腔(蜂窝效果)把声波多层透射谐振传输和谐振音效的同步同时强化和优化。当环形音圈单元1054B在磁铁单元1056B中感得电信号的流动变化而产生振动,从而带动振膜单元1052B及其复合振膜单元之间的音效结构1052BB同步振动而产生声波1018BW发出声音展现声波X-Y轴中的一个维度的立体声。振膜单元及其复合振膜单元之间的音效结构1052B/1052BB具有更好的声波谐振和优化效果从而产生更好的声波和传输。如果后端扬声器1018B是以中低音为主的话,此时的中低音表现就会更加深沉和有力。具有Z轴深度的后端声波线1088SB直接向前在前端音效单元1032和前端声音谐振器单元1036的加大空间里播放和输出,从而产生加强的更深的Z轴深度的优秀X-Y-Z三维立体声效果。

进一步,前后端扬声器1018A/1018B前后排列组合1050为90度直角前后排列结构也可以进行多样变化。前后端扬声器1018A/1018B的前后排列组合系列1050可以为多种角度前后排列结构系列。例如,前后端扬声器1018A/1018B的前后振膜单元1052A/1052B/1052BB之间的角度1062可以是从0度到360度的立体全方位的角度组合,或是以1088SA为轴线的360度立体全方位角度组合,或是以1088SB为轴线的360度立体全方位角度组合。而且,两个前后轴线1088SA/1088SB之间也可以为360度全方位角度的组合。这样多角度组合的好处很多,其中一个优选是当前后端扬声器1018A/1018B的前后振膜单元1052A/1052B/1052BB之间处于25度角时,前后振膜单元1052A/1052B/1052BB所产生和传输的高音嘹亮和低音回响及和声会在Z轴上产生更强烈的深度感。

又例如,在前后振膜单元1052A/1052B/1052BB材料和结构不变的情况下,采用0到45度角的多角度组合来达到前后振膜单元1052A/1052B/1052BB的频率之间最佳的谐振配合,形成最佳的前后声波1018AW/1018BW和1018ABW/1018BBW,从而产生更好的三维立体声。

图1D是图1到图5A的前后端扬声器1018A/1018B前后排列组合系统1050里的扬声器振膜单元1052B和后端通声孔单元1058B及其相关部件的另一种实施例的细图。后端振膜单元1052B/1052BB也可以采用双极式电磁扬声器的振膜体系配合贯通的后端中心通声孔单元1058B(声波通道单元)。

采用双极式电磁扬声器的后端振膜单元1052B/1052BB采用的软磁材料圆状膜片,由冷轧低碳钢带制造,也可采用铁钴钒合金制造,厚度在0.2-0.22毫米。很平整的振膜单元表面要进行镀层厚度均匀处理,以达到平整,磁性能和弹性良好来实现灵敏度高和频率响应性好和稳定性好。环形音圈单元1054B采用双极式直接和磁铁体系1056B相连,要注意南北磁性的准确连接。后端振膜单元1052B/1052BB和双极式环形音圈单元1054B组合成振膜驱动单元1052B/BB/1054B。这样,当声音电子信号输入环形音圈单元1054B时,产生了一个随声音信号而变的交变磁场,此交变磁场与原有的恒磁场相互迭加或相减,产生交变吸力,吸引振膜单元1052B/1052BB作扭曲振动,从而产生声波发出声音1018B。

后端振膜单元1052B/1052BB的超薄和镀层而具有良好的声波透射传输性,而且后端振膜单元1052B/1052BB的良好完整的平面完全开放地直接接触声波,同时又直接和环形音圈单元1054B和后端中心通声孔单元1058B和后端空腔相通。这样,前后端声波1018AW/1018BW和1018ABW/1018BBW就通过(透射)后端扬声器后端振膜单元1052B/1052BB以前后声波流动中心轴线1088同轴而相通流动输出。因此,后端扬声器后端振膜单元1052B/1052BB和环形音圈单元1054B和后端中心通声孔单元1058B的连通结构就实现了后端扬声器后端振膜单元1052B/1052BB和环形音圈单元1054B作为前后声波1018AW/1018BW和1018ABW/1018BBW流通谐振的优化作用和谐振效果,从而产生更好的三维立体声。

前端扬声器1018A可以和后端扬声器1018B一样的结构和材料和尺寸,也可以是不一样的。

在上文中提及并且在图1-5A中示出的所有单元内部可包括具有任意类型的设计、形状、材料、格式、系统、功能、位置和结构的单个或多个单元。

上述所有单元可根据需要而在设计、形状、结构、系统、方法、功能、位置和材料上发生变化,从而应用于图1-5A所示耳机1000的各种不同实施例。

根据需要,在上文中解释并且在图1-5A中示出的所有单元、功能和结构可在本申请的任意附图和任意单元中使用、应用或者互换,以用于所有类型的耳机1000。

图1E是图1到图5A的前后端扬声器1018A/1018B前后排列组合系统1050里的扬声器后端振膜单元1052B/1052BB和中心振动杆1052C和环形音圈单元1054B和后端通声孔单元1058B及其相关部件和结构(即多层振膜复合结构)的另一种实施例的细图。后端振膜单元1052B/1052BB和中心振动杆1052C和环形音圈单元1054B采用差动式电磁扬声器的振膜体系配合后端中心通声孔单元1058B。

后端振膜单元1052B/1052BB和中心振动杆1052C和环形音圈单元1054B采用差动式电磁扬声器结构的优越点有二个,结构平衡和结构可靠。后端振膜单元1052B/1052BB是直接连接中心振动杆1052C组合成振膜驱动单元1052B/BB/C。以中心振动杆1052C为中心左右驱动振膜单元1052B/1052BB产生声波发出声音1018B。这样中心支点结构是很平衡的,采用的铸造铝支架也很牢固。

采用差动式电磁扬声器的后端振膜单元1052B/1052BB具有中心小孔,穿入振动杆1052C,振动杆一端卷起加胶水固定在后端振膜单元1052B/1052BB的中心孔里相连接。音圈1054C分别套入磁体单元1056B的磁极上。这样,当声音电子信号输入环形音圈单元1054C时,产生了一个随声音信号而变的交变磁场,其磁场方向依输入电信号正负半周和在左右磁极(线圈绕向)而不同,由此,振动杆1052C在磁力作用下向磁极左右倾斜振动,从而,连接振动杆1052C的后端振膜单元1052B/1052BB也相应地上下振动而产生声波发出声音1018B。

后端振膜单元1052B/1052BB的超薄和镀层而具有良好的声波透射传输性,而且后端振膜单元1052B/1052BB的良好完整完全开放地直接接触声波,同时又直接和振动杆1052C相连并和后端中心通声孔单元1058B和后端空腔相通。中心振动杆1052C又和前后声波流动中心轴线1088同轴同向。这样,前后端声波1018AW/1018BW和1018ABW/1018BBW就通过(透射)后端扬声器振膜单元1052B/1052BB而相通流动谐振输出。因此,后端扬声器振膜单元1052B/1052BB和中心振动杆1052C和后端中心通声孔单元1058B的连通结构(即多层振膜复合结构)就实现了后端扬声器振膜单元1052B/1052BB作为前后声波1018AW/1018BW和1018ABW/1018BBW流通谐振的优化作用和谐振效果,从而产生更好的Z轴深度的三维立体声。

前端扬声器1018A可以和后端扬声器1018B一样的结构和材料和尺寸,也可以是不一样的。

图1D和图1EE的实例和结构都可以整体或是部分地应用在图1到图5A的所有说明和实例中。

如图1F的声波表现曲线图所示,按图1到1E所示的耳机双扬声器前后排列组合系统1050中的扬声器振膜和振膜镀膜和通声孔配合的实施例之一。前端扬声器1018A采用直径6毫米的动圈喇叭。后端动圈扬声器1018B的后端通声孔单元1058B的尺寸为直径2毫米,长度2毫米。后端扬声器1018B的振膜1052B直径为11毫米,其材料为塑料薄膜聚酯膜片并且厚度为0.01毫米所表现的为声波曲线A(虚线)。应用声学和光学的中间层匹配技术和镀膜增透效应,后端扬声器振膜1052B材料为塑料薄膜聚酯膜片厚度为0.01毫米加上镀镍层膜(中间层增透)后的声波表现为声波曲线B(实线)。镀铝层膜厚度为0.01毫米。这样,该振膜加镀膜的厚度为0.02毫米。

从声波曲线A和声波曲线B的对比中可以表现出,声波曲线A表现出声波在低中高音频中都是比较平缓的。这表明后端振膜单元1052B所透射而产生和传输的后端声波1018ABW/1018BBW比较温和,在低音段和高音都有理想的表现。声波曲线B是后端振膜单元1052B加上镀镍层膜后表现出整个音频音量比声波曲线A增加了3-5个dB(Y轴方向),并且声波曲线B在低中高音频中都更加突出和优秀,更进一步地在X轴上的Hz量的1K到10K之间的表现尤其出色。这表明后端振膜单元1052B加上镀镍层膜后具有更多的更好的声波透射和优化而产生和传输的后端声波1018ABW/1018BBW在低音段中音段和高音段都有理想的起伏变化的出色表现,能够真实还原原始音乐的三维立体声效果。

显然地,声波曲线B的声音输出在X-Y-Z的三维立体声效果上比声波曲线A的声音输出更好更加理想。

当然,为获得真实立体声音乐要求的不同的X-Y-Z三维立体声更好的效果声音输出,扬声器振膜及其镀膜的尺寸,材料,厚度,结构,方法,位置,角度,形状,等等,都是可以多种多样的。

例如,图1FF的声波表现曲线图所示,按图1到1E所示的耳机双扬声器前后排列组合系统1050中的扬声器复合振膜和/或振膜镀膜和通声孔配合的实施例之一。前端扬声器1018A采用直径6毫米的动圈喇叭。后端动圈扬声器1018B的后端通声孔单元1058B的尺寸为直径2毫米,长度2毫米。后端扬声器振膜单元1052B材料为塑料薄膜聚酯膜片厚度为0.01毫米加上镀镍层膜(中间层增透)后的声波表现为声波曲线AA(虚线)。镀铝层膜厚度为0.01毫米。这样,该振膜加镀膜的厚度为0.02毫米。后端扬声器1018B采用振膜单元1052B/1052BB直径为11毫米,其各层振膜材料为塑料薄膜聚酯膜片厚度为0.01毫米加上镀镍层膜(中间层增透)的声波表现为声波曲线BB(实线)。镀镍层膜厚度为0.01毫米。这样,该各层振膜加镀膜的厚度为0.02毫米。而在复合振膜各自膜片之间的距离为1-2毫米。同时,振膜单元1052B/1052BB各自膜片和环形音圈单元1054B之间也具有多层次的传输和谐振结构和空间。

从声波曲线AA和声波曲线BB的对比中可以表现出,声波曲线AA表现出后端振膜单元1052B所透射而产生和传输的后端声波1018ABW/1018BBW比较温和,在低音段和高音都有理想的表现。声波曲线BB表现出整个音频音量比声波曲线AA增加了4-7个dB(Y轴方向),并且声波曲线BB在低中高音频中都更加出色的突出和优秀,更进一步地在X轴上的Hz量的1K到10K之间的表现尤其更加平稳和出色。这表明后端振膜单元1052B/1052BB具有更多的更好的声波透射和谐振优化而产生和传输的后端声波1018ABW/1018BBW在低音段中音段和高音段都有更加理想的起伏平稳变化的出色优化表现,能够更加真实还原原始音乐的三维立体声效果。

显然地,声波曲线BB的声音输出在X-Y-Z的三维立体声效果上比声波曲线AA的声音输出更好更加理想。

如图1G的声波表现曲线图所示,按图1到1E所示的耳机双扬声器前后排列组合体系1050中的后端扬声器通声孔单元1058B如何配合后端振膜单元1052B/1052BB为整体系统的实施例之一。前端扬声器1018A采用直径6毫米的动圈喇叭。后端动圈扬声器振膜单元1052B/1052BB直径为11毫米,厚度为0.01毫米。根据声波传输的指向特性,后端扬声器通声孔单元1058B可以设计为不同尺寸和形状和结构和位置来配合后端振膜单元1052B/1052BB实现更好的声波导向性的传输和谐振。

声波曲线C(虚线)是通声孔单元1058B具有直径2毫米和长度3毫米的直筒带平口形状所达到的声波曲线表现。声波曲线D(实线)是通声孔单元1058B具有直径3毫米和长度3毫米的直筒带喇叭口所达到的声波曲线表现。

从声波曲线C和声波曲线D的对比中可以表现出,声波曲线C表现出声波在低中高音频中都是比较平缓的,在低音段和高音段都有理想的表现。声波曲线D表现出整个音频音量比声波曲线C增加了3-5个dB(Y轴方向),并且声波曲线D在低中高音频中都更加突出和优秀,更进一步地在X轴上的Hz量的1K到10K之间的表现尤其出色。这表明通声孔单元1058B的直径加大1毫米并在其两端进出口处修改为喇叭口形状以加强声波导向性的指向传输而具有更多的更好的优化传输谐振后端声波1018ABW/1018BBW在低音段中音段和高音段都有更加理想的起伏变化的出色表现,能够更好地真实还原原始音乐的三维立体声效果。

显然地,声波曲线D的声音输出在X-Y-Z的三维立体声效果上比声波曲线C的声音输出更好更加理想。

当然,为获得真实立体声音乐要求的不同的X-Y-Z三维立体声更好的效果声音输出,扬声器后端通声孔单元1058B和所有其它各种通孔单元的尺寸,材料,厚度,结构,方法,位置,角度,形状,等等,在和后端振膜单元1052B/1052BB配合为整体系统中,都是可以多种多样的。

进一步,图1F/1FF和图1G里的声波曲线B/BB和声波曲线D所相应有关的任何单元或其之间的综合配置包括尺寸或位置或结构或材料或方法也可以进行多种相互配合或匹配或交叉配置而产生最大优化的高保真音效的X-Y-Z轴的三维立体声。

图1F/FF/G里的声波曲线B/BB/D的表现及产生的各种配置可以优选地综合应用到图1到5A里的各个实例中进行最大量化地发展和应用。

在上文中提及并且在图1-5A中示出的所有单元内部可包括具有任意类型的设计、形状、材料、格式、系统、功能、位置和结构的单个或多个单元。以及上述所有单元可根据需要而在设计、形状、结构、系统、方法、功能、位置和材料上发生变化,从而应用于图1-5A所示耳机1000的各种不同实施例。

根据需要,在上文中解释并且在图1-5A中示出的所有单元、功能和结构可在本申请的任意附图和任意单元中使用、应用或者互换或交叉使用,以用于所有类型的耳机1000。

在如图2和图2A所示的另一个实施例,耳罩1006具有不规则的形状且将前/后扬声器1018A和1018B直线排布在耳机的前端和后端,在扬声器1018A和1018B各自的不同的中心轴线1018AX和1018BX间有一轴宽度1088B。宽度1088B是由直线排布在耳机前端的以1018AX为中心轴线的扬声器1018A和直线排布在耳机后端的以1018BX为中心轴线的扬声器1018B构成,中心轴线1018AX在扬声器1018B的中心轴线1018BX上方,轴线1018BX设置于扬声器1018A的中心轴线1018AX的下方。轴线1088AX和1088BX是多扬声器1018A和1018B的中心点线,多扬声器1018A/1018B设置于耳机的前端和后端的不同水平位置且朝前与水平轴线形成90度角。

因此,两个扬声器1018A和1018B的前后振膜单元1052A/1052B/1052BB也相应地通过各自不同的中心轴线1018AX和1018BX被直线排布在耳机的前端和后端,且形成一轴线上宽度1088B的不同。1088B的宽度数据是1018AX和1018BX之间的距离。通过多次实验发现,1088B的宽度数值取在1毫米至5毫米的范围内时能产生更好的三维立体声效果。

有宽度1088B存在下,前后振膜单元1052A/1052B/1052BB各自处于不同轴线1018AX和1018BX的扬声器的立体声波输出1018AW和1018BW具有不同的波率和波形。为了将输出波混合后得到更接近于原立体声音乐的更好的三维立体声效果并传入听者的耳朵里,控制这些波率和波形是非常重要的。

更重要的是,宽度差1088B也是后端振膜单元1052B/1052BB和后端中心通声孔1058B的中心轴线和前面反弹回来传输到后端的声波1018ABW/1018BBW的中心轴线的差距。此时,反弹回来传输到后端的声波中心线1018AX相应地在改变到了后端中心通声孔1058B的上方,而不是在中间线上,就会改变在后端中心通声孔1058B内通过的声波1018ABW/1018BBW的频率和波形,加大了Z轴的立体声谐振空间。在前后扬声器1018A和1018B之间的外部结构和设置的深度1084和前后声波深度1086A的基础上加入和配合了前后声波中心轴线的宽度差1088B,这样就可以达到更加深沉的谐振效果,另外,反弹回来传输到后端的声波中心线1018AX也可以是超出中心孔的范围,也会获得很好的三维立体声音效。

也就是说,在前后端振膜单元1052A/1052B/1052BB和后端中心通声孔1058B的结构(即多层振膜复合结构)里,前后扬声器1018A/1018B的声波轴线1018AX/1018BX之间的宽度1088B,加上前后声波深度1086A,都对前后声波1018AW/1018BW和1018ABW/1018BBW的频率和波形会有不同的影响。因此,宽度1088B和深度1086A决定了为获得X-Y-Z轴的三维立体声效果,于前端和后端各自直线排布在不同轴线1018AX和1018BX上的扬声器1018A和1018B产生的三维立体声的更好的Z轴更深度扩展。

图2和图2A所展示的前后扬声器前后直线错位排列体系1050的结构可以是多种多样的,也可以前后直线排列,也可以是前后非直线排列,也可以是前后同向并且相互有各种角度的,也可以是前后面对并且相互有各种角度的。

相应地,作为前后端扬声器1018A/1018B的外部系统包含和配合的前后部1006A/1006B、前端音效单元1032、前端声音回响效果单元1036/1036A、后端声音回响谐振效果单元1036B和后端音效单元1032B均为不规则且不同的形状,也可以是相同规则和形状,或部分相同,部分不相同。这些单元1006A/1006B、1032、1032B、1036/1036A、1036B、1016均与扬声器1018A和1018B的不同轴线位置之间的宽度1088B配合以获得更好的三维立体声效果。通过声音配置单元1080,不同的声波的轴线1018AX和1018BX上的声波1018AW和1018BW在单元1032、1032B、1036/1036A、1036B、1006A和1006B内工作,并通过宽度1088B完成声音跳跃、混合和平衡,将更好的X-Y-Z三维立体声效果送入听者耳中。

当需要应用到图1至5A所示的各种实施例中时,所有图2和图2A里的单元或特征的形状、位置、尺寸、材料和方法均可变。

图3和图3A所展示的实例是另一种前后端扬声器1018A/1018B前后排列组合系列1050包含前后端扬声器1018A和1018B的振膜单元1052A/1052B/1052BB和环形音圈单元1054A/1054B和后端相通多孔单元1058C及其排列组合结构(即多层振膜复合结构)。

后端扬声器1018B的内部结构(即多层振膜复合结构)包含振膜单元1052B/1052BB,环形音圈单元1054B,磁铁单元1056B,轭铁单元1060C,以及轭铁壳单元1060C背面1060CB的多个小通孔单元1058C。复合振膜单元1052B/1052BB和环形音圈单元1054B相连为一个复合振膜驱动系统1052B/BB/1054B。当环形音圈单元1054B在磁铁单元1056B中感得电信号的流动变化而产生振动,从而带动振膜单元1052B/1052BB振动而产生声波1018BW发出声音展现声波X-Y轴中的一个维度的立体声。同时,后端振膜单元1052B/1052BB和后端轭铁壳小通孔单元1058C相通。后端轭铁单元1060C包含轭铁单元壳背面1060CB和正面1060CA。由于声波传播具有三维属性,也同时具有指向性或导向性,所以,振膜单元1052B/1052BB的声波1018BW向前传输的同时,也从前端音效单元1032和谐振器单元1036/1036A上反弹回来向后端传输,通过振膜单元1052B/1052BB向后传输进入后端轭铁壳小通声孔单元1058C后传输到扬声器罩的后端1006B,在后端扬声器1018B的外部系统包含和配合的后端1006B内的后端音效单元1032B和后端声音谐振器1036B里形成谐振,从而产生具有更深的Z轴深度的后端声波1018BBW。后端扬声器的后端轭铁壳单元1060B后部的多个相通小孔1058C的结构是来取代后端中心通声孔单元1058B的作用和功能。

前端扬声器1018A的内部结构包含振膜单元1052A,音圈单元1054A,磁铁单元1056A,轭铁单元1060A。振膜单元1052A和环形音圈单元1054A相连。当环形音圈单元1054A在磁铁单元1056A中感得电信号的流动变化而产生振动,从而带动振膜单元1052A振动而产生声波1018AW发出声音展现声波X-Y轴中的一个维度的立体声。由于声波传播具有三维属性,也同时具有导向性,所以,振膜单元1052A的声波1018AW在向前传输时,也从前端扬声器1018A的外部结构包含和配合的前端部1006A内的前端音效单元1032和谐振器单元1036/1036A上反弹回来向后端传输,通过后端扬声器振膜单元1052B向后传输进入后端轭铁壳单元1060C里的相通小孔单元1058C后传输到扬声器罩的后端单元1006B,在后端音效单元1032B和后端声音谐振器1036B里形成谐振,从耳罩后端1006B里的最后端单元1016向前输出到耳罩前端1006A的最前端的声音输出单元1020/1020BBB,从而产生具有更深的Z轴深度的后端声波1018ABW,与后端扬声器1018B的后端声波1018BBW一起谐振输出实现更好的X-Y-Z三维立体声及其效果。

轭铁单元1060C的结构也可以多种多样。例如,轭铁单元1060C可以只有带有小通孔单元1058C的背后壳1060CB,也可以有伸延到振膜单元1052B的前面形成前面壳1060CA并且也带有相通小通声孔单元1058C的。前面轭铁壳1060CA和后面轭铁壳1060CB都可以带有多个相通小孔单元1058C。小通声孔单元1058C的尺寸优选地为0.1毫米到0.3毫米。小通声孔单元1058C的小通声孔数量优选为8-12个。进一步,此前面轭铁壳1060CA和后面轭铁壳1060CB的多通声孔单元1058C可以设计为前后都一样的和振膜单元1052B/1052BB声波相通的多个小园孔形状,也可以设计为前后都一样的十字孔形状或一字孔形状,或是前后都一样的米字孔形状,也可以设计为前后都不一样的多孔形状和结构。

轭铁单元1060C上的多孔设计的优越性很多。第一,多孔单元可以设计为生产时根据振膜单元1052B/1052BB产生和传输前后声波的需要而可以多孔随时调整大小以及打开和关闭,也就是说,多孔单元可以根据振膜单元1052B/1052BB整体表现的具体需要而控制前后端的声波传输流量和声波导向方位。第二,多孔单元1058C的一圈排列或是十字形孔和米字形孔的纵横排列可以应对前后振膜单元1052A/1052B/1052BB的不同的中心轴错位或是多种多角度的排列,将前后声波1018AW/1018BW和1018ABW/1018BBW传输透入后端振膜单元1052B/1052BB而进入后端壳1006B里的后端音效单元1032B和后端声音谐振器1036B进行谐振,从而产生具有更深的Z轴深度的三维立体声。

在上文中提及并且在图1-5A中示出的所有单元内部可包括具有任意类型的设计、形状、材料、格式、系统、功能、位置和结构的单个或多个单元。

上述所有单元可根据需要而在设计、形状、结构、系统、方法、功能、位置和材料上发生变化,从而应用于图1-5A所示耳机1000的各种不同实施例。

根据需要,在上文中解释并且在图1-5A中示出的所有单元、功能和结构可在本申请的任意附图和任意单元中使用、应用或者交叉互换,以用于所有类型的耳机1000。

如图4和图4A所展示的本实用新型实例中,另一种前后端扬声器1018A/1018B前后排列组合系列1050包含前后端扬声器1018A和1018B的后端振膜单元1052B/1052BB和后端海绵体相通单元1058D及其相关部件组合结构(即多层振膜复合结构)。

后端扬声器1018B的内部结构(即多层振膜复合结构)包含振膜单元1052B/1052BB,环形音圈单元1054B,磁铁单元1056B,轭铁单元1060D,以及轭铁壳单元1060D背面的海绵体相通单元1058D。振膜单元1052B/BB和环形音圈单元1054B相连为复合振膜驱动单元1052B/BB/1054B。当环形音圈单元1054B在磁铁单元1056B中感得电信号的流动变化而产生振动,从而带动振膜单元1052B/1052BB振动而产生声波1018BW发出声音展现声波X-Y轴中的一个维度的立体声。同时,后端振膜单元1052B/1052BB和后端海绵体单元1058D直接相通贯通。由于声波传播具有三维属性,也同时具有导向性,所以,振膜单元1052B/1052BB的声波1018BW向前传输的同时,也从前端音效单元1032和谐振器单元1036/1036A上反弹回来向后端传输,通过振膜单元1052B/1052BB向后传输进入后端海绵体相通单元1058D后传输贯通后端扬声器单元1018B到扬声器罩的后端1006B,在后端扬声器1018B的外部系统包含和配合的后端壳单元1006B内的后端音效单元1032B和后端声音谐振器1036B里形成谐振,从而产生具有更深Z轴深度的后端声波1018BBW。后端扬声器的后端轭铁壳单元1060D后部的海绵体相通单元1058D的结构是来取代后端中心通声孔单元1058B的作用和功能。

前端扬声器1018A的内部结构包含振膜单元1052A,环形音圈单元1054A,磁铁单元1056A,轭铁单元1060A。振膜单元1052A和环形音圈单元1054A相连。当环形音圈单元1054A在磁铁单元1056A中感得电信号的流动变化而产生振动,从而带动振膜单元1052A振动而产生声波1018AW发出声音展现声波X-Y轴中的一个维度的立体声。由于声波传播具有三维属性,也同时具有导向性,所以,振膜单元1052A的声波1018AW在向前传输时,也从前端扬声器1018A的外部结构包含和配合的前端部1006A内的前端音效单元1032和谐振器单元1036/1036A上反弹回来向后端传输,通过后端扬声器振膜单元1052B向后传输进入后端海绵体相通单元1058D后传输贯通后端扬声器单元1018B到扬声器罩的后端单元1006B,在后端音效单元1032B和后端声音谐振器1036B里形成谐振,从耳罩后端1006B里的最后端单元1016向前输出到耳罩前端1006A的最前端的声音输出单元1020/1020BBB,从而产生具有更深Z轴深度的后端声波1018ABW,与后端扬声器1018B的后端声波1018BBW一起谐振输出实现更好的X-Y-Z三维立体声及其效果。

轭铁单元1060D结构也可以多种多样。例如,轭铁单元1060D可以带有振膜单元1052B/1052BB前面的支架单元1060DA和振膜单元1052B/1052BB后面的支架单元1060DB。前面支架单元1060DA和振膜单元1052B/1052BB的膜边紧绷相连,后面支架单元1060DB和前面支架单元1060DA和后端磁铁壳单元1056B相连,这样,振膜单元1052B/1052BB和后端海绵体相通单元1058D一起就可以自由振动产生和传输贯通前后声波。轭铁单元1060D及其前后支架单元1060DA/1060DB是可以多种多样的,例如,条形的,圆形的,弧形的,十字形的,米字形的,和星字形的,空心的,实心的,等等。

海棉体是很好的传输声波的材料。海绵体里的微型小孔结构对声波的传输有良好的均匀和平衡作用,同时,海绵体里的微型小孔(空间)结构对声波也同时同步可以进行传输和谐振。这样,振膜单元1052B/1052BB的膜背直接和海绵体单元1058B相连贯通,通过海绵体1058B传输声波到后端壳1006B内的后端音效单元1032B和后端声音谐振器1036B里谐振,这使得后端声波1018ABW/1018BBW前后传输中的声波频率稳定,声波形态分布均匀,声波整体平衡保真,从而产生和传输具有更平稳和更深Z轴深度的三维立体声。海绵体1058D的前面可以有一个多通孔垫片相连于后端振膜单元1052B的膜背紧绷的膜边。这个海绵体单元1058D前面的多通孔垫片也可以和磁铁单元1056B相连。

海绵体变化多样,海绵体单元1058D可以是海绵内部密集小孔结构,也可以大中小孔分布结构,厚的或薄的,也可以是部分海绵体,或全部没有海绵体。也可以没有海绵体,振膜单元1052B/1052BB膜背后面充分暴露并和后端壳1006B内空间直接相通。振膜单元1052B/1052BB背部透射传输的声波就在后端音效单元1032B和后端声音谐振器1036B里形成1018ABW/1018BBW谐振,从而产生和传输具有更深Z轴深度的三维立体声。

因此,在图3到图4AA的实例中,后端扬声器1018B的振膜单元1052B/1052BB的透声结构和功能和后端中心通孔单元1058C/D配合进行前后端声波1018AW/1018BW和1018ABW和1018BBW的相通和传输,从后端单元1006B里的最后端向前传输,从而实现具有更深深度的Z轴深度的三维立体声效果。因为后端声波1018ABW/1018BBW和前端声波1018AW/1018BW具有声波深度距离1084/1086的最优化的Z轴深度声音效果,从而实现更好的更深的X-Y-Z的三个维度和空间的立体声效果。

在上文中提及并且在图1-5A中示出的所有单元内部可包括具有任意类型的设计、形状、材料、格式、系统、功能、位置和结构的单个或多个单元。

上述所有单元可根据需要而在设计、形状、结构、系统、方法、功能、位置和材料上发生变化,从而应用于图1-5A所示耳机1000的各种不同实施例。

根据需要,在上文中解释并且在图1-5A中示出的所有单元、功能和结构可在本申请的任意附图和任意单元中使用、应用或者互换,以用于所有类型的耳机1000。

图5和图5A是展示另一个实例。前端扬声器1018A设计在直接连着前壳单元1006A的声音输出单元1020的声音输出通道1020BBB内,作为另一种前后端扬声器1018A/1018B前后排列组合系列1050包含前后端扬声器1018A和1018B的后端振膜单元1052B/1052BB和后端声波相通单元1058B及其相关部件组合结构(即多层振膜复合结构)。这样设计的优越性是耳机体积更小和整体更加精细。由于声音输出通道1020BBB进入人耳道的体积限制,前端扬声器1018A就以小体积的动圈喇叭或动铁喇叭的扬声器为主,后端扬声器1018B还是以动圈喇叭为主。

这样,整个耳机罩1006内的音响空间就包含到声音输出单元1020的声音输出通道1020BBB内。声音输出通道1020BBB的内壁和喇叭形入口沿壁也设计和结构成前端音单元1032的一部分。声音输出通道1020BBB的内空腔也设计和结构成前端声音谐振器1036的一部分。这样,前端扬声器1018A的外部结构包含和配合前端部1006A内的前端音效单元1032和谐振器单元1036/1036A,还有前端声音输出单元1020内的声音输出通道1020BBB。这样的设计和结构的优越点很多,第一,由于前扬声器前移到声音输出通道1020BBB内,整体积极减小,更符合人耳的人体结构和佩戴舒适性;第二,前扬声器1018A前移,前端声波1018AW更加接人耳耳道内的耳膜而音响效果更加直接和良好;第三,前端音效单元1032和前端声音谐振器1036的空间也相应前移,前后声波的谐振空间加大加长,前后扬声器之间的距离1084也相应加长,后端振膜单元1052B/1052BB和后端中心通声孔单元1058B在前后端1006A/1006B的空间更多更加有利于前后声波1018AW/1018BW和1018ABW/1018BBW的谐振和直接传输。也就是说,前后声波轴线1088加长到从声音输出单元1020BBB直接相通后端振膜单元1052B/1052BB和后端中心通声孔单元1058B到后端壳1006B内的后端音效单元1032B和后端声音谐振器1036B一直到最后端1016,这样,后端声波1018ABW/1018BBW谐振和传输Z轴方向范围加大到最大范围,Z轴纵深方向深度加长到最大深度,从而产生具有更好更深深度效果的X-Y-Z的三维立体声。

同时,前端扬声器1018A的振膜朝上是和后端扬声器1018B的振膜单元1052B/1052BB朝向为90度直角,前端声波1018AW的方向线1088AS是先朝上,然后和后端声波1018BW/1018ABW/1018BBW在声音输出通道内谐振后一起向前面的声音输出单元1020前进和输入到使用者的耳道内,产生更好的Z轴深度的三维立体声。

前端扬声器1018A也可以采用圈铁喇叭或动铁喇叭或其它形式的喇叭面向前端排列,这样,前端扬声器1018A就和后端扬声器1018B的出声方向是面向同一方向,也可以是前后直线同位排列或同位或错位的相互多角度排列。前端扬声器1018A也可以采用动铁喇叭面向后端排列,这样,前端扬声器1018A就和后端扬声器1018B的出声方向是面面相对,也可以是前后直线排列或同位或错位的相互多角度排列。

同时,后端扬声器1018B的振膜单元1052B/1052BB的前面谐振和响应空间1036也相应加大了,由此产生的后端声波1018BW和1018ABW/1018BBW就会直接从后端振膜单元1052B和后端中心通声孔单元1058B输出到更多的谐振空间里1036以达到更直接的声波播放的效果。如果后端扬声器1018B是以中低音为主的话,此时的中低音表现就会更加深沉和有力。具有更直接的Z轴深度的后端声波线1088直接向前在前端音效单元1032和前端声音谐振器单元1036的加大空间里播放和输出,从而产生加强的更深的Z轴深度的优秀X-Y-Z三维立体声及其效果。

进一步,前后端扬声器1018A/1018B前后排列组合1050为90度直角前后排列结构也可以进行多样变化。前后端扬声器1018A/1018B的前后排列组合系列1050可以为多种角度前后排列结构系列。例如,前后端扬声器1018A/1018B的前后振膜单元1052A/1052B之间的角度可以立体全方位的多角度组合。这样多角度组合的好处很多,其中一个优选是当前后端扬声器1018A/1018B的前后振膜单元1052A/1052B/1052BB之间处于90度角时,前后振膜单元1052A/1052B所产生和传输的高音嘹亮和低音回响及和声会在Z轴上产生更强烈的深度感。

又例如,在前后振膜单元1052A/1052B/1052BB材料和结构不变的情况下,采用0到45度角的多角度组合来达到前后振膜单元1052A/1052B/1052BB的频率之间最佳的谐振配合,形成最佳的前后声波1018AW/1018BW和1018ABW/1018BBW,从而产生更好的三维立体声。

在以上图1至5A所示的所有的实施例中,耳机1000通过前后扬声器1018A/1018B直线排列的前后振膜单元1052A/1052B/1052BB和后端通声孔1058B的相通和相互配合产生和传输前后声波1018AW/1018BW和1018ABW/1018BBW谐振从而实现了耳塞式耳机产生和传输具有更好Z轴深度的三维立体声。

视情况需要,图1至5A阐述的所有单元、功能和结构可应用于或互换于本申请任一附图上的所有类型的耳机。

在上文中提及并且在图1至5A中示出的所有单元内部可包括具有任意类型的设计、形状、材料、格式、系统、功能、位置和结构的单个或多个单元。

上述全文所有单元可根据需要而在设计、形状、结构、系统、方法、功能、位置和材料上发生变化,从而应用于图1至5A所示耳机1000的各种不同实施例。

根据需要,在上述全文中解释并且在图1至5A中示出的所有单元、功能和结构可在本申请的任意附图和任意单元中使用、应用或者互换,以用于所有类型的耳机1000。

振膜式扬声器及可产生三维立体声效果的耳机中的振膜单元包括一层振膜单元和/或多层复合振膜单元和/或多层组合振膜单元,且均能应用于上述各个实施例或其他未载明的实施例并实现本实用新型的实用新型目的。

本文中所描述的具体实施例仅仅是对本实用新型精神作举例说明。本实用新型所属技术领域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,但并不会偏离本实用新型的精神或者超越所附权利要求书所定义的范围。

尽管本文较多地使用了术语,但并不排除使用其它术语的可能性。使用这些术语仅仅是为了更方便地描述和解释本实用新型的本质;把它们解释成任何一种附加的限制都是与本实用新型精神相违背的。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1