在无线通信系统中由终端发送信号以用于V2X通信的方法以及使用该方法的设备与流程

文档序号:18361438发布日期:2019-08-06 23:54阅读:335来源:国知局
在无线通信系统中由终端发送信号以用于V2X通信的方法以及使用该方法的设备与流程

本发明涉及无线通信,更具体地,涉及一种在无线通信系统中由用户设备发送信号以用于v2x通信的方法以及使用该方法的通信设备。



背景技术:

随着越来越多的通信装置需要更大的通信容量,对优于传统无线电接入技术(rat)的改进的移动宽带通信的需求正不断出现。另外,将多个装置和对象彼此连接并随时随地提供各种服务的大规模机器型通信(mtc)也是下一代通信中需要考虑的重要问题之一。

正在考虑新的通信系统设计,其考虑了对可靠性和延迟敏感的服务或终端;支持增强移动宽带通信、大规模mtc、超可靠和低延迟通信(urllc)等的下一代无线电接入技术可被称为新rat或新无线电(nr)。

此外,在nr的设计中,支持车辆对一切(v2x)通信。v2x通信是指安装在车辆内部的终端与其它任意终端之间的通信。

当执行v2x通信时,与ue与enb之间的通信相比,在传输时间间隔(tti)内更多参考信号被映射到资源块(rb),并且可另外采用用于自动增益控制(agc)的符号、用于发送/接收切换时间的符号等。在这方面,可能需要一种考虑了参考信号映射、agc符号以及用于发送/接收切换时间的符号的发送v2x信号的新方法。

另外,在v2x通信中,由于参考信号映射、agc符号、用于发送/接收切换时间的符号等的增加,与可用于在ue和enb之间发送各个资源块的数据的可用资源量相比,可用于映射/发送v2x数据的每资源块的可用资源减少。另外,更高调制阶数(例如,64正交幅度调制(qam))可用于v2x通信。结果,编码速率可能过度增加。考虑到上述问题,需要一种用于确定传输块大小(tbs)的方法和设备。



技术实现要素:

技术问题

为了解决上述问题,本发明的目的在于提供一种在无线通信系统中由ue发送信号以用于v2x通信的方法以及使用该方法的设备。

技术方案

在一个方面,提供了一种在无线通信系统中由ue发送信号以用于车辆对一切(v2x)通信的方法。该方法包括以下步骤:将v2x数据映射到在时域中包括多个符号的子帧的资源;以及将所映射的v2x数据发送到不同的ue。这里,从映射处理排除所述子帧的最后符号中的资源元素。

所述子帧的第一符号可以是用于自动增益控制(agc)的符号,并且最后符号可以是用于发送/接收切换时间的符号。

在映射处理期间可包括所述子帧的第一符号中的资源元素。

所述子帧可在正常循环前缀(cp)中包括14个符号。

可确定要用于发送v2x数据的传输块的大小,并且可以按照所确定的大小的传输块为单位发送v2x数据。

传输块的大小可由发送所述v2x数据的资源块的数量以及根据“调制和编码方案(mcs)”确定的传输块大小索引来确定。

可以按照传统资源块或有效资源块为单位计算资源块的数量。

传统资源块可由一个子帧中除了两个解调-参考信号(dm-rs)符号之外映射有v2x数据的资源的量来确定。

有效资源块可由一个子帧中除了四个dm-rs符号和“用于自动增益控制(agc)的符号和用于发送/接收切换时间的符号中的任一个”之外映射有v2x数据的资源的量来确定。

当v2x数据的每分组prose优先级(pppp)值、服务类型或目的地标识(id)满足预定条件时,可以按照有效资源块为单位计算资源块的数量。

可通过从物理侧链路控制信道(pscch)发送的预留比特的侧链路控制信息(sci)来告知所述不同的ue:以有效资源块为单位计算资源块的数量。

在另一方面,提供了一种用户设备(ue)。该ue包括:收发器,其发送和接收无线电信号;以及处理器,其结合收发器来操作。该处理器被配置为将v2x数据映射到在时域中包括多个符号的子帧的资源,并且将所映射的v2x数据发送到不同的ue。这里,从映射处理排除所述子帧的最后符号中的资源元素。

有益效果

根据本发明,可防止v2x通信中涉及的子帧中的编码速率过度增加。另外,由于考虑v2x通信的独特特征(即,映射有参考信号的大量符号、用于自动增益控制的符号以及用于发送/接收切换时间的符号)来确定传输块大小并且将v2x数据映射到资源,所以v2x通信的效率和接收性能可改进。

附图说明

图1示出无线通信系统。

图2是示出用于用户平面的无线协议架构的图。

图3是示出用于控制平面的无线协议架构的图。

图4示出应用nr的新一代无线电接入网络(ng-ran)的系统结构。

图5示出ng-ran和5gc之间的功能划分。

图6示出执行v2x或d2d通信的ue。

图7示出根据与v2x/d2d通信有关的传输模式(tm)的ue操作。

图8示出资源单元的配置的示例。

图9示出v2x通信中的正常cp的dm-rs结构的一个示例。

图10示出用于比较的l-tti和s-tti。

图11示出dm-rs设计的一个示例。

图12示出dm-rs设计的另一示例。

图13示出dm-rs设计的另一示例。

图14示出发送v2x数据的方法的一个示例。

图15示出比较传统rb和有效rb中用于传输v2x数据的可用资源的量。

图16示出确定用于v2x通信的传输块大小的方法的一个示例。

图17示出根据本发明的一个实施方式的由ue发送信号以用于v2x通信的方法。

图18示出对用于v2x通信的子帧的第一符号和最后符号应用的打孔和速率匹配的示例。

图19是实现本发明的实施方式的设备的框图。

图20示出处理器1100如何配置的一个示例。

具体实施方式

图1示出无线通信系统。例如,该无线通信系统可被称作演进umts地面无线电接入网络(e-utran)或长期演进(lte)/lte-a系统。

e-utran包括向用户设备(ue)10提供控制平面和用户平面的至少一个基站(bs)20。ue10可以是固定的或移动的,并且可被称作诸如移动站(ms)、用户终端(ut)、订户站(ss)、移动终端(mt)、无线装置等的另一术语。bs20通常是与ue10通信的固定站,并且可被称作诸如演进节点b(enb)、基站收发机系统(bts)、接入点等的另一术语。

bs20通过x2接口互连。bs20还通过s1接口连接到演进分组核心(epc)30,更具体地讲,通过s1-mme连接到移动性管理实体(mme)并通过s1-u连接到服务网关(s-gw)。

epc30包括mme、s-gw和分组数据网络网关(p-gw)。mme具有ue的接入信息或者ue的能力信息,这种信息通常用于ue的移动性管理。s-gw是以e-utran作为终点的网关。p-gw是以pdn作为终点的网关。

ue与网络之间的无线电接口协议的层可基于通信系统中熟知的开放系统互连(osi)模型的下面三层被分为第一层(l1)、第二层(l2)和第三层(l3)。在它们当中,属于第一层的物理(phy)层利用物理信道提供信息传送服务,属于第三层的无线电资源控制(rrc)层用于控制ue与网络之间的无线电资源。为此,rrc层在ue与bs之间交换rrc消息。

图2是示出用于用户平面的无线协议架构的示图。图3是示出用于控制平面的无线协议架构的示图。用户平面是用于用户数据传输的协议栈。控制平面是用于控制信号传输的协议栈。

参照图2和图3,phy层通过物理信道向上层提供信息传送服务。phy层通过传输信道连接到作为phy层的上层的介质访问控制(mac)层。通过传输信道在mac层与phy层之间传送数据。传输信道根据如何通过无线电接口传送数据及其特性来分类。

数据在不同的phy层(即,发送机的phy层和接收机的phy层)之间通过物理信道来移动。物理信道可根据正交频分复用(ofdm)方案来调制,并且使用时间和频率作为无线电资源。

mac层的功能包括逻辑信道与传输信道之间的映射以及通过物理信道提供的传输块在属于逻辑信道的mac服务数据单元(sdu)的传输信道上的复用和解复用。mac层通过逻辑信道向无线电链路控制(rlc)层提供服务。

rlc层的功能包括rlcsdu的级联、分段和重组。为了确保无线电承载(rb)所需的各种类型的服务质量(qos),rlc层提供三种类型的操作模式:透明模式(tm)、未确认模式(um)和确认模式(am)。amrlc通过自动重传请求(arq)来提供纠错。

rrc层仅被定义于控制平面上。rrc层与无线电承载的配置、重新配置和释放关联,并且负责逻辑信道、传输信道和phy信道的控制。rb表示由第一层(phy层)和第二层(mac层、rlc层和pdcp层)提供以便在ue与网络之间传送数据的逻辑路线。

用户平面上的分组数据会聚协议(pdcp)层的功能包括用户数据的传送以及头压缩和加密。用户平面上的pdcp层的功能还包括控制平面数据的传送和加密/完整性保护。

rb被配置为什么意指定义无线协议层和信道的特性以便提供特定服务并且配置各个详细参数和操作方法的处理。rb可被分为信令rb(srb)和数据rb(drb)两种类型。srb用作在控制平面上发送rrc消息的通道,drb用作在用户平面上发送用户数据的通道。

如果在ue的rrc层与e-utran的rrc层之间建立rrc连接,则ue处于rrc连接状态。如果不是,则ue处于rrc空闲状态。

用于从网络向ue发送数据的下行链路传输信道包括用于发送系统信息的广播信道(bch)以及用于发送用户业务或控制消息的下行链路共享信道(sch)。下行链路多播或广播服务的业务或控制消息可通过下行链路sch来发送,或者可通过另外的下行链路多播信道(mch)来发送。此外,用于从ue向网络发送数据的上行链路传输信道包括用于发送初始控制消息的随机接入信道(rach)以及用于发送用户业务或控制消息的上行链路共享信道(sch)。

位于传输信道上方并被映射至传输信道的逻辑信道包括广播控制信道(bcch)、寻呼控制信道(pcch)、公共控制信道(ccch)、多播控制信道(mcch)和多播业务信道(mtch)。

物理信道包括时域中的多个ofdm符号和频域中的多个子载波。一个子帧包括时域中的多个ofdm符号。rb是资源分配单位,包括多个ofdm符号和多个子载波。另外,各个子帧可将对应子帧的特定ofdm符号(例如,第一ofdm符号)的特定子载波用于物理下行链路控制信道(pdcch),即,l1/l2控制信道。传输时间间隔(tti)是子帧传输的单位时间。

在下文中,将描述一种新无线电接入技术(rat)。该新无线电接入技术也可简称为新无线电。

随着越来越多的通信装置需要更大的通信容量,对优于传统无线电接入技术(rat)的改进的移动宽带通信的需求正不断出现。另外,将多个装置和对象彼此连接并随时随地提供各种服务的大规模机器型通信(mtc)也是下一代通信中需要考虑的重要问题之一。另外,正在考虑新的通信系统设计,其考虑了对可靠性和延迟敏感的服务或终端;正在考虑采用支持增强移动宽带通信、大规模mtc、超可靠和低延迟通信(urllc)等的下一代无线电接入技术,在本发明中为了方便,其被称为新rat或新无线电(nr)。

图4示出应用nr的新一代无线电接入网络(ng-ran)的系统结构。

参照图4,ng-ran可包括向ue提供用户平面和控制平面协议端的gnb和/或enb。图4示出仅包括gnb的情况。gnb和enb通过xn接口彼此连接。gnb和enb通过ng接口连接到5g核心网络(5gc)。更具体地,gnb和enb通过ng-c接口连接到接入和移动性管理功能(amf)并通过ng-u接口连接到用户平面功能(upf)。

图5示出ng-ran和5gc之间的功能划分。

参照图5,gnb可提供诸如小区间无线电资源管理(rrm)、无线电承载(rb)管理、连接移动性控制、无线电准入控制、测量配置和提供以及动态资源分配的功能。amf可提供诸如nas安全性和空闲状态移动性处理的功能。upf可提供诸如移动性锚定和pdu处理的功能。会话管理功能(smf)可提供诸如ueip地址的分配和pdu会话控制的功能。

本发明涉及v2x通信,更具体地,涉及一种用于侧链路重传的方法。关于nr的v2x通信描述本发明,但是本发明也可应用于包括v2v或装置对装置(d2d)通信的其它场景。

图6示出执行v2x或d2d通信的ue。

参照图6,在v2x/d2d通信中,术语ue主要是指用户终端。然而,当诸如enb的网络装置根据针对ue采用的通信方案来发送和接收信号时,enb也可被视为一种终端。

ue1可操作以选择与资源池(一系列资源的集合)内的特定资源对应的资源单元并使用对应资源单元来发送d2d信号。作为接收d2d信号的ue,ue2可针对ue1可发送信号的资源池配置并在对应资源池内检测从ue1发送的信号。

此时,如果ue1在enb的覆盖范围内,则enb可向ue1告知资源池。另一方面,如果ue1位于enb的覆盖范围外,则其它ue可向ue1告知资源池,或者可利用预定资源。

通常,资源池由多个资源单元组成,并且各个ue可选择一个或更多个资源单元以发送其d2d信号。

图7示出根据与v2x/d2d通信有关的传输模式(tm)的ue操作。

图7的(a)与传输模式1、3有关,而图7的(b)与传输模式2、4有关。在传输模式1、3下,enb通过pdcch(更具体地,dci)对ue1执行资源调度,并且ue1根据对应资源调度与ue2执行d2d/v2x通信。在通过物理侧链路控制信道(pscch)向ue2发送侧链路控制信息(sci)之后,ue1可通过物理侧链路共享信道(pssch)基于sci发送数据。传输模式1可应用于d2d通信,而传输模式3可应用于v2x通信。

传输模式2、4可被称为ue自主地执行调度的模式。更具体地,传输模式2可应用于d2d通信,并且ue可在设定的资源池内自己选择资源以执行d2d操作。传输模式4可应用于v2x通信,并且ue可通过诸如感测/sa解码的处理在选择窗口内自己选择资源,此后ue可执行v2x操作。在通过pscch向ue2发送sci之后,ue1可通过pssch基于sci来发送数据。在下文中,传输模式可被称为模式。

尽管由enb通过pdcch发送给ue的控制信息被称为下行链路控制信息(dci),由ue通过pscch发送给其它ue的控制信息可被称为sci。sci可按照各种格式(例如,sci格式0和sci格式1)来表示。

sci格式0可用于pssch的调度。sci格式0可包括跳频标志(1比特)、资源块分配和跳跃资源分配字段(比特数可根据侧链路的资源块的数量而不同)、时间资源图案(7比特)、调制和编码方案(mcs)(5比特)、时间提前指示(11比特)和组目的地id(8比特)。

sci格式1可用于pssch的调度。sci格式1可包括优先级(3比特)、资源预留(4比特)、初始传输和重传的频率资源位置(比特数可根据侧链路的子信道的数量而不同)、初始传输和重传之间的时间间隙(4比特)、mcs(5比特)、重传索引(1比特)和预留信息比特。在下文中,预留信息比特可简称为预留比特。可添加预留比特,直至sci格式1的比特大小变为32比特。换言之,sci格式1包括多个字段,各个字段具有彼此不同的信息,其中从sci格式1的固定比特总数(32比特)排除多个字段的总比特数的剩余比特数可被称为预留比特。

sci格式0可用于传输模式1、2,而sci格式1可用于传输模式3、4。

图8示出资源单元的配置的示例。

参照图8,资源池的整个频率资源可被划分为nf个单元,并且资源池的整个时间资源可被划分为nt个单元,由此可在资源池内定义总共nf×nt个资源单元。

此时,假设对应资源池以nt个子帧的周期重复。

如图8所示,一个资源单元(例如,单元#0)可按照规则的间隔重复地出现。类似地,为了在时间或频率维度中获得分集效应,一个逻辑资源单元映射至的物理资源单元的索引可随着时间逝去根据预定图案变化。在上述资源单元结构中,资源池可指示可用于传输的资源单元的集合,ue可使用其来尝试发送d2d信号。

资源池可被再分成各种类型。例如,资源池可根据从各个资源池发送的d2d信号的内容来分类。各个资源池可如下分类,其中各个资源池可发送d2d信号,其内容在下面描述。

1)调度指派(sa)资源池或d2d(侧链路)控制信道:各个发送ue发送包括关于从后续或相同子帧发送的d2d数据信道的资源位置的信息以及其它数据信道的解调所需的信息(例如,关于调制和编码方案(mcs)、mimo传输方案和定时提前的信息)的信号的资源池。

1)中所描述的信号可在复用在相同资源单元上之后与d2d数据一起发送。在这种情况下,sa资源池可指示sa通过与d2d数据复用来发送的资源池。sa资源池也可被称为d2d(侧链路)控制信道。

2)d2d数据信道:发送ue使用通过sa指定的资源来发送用户数据的资源池。如果d2d数据和sa信息可在相同资源单元上复用并一起发送,则用于d2d数据信道的资源池可按照排除sa信息的方式仅发送d2d数据信道。换言之,d2d数据信道资源池仍使用用于基于sa资源池内的各个资源单元来发送sa信息的资源元素。

3)发现信道:消息的资源池,发送ue通过其来发送诸如其标识(id)的信息以使得邻近ue可发现发送ue。

即使d2d信号承载如上所述的相同内容,可根据d2d信号的发送和接收属性使用不同的资源池。作为一个示例,即使发送相同的d2d数据信道或相同的发现消息,根据确定d2d信号的传输定时的方案(例如,d2d信号是在接收同步参考信号时发送,还是在接收同步参考信号时应用预定定时提前之后发送)、资源分配方案(例如,是否由enb为各个发送ue分配各个信号的传输资源,或者各个发送ue是否在资源池内自己选择各个信号传输资源)、信号格式(例如,一个子帧中的各个d2d信号所占据的符号数或者用于传输一个d2d信号的子帧数)、来自enb的信号的强度或者d2due的传输功率强度),资源池可被进一步分类为另一不同资源池。

如上所述,在d2d通信中直接由enb指示d2d发送ue的传输资源的方法可被称为模式1,而在传输资源区域预定或者enb指定传输资源区域的情况下直接由ue选择传输资源的方法可被称为模式2。

在d2d发现的情况下,enb直接指示资源的情况可被称为类型2,而ue直接从预定资源区域或enb所指示的资源区域选择传输资源的情况可被称为类型1。

此外,d2d也可被称为侧链路。sa也可被称为物理侧链路控制信道(pscch),并且d2d同步信号也可被称为侧链路同步信号(sss)。在发起d2d通信之前发送最基本信息的控制信道被称为物理侧链路广播信道(psbch),其中psbch可与sss一起发送并且可另选地称为物理d2d同步信道(pd2dsch)。通知特定ue位于附近的信号可包括特定ue的id,并且发送这种信号的信道可被称为物理侧链路发现信道(psdch)。

在d2d通信中,仅d2d通信ue将psbch与sss一起发送,因此,使用psbch的解调参考信号(dm-rs)来执行sss的测量。覆盖范围外区域中的ue可测量psbch的dm-rs并且测量信号的参考信号接收功率(rsrp)以确定ue本身是否作为同步源操作。

在3gpplte系统中,从一个子帧发送用户数据或控制信息所需的时间被称为传输时间间隔(tti)。对于大多数情况,当前lte系统的tti为1毫秒(ms)。

然而,在应对由于更高数据速率、安装在车辆中的车载ue的高速等而快速改变的信道环境的下一代无线通信系统中,1ms的当前tti可能不适合低延迟要求。因此,代替使用传统tti,可能需要通过采用由较少数量的符号组成的短tti(也可被称为s-tti)来满足低延迟要求。与s-tti相比,传统tti(1ms)可被称为l-tti。

在用于lte车辆对一切(v2x)通信的侧链路的解调-参考信号(dm-rs)的传统设计中可能需要改变。换言之,当使用包括较少数量的符号的s-tti时,可能需要诸如改变传统dm-rs中的符号数的设计改变。在这种情况下,可考虑自动增益控制(agc)、定时提前(ta)和频率偏移。

在下文中,将描述lte系统的侧链路中的dm-rs的新设计。例如,当s-tti用于侧链路通信时,可应用该新设计。

在ltev2x通信中,可利用基于传统ltepusch结构的子帧结构,其中图9示出子帧内的正常cp的dm-rs结构。

图9示出v2x通信中的正常cp的dm-rs结构的一个示例。

参照图9,如果属于子帧的14个符号从0至13依次索引,则可通过符号#2、5、8和11来发送dm-rs。换言之,dm-rs可被映射至子帧的符号#2、5、8和11。

如上所述的当前dm-rs结构在一个tti(1ms)期间以2个符号的间距使用4个dm-rs,以补偿在5.9ghz下高速移动的车载ue中的+/-0.4ppm的频率偏移以进行v2x通信。

图10示出用于比较的l-tti和s-tti。

参照图10的(a),使用正常cp的ofdm符号可在一个l-tti(1ms)期间使用14个符号,其可利用从0至13的符号编号来编号。对于符号#0的情况,一个符号时间为70μs(微秒),而对于其它符号,其为约66.6μs。此时,包括符号#1、3、4、6、7、9、10和12的总共8个符号对应于子帧内可用于侧链路通信中的数据传输的区域。

符号#0和符号#13可依次用于自动增益控制(agc)和发送/接收切换。然而,实际agc所需的时间可占据符号#0的70μs中的约30μs,并且以相同的方式,发送/接收切换时间可能需要相似时间量(约30μs)。

如果1s-tti被配置为占据1ms的一半(0.5ms(即,1时隙))并且在0.5ms的时间周期内具有14个符号,则1s-tti(1时隙)可如图10的(b)所示构造。此时,1s-tti内的14个符号可如图10的(b)所示索引。如图10的(b)所示,本发明可描述持续0.5ms的s-tti中除了符号#0和符号#6’之外的剩余符号的dm-rs设计。

图11示出dm-rs设计的一个示例。

参照图11,1s-tti内要用于agc和切换时间的第一/最后符号(其中,对于15khz子载波间距的情况,一个符号可指示一个ofdm符号)可对应于符号#0、#6或符号#7、#13。此时,以下两种类型(类型a和类型b)中的一个可指定第一/最后符号的传输方法。

首先,类型a是指沿着时间轴使用一个符号并且沿着频率轴使用梳状图案来发送数据和/或参考信号的方法。梳状图案可以是包括在频域中以规则间隔彼此分离的子载波的图案。例如,包括偶数子载波的图案和包括奇数图案的图案可变为梳状图案。

此外,类型b是指沿着时间轴使用0.5符号并且沿着频率轴使用比lte系统的子载波间距宽两倍的子载波间距来发送数据和/或参考信号的方法。由于lte系统中的子载波间距为15khz,所以类型b中的子载波间距变为30khz。

如果通过采用类型a的梳状图案来发送信号,则信号在时域中重复(如用于上行链路传输的探测参考信号(srs)的情况下一样)。使用该性质,在接收端重复的时域信号的一半可用于agc,另一半可用于数据或参考信号。

尽管与传统lte系统相比,类型b可能增加ue的复杂度(因为子载波间距在s-tti情况下变化),但是其可被认为适用于高级ue。

如果第一/最后符号被设定为具有相同的形式,则可获得降低实现复杂度的有益效果。本发明描述了使用在s-tti内发送第一/最后符号的方法的类型a或类型b的dm-rs设计。

作为一个示例,当采用类型a并且使用偶数子载波时,可如图11所示设计dm-rs。换言之,如图11所示,1s-tti内的偶数子载波号#0和#6可根据梳状图案来映射/发送数据或dm-rs。如上所述,如果数据或dm-rs映射在梳状图案中,则沿着频率轴生成空资源元素(re);如果不向空re的位置发送数据,则可对对应位置应用速率匹配或打孔。速率匹配/打孔将稍后描述。

在图11的情况下,由于可针对符号#0和#6沿着频率轴对空资源元素的各个符号应用速率匹配或打孔,所以可配置总共4种不同的情况。另外,尽管图11示出将梳状图案应用于偶数子载波,但是也可对奇数子载波应用梳状图案。

图12示出dm-rs设计的另一示例。

参照图12,对一个子帧中的两个s-tti的第一s-tti(时隙)的最后符号,符号#6应用打孔,以使得符号#6可用于发送/接收切换时间,并且第二时隙的最后符号,符号#13可根据梳状图案来发送数据或参考信号。

仅第二时隙的最后符号,符号#13根据梳状图案来发送数据或参考信号,而第一时隙的最后符号,符号#6不采用梳状图案进行传输的原因在于考虑这样的事实:由于传统ue使用第一时隙的最后符号来进行数据接收,所以即使高级ue根据梳状图案来发送第一时隙的最后符号,也无法保证需要在时域中重复两次的信号的ifft的结果。

此时,符号#1至#5和符号#8至#12可发送数据或参考信号,要用于agc的符号#0和#7可根据梳状图案(类型a)或以半符号(类型b)的形式或者根据传统方法(沿着时间轴的1符号以及沿着频率轴的15khz)来发送数据或参考信号。

更具体地,不管符号是一个s-tti内的第一符号还是最后符号,根据类型a方案(即,梳状图案)来映射数据的方法可按照两种不同的方式来执行。

第一种方法针对根据梳状图案映射的符号使用离散傅里叶变换(dft)扩展大小的一半。换言之,可仅收集包含非零数据的资源元素,可应用关于re的大小的dft扩展,并且可在子载波的实际映射阶段针对每两个元素映射re。如果在该阶段应用快速傅里叶逆变换(ifft),则可在时域中获得重复的信号。

第二种方法首先通过向其添加零来映射符号并通过将dft大小设定为与用于其它符号的dft大小相同来应用dft。这样,在频域中获得两个重复序列,并且根据频域中执行子载波映射的梳状图案将“0(零)”插入到重复序列之一中。根据该处理,从ifft获得在时域中重复两次的信号,从而接收端可将信号的一半用于agc。

图13示出dm-rs设计的另一示例。

参照图13,可根据类型b方法发送1s-tti内的第一/最后符号。换言之,在符号#0和#6处,半符号可用于传输数据或dm-rs。

作为一个示例,当在符号#0处半符号用于数据传输时,重复数据、已知信号或考虑agc的任意信号可被发送到符号#0的前半符号以在接收端用作agc信号。

当符号#0和#6的半符号用于dm-rs传输时,重复参考信号可按照相同的方式设置在符号#0和#6的前半符号中以用于agc,同时,可获得关于剩余半符号的信道估计的增益。

在以上描述中,指定了发送1s-tti内的第一/最后符号以用于agc和发送/接收切换时间的方法。在下文中,假设上述传输类型,并且将提出一种在剩余符号处发送数据/dm-rs的方法。

以下三种方法可用于传输数据和dm-rs。

第一种方法采用梳状图案。由于当根据第一种方法发送数据时传输数据速率减小一半,所以该方法可用于特定目的。

第二种方法采用将数据和dm-rs发送到半符号。例如,当根据类型b方案发送dm-rs时,该方法可减小设计复杂度。

第三种方法如传统lte系统中一样采用使用沿着频率轴的15khz的频带和沿着时间轴的一个符号来发送数据和dm-rs。例如,仅第一/最后符号通过不同的方法(例如,上述第一方法和第二方法)来发送,而s-tti内的剩余符号可根据传统方法来发送。

在下文中,将描述本发明。

当在v2x通信中应用s-tti或使用高mcs时,本发明提出了tbs选择的规则以及其它规则。另外,对于一个s-tti内用于agc的第一符号以及用于发送/接收切换时间的最后符号,还将提出考虑接收机基于速率匹配或打孔的解码选择的规则。

这里,速率匹配是指仅将调制符号依次映射到除了实际不可使用的那些资源元素之外的可用资源元素,而打孔可指通过初始假设所有资源元素可用,但是发送机可能未将信号发送到实际不可用的资源元素,或者接收机将对应信号清空来映射调制符号的处理。换言之,尽管速率匹配在将数据映射到资源的处理期间排除不可用的资源元素,打孔可通过包括甚至不可用的资源元素来执行映射处理。然而,在不可用的资源元素中,发送机实际不发送信号,或者即使发送信号,接收ue也可在打孔中从对应资源清空对应信号。

使用有效rb作为降低当由于产生自附加dm-rs、用于agc的1符号和用于发送/接收切换的1符号的开销而使用s-tti或高mcs时所增加的有效编码速率的方法,本发明提出了tbs选择的规则以及其它规则。

尽管在v2x侧链路通信的上下文中描述了本发明,但是本发明仍可根据nr和/或nr的新设计中考虑的s-tti应用于降低由于附加开销和高mcs而增加的有效编码速率的方法。

首先,为了帮助理解本发明,本发明所提出的内容可总结如下。

lte系统维护全tti长度(1ms,l-tti)的tbs表。该tbs表根据ue的itbs和所分配的(物理)资源块(rb)的数量来定义可发送的传输块的传输块大小(tbs)。下表示出全tti长度(1ms)的tbs表的部分。

[表1]

在表1中,itbs表示根据mcs索引(imcs)给出的tbs索引。如表1所示,传输块大小(tbs)可根据itbs和所分配的(物理)rb的数量nprb来定义。例如,如果所分配的资源块的数量为10并且itbs被设定为10,则tbs可被确定为1736比特。

此外,itbs可根据由调制阶数确定的mcs索引(imcs)给出如下。

下表2示出itbs与mcs索引(imcs)之间的关系。

[表2]

当前tbs表考虑了一个全tti(1ms)可能未利用部分符号(例如,发送dm-rs的符号)的事实,但是没有考虑可能进一步阻止另一符号用于侧链路通信的事实。

作为一个示例,两个dm-rs可另外用于侧链路通信以增加由于高速下的多普勒效应而劣化的信道估计性能,并且可另外使用用于agc稳定时间的1符号和用于发送/接收切换时间的1符号。由于上述附加开销,资源块内可映射/发送数据的有效资源元素减少,最终ue的有效编码速率增加,这导致与itbs的部分对应的tbs无法使用的问题。

为了解决该问题,本发明可通过考虑一个全tti中可能不另外使用的符号来调节tb大小。下面将描述该操作的详细描述。

作为另一示例,在s-tti(例如,时隙单位或比时隙小的单位的tti)的情况下发生相同的问题。目前,v2x通信和nr通信考虑采用s-tti来实现低延迟。如果采用s-tti,则由于上述类似原因,基于当前tbs表的通信可能并不支持所有mcs级别。因此,可能需要调节tbs(将在下面指定)。

现在将考察由于侧链路通信采用s-tti和/或更高调制(例如,64qam)而引起的编码速率的改变。根据传统侧链路传输,例如,已接收10个rb的发送ue使用10个rb中的每一个中除了六个预留符号(4个dm-rs、1个agc和1个发送/接收切换时间)之外的剩余符号的资源元素(re)来计算(有效)编码速率。此时,作为一个示例,如果应用s-tti,则用于传输的数据区域减小,因此,与l-tti情况相比,编码速率向更高编码速率移位(以相同的方式,如果使用调制,则针对给定资源计算的编码速率也变高)。因此,如果在选择tbs时使用基于时隙的s-tti,则可使用减小至原始值的一半的tbs来执行传输。

然而,由于侧链路传输必须考虑用于agc和tx/rx切换时间的符号的打孔或速率匹配,所以(有效)编码速率可变高。另外,较短的s-tti(例如,子时隙s-tti或基于比子时隙更小的单位的s-tti)不仅支持更高的编码速率,而且如果应用高阶调制(例如,64qam),则进一步增加编码速率。因此,通过考虑将根据s-tti和高调制阶数而改变的编码速率,本发明提出了与选择有效rb以用于tbs调节的方法有关的规则a。

在侧链路通信中,考虑到预留符号,发送端对要发送的分组应用速率匹配或打孔并在速率匹配或打孔完成之后发送分组。接收机能够仅使用14个符号当中除了预留符号之外的那些符号(例如,8个符号)以使用l-tti(1ms)来解码。此时,接收机假设发送端已对用于agc的第一符号执行速率匹配并执行解码,或者在没有第一符号的情况下在打孔之后执行解码。此时,用于agc的间隔的部分可根据下面所述的规则b在特定条件下专用于数据接收。另外,在发送端处用于发送/接收切换时间的最后符号对数据进行编码以便发送数据,但实际上不发送它们。对于该符号,也可通过应用下面所述的规则b来更有效地利用所分配的资源。

图14示出发送v2x数据的方法的一个示例。

参照图14,ue确定要用于发送v2x数据的传输块的大小s110,并以具有上面确定的大小的传输块为单位发送v2x数据s120。

在下文中,确定用于发送v2x数据的传输块的大小的特定示例。

<规则a>

在上行链路子帧中,除了用于发送dm-rs的那些re(以下,称为dm-rs开销)之外的所有re可专用于数据传输。然而,对于侧链路子帧,与上行链路子帧相比dm-rs开销可增加,并且可能必须考虑由于agc和发送/接收切换时间引起的附加开销。

换言之,在侧链路通信中,可用于数据传输的re的数量可显著减少。在这方面,代替选择从现有资源块计算的tbs(第一tbs),侧链路传输可使用下面的方法1、2、3中的至少一个来选择比第一tbs低(或高)的tbs(第二tbs)并发送pssch、pscch和其它侧链路信道中的至少一个。

更具体地,在侧链路传输中确定tbs的当前方法在一个子帧具有两个dm-rs符号的假设下选择上行链路tbs;另一方面,由于上述原因,本发明可使用以下三种方法中的至少一种来确定tbs。

<方法1>

此方法考虑为在lte上行链路或侧链路tti中选择tbs而计算的“所分配的rb的数量”中的附加符号并通过按照附加符号的比率减小(或增加)的有效rb来确定tbs。换言之,可基于除了“dm-rs符号、用于自动增益控制(agc)的符号和用于发送/接收切换时间的符号中的至少一个”之外v2x数据可映射至的资源的量来确定有效rb。

图15示出比较传统rb和有效rb中可用于传输v2x数据的资源的量。此时,传统rb可指基于一个子帧具有两个dm-rs符号的假设的rb。

参照图15的(a),传统rb中可用于传输v2x数据的资源的量可使用子帧中除了发送dm-rs的两个符号之外的剩余符号的资源元素来确定。另一方面,参照图15的(b),有效rb中可用于传输v2x数据的资源的量可使用子帧中除了发送dm-rs的四个符号、用于agc的符号可用于发送/接收切换时间的符号之外的剩余符号的资源来确定。与传统rb相比有效rb的可用于传输v2x数据的资源的量减少。

尽管图15相对于一个子帧来比较可用于传输v2x数据的资源的量,但是可相对于一个资源块单位来执行比较。当通过有效rb来确定tb大小时,本发明可考虑可用资源的量由于子帧中存在四个dm-rs符号而减少的比率(即,考虑增加的dm-rs的数量)。类似地,可通过按照考虑5个符号(即,考虑附加dm-rs(=四个dm-rs符号)和“1个agc符号或用于发送/接收切换时间的1个符号”)确定的比率减小(或增加)的有效rb来确定tb大小。或者,可通过按照考虑6个符号(即,考虑附加dm-rs(=四个dm-rs符号)、1个agc符号和用于发送/接收切换时间的1个符号)确定的比率减小(或增加)的有效rb来确定tb大小。概括以上描述,可通过按照考虑n个符号(其中n是小于1tti中的符号的总数但大于0的值)确定的比率减小(或增加)的有效rb来确定tb大小。作为一个示例,当上述6个或更多个符号作为开销时,可通过考虑这6个或更多个符号的有效rb来确定tb大小。例如,如果7个符号是开销,则可计算考虑这7个符号(或者多于或少于7个符号)的有效rb。

<方法2>

方法2考虑附加符号并按照附加符号的比率减小或增加lte上行链路或传统侧链路tti中从tbs选择获得的tbs,以便确定新tbs。例如,当从传统方法计算第一tbs时,第一tbs按照附加符号的比率减小,以便确定新的tbs(第二tbs)。

例如,可通过按照由于4个符号导致的比率减小(或增加)所选tbs(即,通过考虑附加dm-rs)来确定tb大小。或者,可通过按照由于5个符号导致的比率减小(或增加)所选tbs(即,通过考虑附加dm-rs和1agc或1发送/接收切换时间)来确定tb大小。或者,可通过按照由于6个符号导致的比率减小(或增加)所选tbs(即,通过考虑附加dm-rs、1agc和1发送/接收切换时间)来确定tb大小。概括以上描述,可通过按照由于n个符号(其中n是小于1tti的符号的总数并大于0的值)导致的比率减小(或增加)所选tbs(即,通过考虑附加dm-rs、1agc和1发送/接收切换时间)来确定tb大小。作为一个示例,当上述6个或更多个符号作为开销时,可直接确定考虑这6个或更多个符号的tb大小。

<方法3>

方法3定义特定系数值并将为在lte上行链路或侧链路传输中选择tbs而计算的“所分配的rb的数量”改变为减小(或增加)了所定义的系数值那么多的rb的数量,之后确定tb大小。

系数值可根据mcs级别而不同。这是因为性能可根据是否针对各个mcs值应用有效rb而变化。

此外,上述tbs确定方法可遵从以下规则。换言之,只有当满足以下规则中的至少一个时,才可应用上述tbs确定方法。

1.规则1:应用s-tti(例如,基于时隙的tti或基于比时隙更小的单位的tti)的情况(例如,应用s-tti以满足低延迟要求的情况或者对下行链路/上行链路/侧链路传输应用s-tti的情况)。

2.规则2:比预定阈值短的tti。

3.规则3:要发送的分组的mcs级别高于特定mcs阈值(例如,64qam)的情况。

4.规则4:整个mcs级别或特定mcs级别的情况。

5.规则5:ue的速度比预定阈值快的情况。

6.规则6:上述规则1、规则2、规则3、规则4和规则5中的全部或部分的组合。

是否选择规则1至6可预定或通过上层信号(例如,rrc信号)指示。

另外,通过预定义的信道(例如,pscch(更具体地,pscch的预留比特)),发送ue(或enb)可关于规则1至6用信号通知接收ue:1)是否应用s-tti(或s-tti长度);2)上述阈值;3)有效rb的数量或系数值;以及4)itbs值。

此外,假定传统ue和高级ue(例如,lterel-15ue)共存。可存在已执行tbs调节的高级ue的传输数据无法被传统ue解码的问题。为了解决该问题,发送ue可用信号通知关于是否使用有效rb的信息(例如,可通过开/关形式的1比特信息来告知是否使用有效rb)、关于是否允许有效rb的信息、以及用于通过预定义的信道(例如,pscch(使用预留比特))向接收ue通知发送ue是高级ue(例如,lterel-15ue)的信息中的至少一个。类似地,上述信息中的至少一个可通过上层信号(例如,rrc信号)提供给接收ue。

通过资源池配置,网络可告知使用上述方法的高级ue的存在。

上面所提出的tbs调节也适用于上行链路子帧和下行链路子帧没有单独定义,而是上行链路/下行链路区域全部定义在一个子帧内的子帧结构(此时,该子帧结构不排除子帧内的全部符号都与上行链路或下行链路传输有关的情况)。

作为一个示例,假定给定不同数量的子帧,其中对于各个子帧,上行链路符号的数量和下行链路符号的数量不同。此时,可确定涵盖所有可能情况的tbs表,但是这可能导致过度复杂和冗长的标准规范。

为了解决该问题,可使用上面所提出的方法,或者可使用考虑相对于具有特定数量的符号的子帧(用于下行链路或上行链路或二者)增加或减少的符号的数量的tbs缩放。

另外,在itbs值固定,并且所分配的资源块的数量按比例减少之后,如果根据当前现有标准规范中定义的操作原理使用与减少的资源块的数量对应的tbs值(例如,如果使用与调节特殊子帧中的tbs的方法相似的方法),则可禁止选择指示已变得小于v2x发送ue当前要发送的v2x消息的大小的tbs的rb的数量。

换言之,已按比例减小的资源块的大小可通过“max{提供大于或等于v2x消息大小的tbs值的rb的最小数量,按照预定比率减小的rb的数量}”来确定。

另外,如果与l-tti相比tti长度增加(例如,可用于扩展覆盖范围的目的)或者如果tti长度从s-tti改变为l-tti,则需要tbs按比例放大处理,其可按照与应用上面所提出的方法相反的方式来实现。换言之,如果tti长度增加,则可根据方法1、2和3增加tbs以用于确定上面所提出的tbs。

另外,作为一个示例,根据引入到高级ue(例如,根据lterel-15操作的ue)的新格式(例如,是否使用s-tti(具体地,64qam)、(新)tbs解释(/缩放)、mcs调节、或者不同于传统的tbs(或mcs)的集合或是否对v2x通信应用发送分集/载波聚合)或根据上述预定义的规则执行传输操作的ue可根据下述规则来确定是否使用新格式(与传统ue(例如,根据lterel-14操作的ue)相比)。

此时,网络可根据以下规则来直接确定要使用的格式并使用所确定的格式设定(或用信号通知)ue。在一个示例中,如果要发送的消息需要由传统ue接收,则可使用传统格式。然而,如果允许消息仅由高级ue接收,则使用新格式可为可接受的。

图16示出确定用于v2x通信的传输块大小的方法的一个示例。

参照图16,ue确定是否满足特定条件s210,并且仅当满足特定条件时,以有效资源块为单位计算用于v2x数据传输的资源块的数量s220。

ue可基于所计算的资源块的数量来确定传输块大小(tbs)s230。

特定条件可基于以下规则所指示的值(例如,pppp值、服务类型(或服务id)或目的地id)对应于至少一个条件。发送ue可根据特定条件来确定是否使用上述新格式。或者,新格式和下述规则之间的映射关系可由上层(例如,mac层或应用层)配置以告知是否允许新格式。

特定条件可包括以下规则中的至少一个。

规则1:大于(或小于)预定阈值的v2x消息相关每分组prose优先级(pppp)值(或范围)

规则2:服务特定pppp值(或范围)大于(或小于)预定阈值。

规则3:对分组的服务类型的限制(例如,仅适用于lterel-14的服务、仅适用于lterel-15的服务或者适用于lterel-14和15二者的服务)。这里,服务类型可指示服务的id,或者更具体地,v2x服务id。v2x服务id是上层(例如,mac层或应用层)可通过其标识v2x应用程序的id,并且可被称为智能交通系统-应用标识符(its-aid)(或提供商服务标识符(psid))。

规则4:服务质量(qos)。

规则5:ue的属性(例如,车辆类型、ue的速度和同步基准时间)。

规则6:道路类型(例如,市区道路或高速公路)。

规则7:ue类型(例如,行人ue、安装在路边的ue、或安装在车辆中的ue)。

规则8:其它服务信息。

规则9:上述规则1至8中的全部或部分的组合。

这里,关于规则的信息被映射至pppp并且可以或可以不通过pppp传送。

另外,发送ue可从上层(例如,mac层)接收关于是否使用新格式发送消息的信息。或者,发送ue可通过“目的地id”(接收ue的id)、“多播id”、“分组id”、“ue的版本”或由上层确定的“版本id或版本号”来确定是否使用新格式发送消息;或可标识要发送的消息的集合。

作为一个示例,当发送ue使用新格式(例如,s-tti、64qam、(新)tbs解释(/缩放)、mcs调节、对v2x通信的发送分集或载波聚合的应用)来发送消息时,发送ue可通过对去往从上层传送的目的地id的消息应用新格式来确定是否发送消息。

此时,目的地id可被解释为允许新格式的高级ue。作为另一示例,在多播的情况下,多播id可用于通过标识向仅包括高级ue的组的传输来允许消息传输。

在v2x侧链路传输或下行链路或上行链路广播传输时,发送ue可根据上面所提出的方法通过划分广播传输级别来发送消息。

作为一个示例,如果发送ue通过上面所提出的方法识别出全部ue均被允许接收消息,则发送ue可将消息广播给所有ue。类似地,如果发送ue通过上述规则注意到仅高级ue被允许接收消息,则发送ue可在不同的广播级别发送消息。此时,可能需要用于指示广播级别的指示符,其可通过预定义的信道(例如,pscch)用信号通知给接收ue。

如果上层(例如,mac层或应用层)将不同的大小较小的消息组合到一个分组中,则上面所提出的方法可能导致问题。

作为一个示例,如果传统格式消息(例如,根据lterel-14的v2x消息)和高级格式消息(例如,根据lterel-15的v2x消息)被组合到一个分组中,则传统ue(例如,根据lterel-14的v2xue)无法对高级格式消息进行解码,从而无法正确地接收组合的消息。因此,当在这种示例中使用新格式时,两个消息不在上层中组合,而是无条件地分到不同的分组(或pdu)中以发送。

或者,即使两个消息被组合到一个分组中,在实际传输中仍禁止使用新格式,并且根据传统格式发送消息以使得传统ue可接收消息。

例如,假定允许64qam(新格式之一)的上层消息a(或服务)和不允许64qam的上层消息b根据传统操作被组合到具有相同目的地id的一个分组中。在这种情况下,当确定实际mcs时,代替使用64qam,可选择传统mcs(例如,qpsk、16qam)以使得传统ue可接收分组。

<规则b>

在下文中,将详细描述处理用于v2x通信的tti中所包括的agc符号和用于发送/接收切换时间的符号的方法。

通常,如果编码速率低(例如,小于1/3),则无论选择打孔和速率匹配中的哪一个,接收机的性能相似;然而,如果编码速率高,则基于速率匹配的性能可能更好。

目前,对于lterel-14侧链路传输中使用的打孔,发送机可无论如何在agc间隔中发送数据,并且接收机可对agc间隔应用打孔,然后应用解码。或者,接收机可仅将第一符号的部分用于agc目的,并且可将第一符号的剩余信号一起用于解码(这是ue实现的问题)。因此,第一符号的部分区域可用于发送/接收目的。并且在最后符号的情况下,发送端可对数据进行编码以发送数据,但是事实上,可能不发送该数据。此外,接收端可通过假设在最后符号处没有接收到数据来执行解码。

然而,如果应用遵从以下规则的速率匹配,则数据传输的接收性能可改进。

规则1:tti长度比特定阈值长度短的情况。

规则2:编码速率比特定阈值速率高的情况。

规则3:应用有效rb或应用tbs调节的情况。

规则4:全部mcs级别或特定mcs级别。

规则5:上述规则1、规则2、规则3和规则4中的全部或部分的组合。

根据上述规则,1)agc和最后符号可全部如lterel-14侧链路传输中一样使用打孔来操作。或者2)agc和最后符号可全部使用速率匹配来操作。此时,agc符号可使用速率匹配来操作,而最后符号可使用lterel-14侧链路传输中所使用的打孔来操作,或者agc符号可如lterel-14侧链路传输中一样使用打孔来操作,而最后符号可使用速率匹配来操作。或者,可指定发送和接收以选择1)和2)方案中的任一个。

图17示出根据本发明的一个实施方式的由ue发送信号以用于v2x通信的方法。

参照图17,ue将v2x数据映射到在时域中包括多个符号的子帧的资源s10。此时,可在映射处理期间排除子帧的最后符号中的资源元素。换言之,最后符号用于发送/接收切换时间,并且从用于映射到v2x数据(调制符号)的资源元素的处理排除包括在最后符号中的资源元素。相反,如果对最后符号应用打孔,则在将v2x数据映射到资源元素的处理期间包括最后符号的资源元素,但是在这些资源元素中实际不发送v2x数据。

ue将映射的v2x数据发送到其它ues20。

图18示出对用于v2x通信的子帧的第一符号和最后符号应用的打孔和速率匹配的示例。

参照图18,可对子帧的第一符号应用打孔。更具体地,发送ue可在将v2x数据映射到第一符号的资源元素之后发送v2x数据,并且即使在第一符号的资源元素处接收到v2x数据,接收ue也首先对所接收的数据应用打孔,之后对打孔的数据应用解码。或者,如果接收ue是允许比一个符号短的agc符号的那种ue,则通过第一符号的部分资源元素接收的信号用于agc的目的,而在剩余资源元素处接收的信号可用于数据解码。

并且,可对子帧的最后符号应用速率匹配。更具体地,在从映射处理排除最后符号的资源元素之后,发送ue可确定传输块大小。另外,可不通过最后符号的资源元素发送v2x信号。

可对数据信道(例如,pssch)和控制信道(例如,pscch)二者应用打孔和速率匹配操作。

类似地,上述操作方案可仅应用于数据信道,而控制信道可采用当前v2x通信中所使用的传统操作(例如,打孔)。具体地,由于该方法能够独立于数据信道中的打孔和速率匹配之间的变换而维持控制信道的结构,所以实现接收端不必尝试检测两种类型的控制信道的有利效果。相反情况也是可能的。

是否选择规则1至5(即,是否应用速率匹配/打孔)可通过预定义的信道用信号通知,或由上层信令(例如,rrc信令)指示。

另外,可通过预定义的信道将上述阈值(与规则1至5有关)用信号通知给ue,或者发送ue(或enb)可通过预定义的信道(例如,(预留比特的)pscch)将上述阈值用信号通知给接收ue。或者,可直接通过上层信令(例如,rrc信令)将上述阈值用信号通知给ue。

另外,可根据上述规则对由于应用速率匹配或打孔而产生的空资源重复地发送数据(例如,可在agc设定间隔之后重复数据),或者可向其发送特定数据(例如,支持快速agc的信号)。

根据上述规则a和/或b发送消息的发送ue可用信号通知接收ue以告知是否应用对应规则,如下所述。

首先,规则a所建议的可由其它高级ue使用的tbs调节和/或新格式(例如,s-tti、64qam、新tbs的应用(/缩放)、mcs调节和新mcs表)以及规则b所建议的速率匹配可针对发送ue单独地应用或者一起应用。在下文中,为了描述方便,规则a被简称为a,规则b被简称为b。

1.当应用a和b之一时,发送ue可通过预定义的信道(例如,pscch(的预留比特))用信号通知接收ue。

2.当应用a和b二者时,发送ue可通过预定义的信道(例如,pscch(的预留比特))用信号通知接收ue。这里,预留比特可用于使用两个比特来分别向接收ue告知a和b,或者使用一个比特来指示a和b的同时应用以降低信令开销。具体地,当同时应用a和b二者时,使用1比特的信令方法使通信性能最大化。在能够利用a和b二者的高级ue执行传输的情况下,没有其它理由坚持仅使用两个规则中的一个。因此,可能优选的是通过仅利用1比特来降低控制信号的信令开销以使a和b总是同时使用。

此外,本发明的内容不限于ue之间的直接通信,而是也可应用于上行链路或下行链路通信,在这种情况下,enb或中继节点可使用所提出的方法。由于关于上述所提出的方法的示例也可作为本发明的实现方法而被包括,应该清楚的是,这些示例可被视为一种所提出的方法。另外,上述所提出的方法可单独地实现,但是也可按照所提出的方法的部分的组合(或合并)的形式实现。可定义规则以使得通过预定义的信号(例如,物理层信号或上层信号)enb可告知ue或发送ue可告知接收ue关于是否应用所提出的方法的信息(或者关于所提出的方法的规则的信息)。

图19是实现本发明的实施方式的设备的框图。

参照图19,设备1000包括处理器1100、存储器1200和收发器1300。处理器1100实现所提出的功能、处理和/或方法。设备1000可以是ue或enb。连接到处理器1100的收发器1300发送和接收无线电信号。存储器1200可存储操作处理器1100所需的信息并且还存储发送和接收信号。

图20示出处理器1100如何配置的一个示例。

参照图20,处理器1100还可包括将数据映射到资源(例如,资源元素)的数据映射模块1101以及确定tbs的tbs确定模块1102。

处理器可包括专用集成电路(asic)、其它芯片组、逻辑电路和/或数据处理装置。存储器可包括只读存储器(rom)、随机存取存储器(ram)、闪存、存储卡、存储介质和/或其它存储装置。rf单元可包括用于处理无线电信号的基带电路。当实施方式在软件中实现时,上述技术可利用执行上述功能的模块(进程、函数等)来实现。该模块可被存储在存储器中并且可由处理器执行。存储器可在处理器的内部或外部,并且可通过各种熟知的手段联接到处理器。

权利要求书(按照条约第19条的修改)

1.一种在无线通信系统中由ue发送信号以用于车辆对一切v2x通信的方法,该方法包括以下步骤:

将v2x数据映射到在时域中包括多个符号的子帧的资源;以及

将所映射的v2x数据发送到不同的ue,其中,

从映射处理排除所述子帧的最后符号中的资源元素。

2.根据权利要求1所述的方法,其中,所述子帧的第一符号是用于自动增益控制agc的符号,并且所述最后符号是用于发送/接收切换时间的符号。

3.根据权利要求1所述的方法,其中,在所述映射处理期间包括所述子帧的第一符号中的资源元素。

4.根据权利要求1所述的方法,其中,所述子帧在正常循环前缀cp中包括14个符号。

5.根据权利要求1所述的方法,其中,确定要用于发送所述v2x数据的传输块的大小,并且以所确定的大小的传输块为单位发送所述v2x数据。

6.根据权利要求5所述的方法,其中,所述传输块的大小由发送所述v2x数据的资源块的数量以及根据“调制和编码方案mcs”确定的传输块大小索引来确定。

7.根据权利要求6所述的方法,其中,以传统资源块或有效资源块为单位来计算资源块的数量。

8.根据权利要求7所述的方法,其中,所述传统资源块由一个子帧中除了两个解调-参考信号dm-rs符号之外映射有所述v2x数据的资源的量来确定。

9.根据权利要求7所述的方法,其中,所述有效资源块由一个子帧中除了四个dm-rs符号和“用于自动增益控制agc的符号和用于发送/接收切换时间的符号中的任一个”之外映射有所述v2x数据的资源的量来确定。

10.根据权利要求7所述的方法,其中,当所述v2x数据的每分组prose优先级pppp值、服务类型或目的地标识id满足预定条件时,以有效资源块为单位来计算资源块的数量。

11.根据权利要求7所述的方法,其中,通过从物理侧链路控制信道pscch发送的预留比特的侧链路控制信息sci来告知所述不同的ue:以所述有效资源块为单位来计算资源块的数量。

12.(添加)一种在无线通信系统中发送信号的方法,该方法由用户设备ue执行并且包括以下步骤:

通过物理侧链路控制信道pscch向另一ue发送侧链路控制信息sci;以及

通过物理侧链路共享信道pssch向所述另一ue发送由所述sci调度的数据,

其中,所述侧链路控制信息包括1比特信息,并且

其中,所述1比特信息指示所述数据的传输格式中是否包括传输块大小tbs缩放和速率匹配。

[由71段,232-235支持]

13.(添加)根据权利要求13所述的方法,其中,如果所述1比特信息的值为1,则所述数据的所述传输格式包括所述tbs缩放和所述速率匹配。

14.(添加)根据权利要求13所述的方法,其中,所述数据是车辆对一切v2x相关数据。

15.一种用户设备ue,该ue包括:

收发器,该收发器发送和接收无线电信号;以及

处理器,该处理器结合所述收发器操作,

其中,所述处理器被配置为:

通过物理侧链路控制信道pscch向另一ue发送侧链路控制信息sci,并且

通过物理侧链路共享信道pssch向所述另一ue发送由所述sci调度的数据,

其中,所述侧链路控制信息包括1比特信息,并且

其中,所述1比特信息指示所述数据的传输格式中是否包括传输块大小tbs缩放和速率匹配。

[由71段,232-235支持]

16.(添加)根据权利要求16所述的ue,其中,如果所述1比特信息的值为1,则所述数据的所述传输格式包括所述tbs缩放和所述速率匹配。

17.(添加)根据权利要求16所述的ue,其中,所述数据是车辆对一切v2x相关数据。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1