用于控制信息传输的发射功率和跳频配置的制作方法

文档序号:19735921发布日期:2020-01-18 04:27阅读:177来源:国知局
用于控制信息传输的发射功率和跳频配置的制作方法

交叉引用

本专利申请要求由hosseini等人于2018年5月24日提交的题为“transmitpowerandfrequencyhoppingconfigurationsforcontrolinformationtransmissions”的美国专利申请第15/988,144号,以及由hosseini等人于2017年5月26日提交的题为“transmitpowerandfrequencyhoppingconfigurationsforcontrolinformationtransmissions”的美国临时专利申请第62/511,921号的利益,这两份申请中的每一份都转让给本申请的受让人。

概括地说,下文涉及无线通信,具体而言,涉及用于控制信息传输的发射功率和跳频配置。



背景技术:

广泛地部署无线通信系统以提供各种类型的通信内容,诸如语音、视频、分组数据、消息传送、广播等。这些系统可以通过共享可用的系统资源(例如,时间、频率以及功率)能够支持与多个用户的通信。这样的多址系统的示例包括码分多址(cdma)系统、时分多址(tdma)系统、频分多址(fdma)系统和正交频分多址(ofdma)系统,(例如,长期演进(lte)系统,或者新无线电(nr)系统)。

无线多址通信系统可以包括多个基站或者接入网络节点,每一个基站或者接入网络节点同时支持针对多个通信设备的通信,所述多个通信设备可以另外被称为用户设备(ue)。在一些无线通信系统中,基站与ue可以在具有不同长度的传输时间间隔(tti)期间进行通信。例如,基站与ue可以在横跨两个符号的缩短的tti(stti)和横跨三个符号的stti期间进行通信。在这样的示例中,基站配置ue用于在这些资源上进行高效通信可能是有挑战性的。



技术实现要素:

一些无线通信系统可以在具有不同长度的传输时间间隔(tti)期间支持在基站与用户设备(ue)之间的通信。本文所描述的技术允许ue利用适当的配置用于在被分配用于上行链路通信(例如,上行链路控制信息传输)的特定长度的缩短的tti(stti)期间进行通信。在一个示例中,ue可以基于stti的长度或者基于针对在stti中的控制信道来分配的符号的数量,来调整用于在stti期间发送上行链路控制信息的发射功率。在另一示例中,ue可以基于stti的部分是否被分配用于另一传输(例如,探测参考信号(srs)传输)来确定用于在stti期间发送上行链路控制信息的跳频模式。

描述了用于在支持多个tti长度的系统中的无线通信的方法。所述方法可以包括识别被分配用于上行链路通信的tti的控制区域,确定被分配用于上行链路通信的tti的长度,至少部分地基于tti的长度来调整用于在tti的控制区域中发送上行链路控制信息的发射功率,以及使用所调整的发射功率在tti的控制区域中发送上行链路控制信息。

描述了用于在支持多个tti长度的系统中的无线通信的装置。所述装置可以包括用于识别被分配用于上行链路通信的tti的控制区域的单元,用于确定被分配用于上行链路通信的tti的长度的单元,用于至少部分地基于tti的长度来调整用于在tti的控制区域中发送上行链路控制信息的发射功率的单元,以及用于使用所调整的发射功率在tti的控制区域中发送上行链路控制信息的单元。

描述了用于在支持多个tti长度的系统中的无线通信的另一装置。所述装置可以包括处理器、与处理器进行电子通信的存储器和存储在存储器中的指令。所述指令可以操作为使处理器识别被分配用于上行链路通信的tti的控制区域,确定被分配用于上行链路通信的tti的长度,至少部分地基于tti的长度来调整用于在tti的控制区域中发送上行链路控制信息的发射功率,以及使用所调整的发射功率在tti的控制区域中发送上行链路控制信息。

描述了用于在支持多个tti长度的系统中的无线通信的非暂时性计算机可读介质。非暂时性计算机可读介质可以包括指令,所述指令可操作为使处理器识别被分配用于上行链路通信的tti的控制区域,确定被分配用于上行链路通信的tti的长度,至少部分地基于tti的长度来调整用于在tti的控制区域中发送上行链路控制信息的发射功率,以及使用所调整的发射功率在tti的控制区域中发送上行链路控制信息。

在上文描述的方法、装置和非暂时性计算机可读介质的一些示例中,调整发射功率包括使用相同的发射功率用于在tti的每一个符号期间发送上行链路控制信息。在上文描述的方法、装置和非暂时性计算机可读介质的一些示例中,tti包括三个(3)符号。在上文描述的方法、装置和非暂时性计算机可读介质的一些示例中,所调整的发射功率包括用于在包括两个符号的tti期间发送上行链路控制信息的相同发射功率。

上文描述的方法、装置以及非暂时性计算机可读介质的一些示例可以进一步包括用于确定tti的一个符号可以被分配用于srs传输的过程、特征、单元或者指令。上文描述的方法、装置以及非暂时性计算机可读介质的一些示例可以进一步包括用于使用第一发射功率用于在tti的第一符号期间发送上行链路控制信息以及使用第二发射功率用于在tti的第二符号期间发送上行链路控制信息的过程、特征、单元或者指令,其中第一发射功率与第二发射功率是相同的(例如,第一发射功率和第二发射功率中的每一个发射功率包括用于在tti期间发送上行链路控制信息的所调整的发射功率的一半(1/2))。

上文描述的方法、装置以及非暂时性计算机可读介质的一些示例可以进一步包括用于接收对用于在tti的每一个符号期间发送上行链路控制信息的发射功率的指示的过程、特征、单元或者指令,其中第一发射功率和第二发射功率可以至少部分地基于指示来调整。在上文描述的方法、装置以及非暂时性计算机可读介质的一些示例中,指示包括功率偏移参数。

上文描述的方法、装置以及非暂时性计算机可读介质的一些示例可以进一步包括用于确定tti的符号中没有符号可以被分配用于srs传输的过程、特征、单元或者指令。上文描述的方法、装置以及非暂时性计算机可读介质的一些示例可以进一步包括用于使用第一发射功率用于在tti的第一符号期间发送上行链路控制信息,使用第二发射功率用于在tti的第二符号期间发送上行链路控制信息,以及使用第三发射功率用于在tti的第三符号期间发送上行链路控制信息的过程、特征、单元或者指令,其中第一发射功率、第二发射功率和第三发射功率中的每一个发射功率包括用于在tti期间发送上行链路控制信息的所调整的发射功率的一部分(例如,当在每一个符号中的发射功率是通过将所调整的发射功率除以符号的数量来给出时,是三分之一(1/3))。

上文描述的方法、装置以及非暂时性计算机可读介质的一些示例可以进一步包括用于接收对用于在tti的每一个符号期间发送上行链路控制信息的发射功率的指示的过程、特征、单元或者指令,其中可以至少部分地基于指示来调整第一发射功率、第二发射功率和第三发射功率。在上文描述的方法、装置以及非暂时性计算机可读介质的一些示例中,指示包括功率偏移参数。

在上文描述的方法、装置以及非暂时性计算机可读介质的一些示例中,控制区域横跨tti的一个符号。在上文描述的方法、装置以及非暂时性计算机可读介质的一些示例中,所调整的发射功率可以是用于在包括两个符号的tti的每一个符号期间发送上行链路控制信息的相同的发射功率。在上文描述的方法、装置以及非暂时性计算机可读介质的一些示例中,所调整的发射功率可以大于用于在包括两个符号的tti的每一个符号期间发送上行链路控制信息的发射功率。

上文描述的方法、装置以及非暂时性计算机可读介质的一些示例可以进一步包括用于接收对用于在tti期间发送上行链路控制信息的发射功率的指示的过程、特征、单元或者指令,其中可以至少部分地基于指示来调整发射功率。在上文描述的方法、装置和非暂时性计算机可读介质的一些示例中,指示包括功率偏移参数。在上文描述的方法、装置以及非暂时性计算机可读介质的一些示例中,可以至少部分地基于tti的索引或者与tti相关联的服务的类型来确定被分配用于上行链路通信的tti的长度。

描述了用于无线通信的方法。所述方法可以包括识别被分配用于上行链路通信的tti的控制区域,至少部分地基于tti的部分是否被分配用于srs传输来识别用于在tti的控制区域中发送上行链路控制信息的跳频模式,以及至少部分地基于所识别的跳频模式,在tti的控制区域中发送上行链路控制信息。

描述了用于无线通信的装置。所述装置可以包括用于识别被分配用于上行链路通信的tti的控制区域的单元,用于至少部分地基于tti的部分是否被分配用于srs传输来识别用于在tti的控制区域中发送上行链路控制信息的跳频模式的单元,以及用于至少部分地基于所识别的跳频模式来在tti的控制区域中发送上行链路控制信息的单元。

描述了用于无线通信的另一装置。所述装置可以包括处理器、与处理器进行电子通信的存储器与存储在存储器中的指令。所述指令可以操作为使处理器识别被分配用于上行链路通信的tti的控制区域,至少部分地基于tti的部分是否被分配用于srs传输来识别用于在tti的控制区域中发送上行链路控制信息的跳频模式,以及至少部分地基于所识别的跳频模式来在tti的控制区域中发送上行链路控制信息。

描述了用于无线通信的非暂时性计算机可读介质。非暂时性计算机可读介质可以包括指令,所述指令可操作为使处理器识别被分配用于上行链路通信的tti的控制区域,至少部分地基于tti的部分是否被分配用于srs传输来识别用于在tti的控制区域中发送上行链路控制信息的跳频模式,以及至少部分地基于所识别的跳频模式来在tti的控制区域中发送上行链路控制信息。

在上文描述的方法、装置以及非暂时性计算机可读介质的一些示例中,tti的一个符号可以被分配用于srs传输,以及tti包括三个(3)符号。在上文描述的方法、装置以及非暂时性计算机可读介质的一些示例中,至少部分地基于所识别的跳频模式来发送上行链路控制信息包括:在tti的第一符号期间在系统带宽的第一频率区域上发送上行链路控制信息,以及在tti的第二符号期间在系统带宽的第二频率区域上发送上行链路控制信息。

附图说明

图1和图2根据本公开内容的方面说明了无线通信系统的示例;

图3根据本公开内容的方面说明了使用不同的跳频配置的多个上行链路传输的示例。

图4和图5根据本公开内容的方面示出了设备的方块图。

图6根据本公开内容的方面说明了包括用户设备(ue)的系统的方块图。

图7-图10根据本公开内容的方面说明了方法。

具体实施方式

本文描述的无线通信系统基于资源的结构或者基于资源的部分是否被分配用于另一传输(例如,探测参考信号(srs)传输)来支持用于配置用户设备(ue)以在一组资源上通信的高效技术。

一些无线通信系统可以支持在基站与ue之间在具有不同长度的传输时间间隔(tti)(或者缩短的tti(stti))期间的通信。例如,在一个实例中,可以调度ue在具有一个长度的stti期间发送上行链路控制信息,以及在另一实例中,可以调度ue在具有不同长度的stti期间发送上行链路控制信息。在一些系统中,ue可以使用相同的发射功率配置来在具有不同长度的tti中发送上行链路控制信息。进一步地,ue可以利用相同的发射功率配置来在stti期间发送上行链路控制信息,而不论tti的部分是否被分配用于另一传输(例如,srs传输)。

然而,在一些方面中,如果ue被配置为使用相同的发射功率配置用于在具有不同长度的tti中发送上行链路控制信息,则ue可以使用不足量的功率或者使用过大的功率来发送上行链路控制信息。类似地,如果ue被配置为使用相同的发射功率配置用于在tti中发送上行链路控制信息,而不论tti的部分是否被分配用于另一传输,则ue可以使用不足量的功率或者使用过大的功率来发送上行链路控制信息。在这样的方面,如果ue不能使用足够的功率来发送上行链路控制信息,则对于基站而言对从ue接收的上行链路控制信息进行解码可能是有挑战性的。或者,使用过多量的功率值用于上行链路控制信息传输对于ue的电池寿命可能是有害的。

另外,在一些情况下,ue可以在stti期间使用相同的跳频配置用于上行链路控制信息传输,而不论stti的部分是否被分配用于另一传输,以及这可能导致在无线通信系统中的效率低下。例如,如果ue被配置为使用相同的跳频配置用于在三符号stti期间发送上行链路控制信息,而不论在stti中的符号是否被分配用于srs传输,则ue可以在两个剩余符号(即,该符号未用于srs传输)中在系统带宽的相同频率区域上进行发送。换言之,ue可以在两个剩余符号(即,没有跳频)期间不在不同的频率区域上进行发送。正因为如此,由于在上行链路传输中缺乏分集,上行链路控制信息传输可能具有较低的信号与干扰加噪声比(sinr),并因此,接收上行链路控制信息传输的机会可能较低。

如本文所描述的,无线通信系统可以支持用于配置ue以基于资源的结构以及资源的部分是否被分配用于另一传输来在一组资源上发送上行链路控制信息的高效技术。在一个方面,ue可以基于stti的长度,以及在一些示例中,基于stti的部分是否被分配用于另一传输,来确定发射功率配置以在stti期间发送上行链路控制信息。在另一方面,ue可以基于stti的部分是否被分配用于另一传输来确定用于在stti期间发送上行链路控制信息的跳频模式。

在无线通信系统的上下文中,下文描述了上文所介绍的本公开内容的方面。后文描述了支持用于控制信息传输的发射功率和跳频配置的过程和信令交换的示例。参照与用于控制信息传输的发射功率和跳频配置相关的装置图、系统图和流程图来进一步说明和描述本公开内容的方面。

图1根据本公开内容的各个方面说明了无线通信系统100的示例。无线通信系统100包括基站105、ue115和核心网130。在一些示例中,无线通信系统100可以是第五代(5g)/新无线电(nr)或者长期演进(lte)(或者改进的lte(lte-a))网络。在一些方面中,无线通信系统100可以支持增强的宽带通信、超可靠(即,关键任务)通信、低延时通信以及与低成本和低复杂度设备的通信。

基站105可以经由一个或者多个基站天线来与ue115无线地进行通信。每一个基站105可以针对各自的地理覆盖区域110提供通信覆盖。在无线通信系统100中所示出的通信链路125可以包括从ue115到基站105的上行链路传输,或者从基站105到ue115的下行链路传输。控制信息和数据可以是根据各种技术在上行链路信道或者下行链路信道上复用的。控制信息和数据可以是在下行链路信道上复用的,例如,使用时分复用(tdm)技术、频分复用(fdm)技术,或者混合tdm-fdm技术。在一些示例中,在下行链路信道的tti期间发送的控制信息可以以级联的方式分布在不同的控制区域之间(例如,在共同的控制区域与一个或者多个ue特定的控制区域之间)。

ue115可以是遍及无线通信系统100来分散的,以及每一个ue115可以是固定的或者移动的。ue115还可以被称为移动站、用户站、移动单元、用户单元、无线单元、远程单元、移动设备、无线设备、无线通信设备、远程设备、移动用户站、接入终端、移动终端、无线终端、远程终端、手机、用户代理、移动客户端、客户端或者某些其它适当的术语。ue115可以是蜂窝电话、个人数字助理(pda)、无线调制解调器、无线通信设备、手持设备、平板计算机、膝上型计算机、无绳电话、个人电子设备、手持设备、个人计算机、无线本地环路(wll)站、物联网(iot)设备、万物互联(ioe)设备、机器类型通信(mtc)设备、器具、汽车等。

基站105可以与核心网130通信以及与彼此通信。例如,基站105可以通过回程链路132(例如,s1等)与核心网130相连接。基站105可以在回程链路134(例如,x2等)上直接地或者间接地(例如,通过核心网130)彼此通信。基站105可以执行无线配置以及针对与ue115通信进行调度,或者可以在基站控制器(未示出)的控制之下进行操作。在一些示例中,基站105可以是宏小区、小型小区、热点等。基站105还可以被称作为演进型节点b(enb)或者gnb105。

在lte或者nr中的时间间隔可以以基本时间单元的倍数(所述基本时间单元可以是ts=1/30,720,000秒的采样周期)来表示。时间资源可以是根据10毫秒的长度的无线帧(tf=307200ts)来组织的,所述无线帧可以是通过从0至1023的系统帧号(sfn)来标识的。每一个帧可以包括从0至9编号的十个1毫秒子帧。子帧可以进一步划分为两个5毫秒时隙,时隙中的每一个时隙包含6个或者7个调制符号周期(取决于预先添加到每一个符号的循环前缀的长度)。除了循环前缀之外,每一个符号包含2048个采样周期。本文描述的符号可以对应于正交频分复用(ofdm)符号、单载波频分复用(sc-fdm)符号、离散傅立叶变换扩频ofdm(dft-s-ofdm)符号等。

在无线通信系统100中,tti可以被定义为在其中基站105可以调度ue115用于上行链路或者下行链路传输的时间的最小单元。例如,基站105可以分配一个或者多个tti用于与ue115进行的下行链路通信。然后,ue115可以监控一个或者多个tti以接收来自于基站105的下行链路信号。在一些无线通信系统中(例如,lte系统或者nr系统),子帧可以是调度或者tti的基本单元。在其它方面,诸如具有低延时操作,可以使用不同的、减少的持续时间tti(例如,stti)(例如,微时隙)。除了与lte和nr相关联的其它类型的通信之外,无线通信系统100可以使用各种tti持续时间,包括促进低延时以及移动宽带(mbb)通信的那些持续时间。

在一些示例中,子帧可以包括六个stti,其中第一stti和最后stti在子帧中横跨三个符号,以及其它stti横跨两个符号。因此,由缩短的物理上行链路共享信道(spusch)或者缩短的物理上行链路控制信道(spucch)所横跨的符号的数量可以是基于stti的长度的。在一个示例中,具有基于spucch而非解调参考信号(dmrs)的序列的spucch格式可以支持在两符号stti和三符号stti中多达两个harq比特(即,低有效负载大小)。在这个示例中,因为在stti中可能没有dmrs,所以stti的所有符号可以用于spucch传输。进一步地,在这个示例中,ue115可以被配置为使用跳频用于在spucch上的对上行链路控制信息的传输。在另一示例中,针对较大的有效负载大小(例如,多于两个比特)可以支持不同的spucch格式。在任一示例中,在stti中由spucch横跨的符号的数量可以取决于stti的索引或者stti被分配用于的服务类型(例如,低延时服务)。换言之,在stti中由spucch横跨的符号的数量可以取决于或者对应于在stti中符号的数量。

资源元素可以包括一个符号周期和一个子载波(例如,15khz频率范围)。在一些方面中,可以基于通信的类型来选择或者确定在系统内使用的数字学(即,符号大小、子载波大小或者tti持续时间)。例如,数字学可以是考虑到在针对低延时应用的延时与针对其它应用的效率之间的内在折衷来选择或者确定的。因此,被分配用于mbb通信的时隙的持续时间可以大于被分配用于低延时通信的时隙(例如,微时隙)的持续时间。类似地,如上文所提到的,被分配用于低延时通信(例如,三符号stti)的时隙的持续时间可以大于被分配用于低延时通信(例如,两符号stti)的其它时隙的持续时间。然而,在一些方面中,ue115可以使用相同的配置(例如,发射功率配置)来操作,而不论tti的持续时间,以及这可能对无线通信系统是有害的。

进一步地,在无线通信系统100中,ue115可以由基站105配置为向基站105发送srs。srs可以允许基站105执行信道估计,以使得基站105可能能够有效地向ue115分配用于上行链路传输的资源。在一些示例中,基站105可以在子帧的最后符号(或者在子帧中的最后stti的最后符号)期间调度srs传输。然而,在一些方面中,ue115可以被配置为使用相同的配置来操作,而不论该符号是否被分配用于srs传输,以及这可能导致在无线通信系统中的效率低下。

无线通信系统100可以基于被分配用于上行链路通信的资源来支持用于配置ue115用于上行链路通信的高效技术。在一个示例中,基站105可以基于被分配用于上行链路传输的stti的长度,来配置ue115具有适当的用于上行链路传输的上行链路发射功率。因此,ue可能能够通过利用足够的用于上行链路传输的功率,同时避免使用过多的功率用于传输,来可靠地发送上行链路信号(例如,上行链路控制信息),。在另一示例中,基站105可以配置ue115具有用于上行链路传输的跳频模式,以考虑到更多样化的上行链路传输。跳频模式可以取决于在被分配用于上行链路传输的stti中的符号是否被分配用于另一传输。

图2根据本公开内容的各个方面说明了无线通信系统200的示例。无线通信系统200可以实现无线通信系统100的方面。无线通信系统200包括基站105-a和ue115-a,其可以是参照图1描述的相应设备的示例。基站105-a可以与在地理覆盖区域110-a内的一个或者多个ue115相通信,例如,基站105-a可以在载波205的资源上与ue115-a相通信。

在一些方面中,基站105-a可以配置ue115-a以在载波205的资源上发送上行链路控制信息。例如,基站105-a可以配置ue115-a以在子帧210的stti215期间发送上行链路控制信息,其中每一个stti215横跨多个符号220。如参照图1所描述的,子帧210可以包括六个stti215,其中stti215中的两个stti横跨三个符号220,以及stti215中的其余四个stti横跨两个符号220。如本文中所描述的,无线通信系统200可以基于stti215的结构以及在stti215内的符号220是否被分配用于其它传输(例如,srs传输),来支持用于适当地配置ue115-a用于在每一个stti215期间发送上行链路控制信息的有效的技术。换言之,ue115-a可以基于被分配用于上行链路控制信息传输的stti的长度或者基于被分配用于上行链路控制信息传输的符号的数量,来确定用于上行链路控制信息传输的发射功率配置。

在图2的示例中,基站105-a可以针对ue115-a提供适当的发射功率配置,以用于向基站105-a发送上行链路控制信息。具体而言,ue115-a可以被配置为基于被分配用于上行链路传输的stti长度(例如,其可以基于针对其stti被分配用于的服务的类型或者基于stti的索引)来确定用于对控制信息的上行链路传输的发射功率。在一个示例中,ue115-a可以确定用于在stti的每一个符号中发送控制信息的发射功率。换言之,不论stti的长度如何,ue115-a可以使用相同的发射功率以在stti的每一个符号中发送控制信息。相应地,ue115-a可以在三符号stti中使用比在两符号stti中要多的功率来发送控制信息。然而,如果三符号stti中的一个符号被分配用于srs传输,则ue115-a可以在三符号stti中使用与在两符号stti中相同的量的功率来发送控制信息。

在另一示例中,ue115-a可以确定用于在stti中发送控制信息的发射功率。在一些示例中,ue115-a可以被配置为在两符号stti与三符号stti中使用相同的发射功率用于对控制信息的上行链路传输。因此,如果三符号stti的一个符号被分配用于srs传输,则ue115-a可以在三符号stti中的每一个符号和两符号stti中的每一个符号中使用相同的量的功率来发送控制信息。然而,当与用于在两符号stti中的每一个符号中发送控制信息的功率相比时,如果三符号stti中的符号中没有符号被分配用于srs传输,则ue115-a可以在三符号stti中的每一个符号中使用较少的功率来发送控制信息。在这样的示例中,在三符号stti中上行链路传输的每比特的能量可以与在两符号stti中的类似的上行链路传输的每比特的能量相同(即,当在两符号stti和三符号stti中发送相同数量的比特时)。

在一些情况下,基站105-a可以取决于在stti中的符号是否被分配用于srs传输来用信号发送不同的功率偏移参数。具体而言,如果stti的符号中没有符号被分配用于srs传输,则基站105-a可以发送第一功率偏移参数,其中第一功率偏移参数指示针对ue115-a的发射功率以用于在stti的每一个符号中发送控制信息。以及如果stti的一个符号被分配用于srs传输,则基站105-a可以发送第二功率偏移参数,其中第二功率偏移参数指示针对ue115的不同发射功率以用于在stti的每一个符号中发送控制信息。

上文描述的示例提供了用于确定针对在三符号stti的三符号spucch中的控制信息的上行链路传输的适当的发射功率的技术。然而,在其它方面中(例如,针对低延时服务),ue115-a可以被调度为在stti的一符号spucch中发送控制信息。因此,在一个示例中,ue115-a可以使用用于在两符号spucch中的每一个符号中发送控制信息相同的发射功率,来在一符号spucch中发送控制信息。在另一示例中,相比于用于在两符号spucch中的每一个符号中发送控制信息的发射功率,ue115-a可以提高用于在一符号spucch中发送控制信息的发射功率。在这样的方面中,基站105-a可以发送单独的功率偏移参数以配置ue115-a具有用于在一符号spucch中发送控制信息的发射功率(即,从用于配置ue115-a以在横跨多于一个符号的spucch中发送控制信息的功率偏移参数分开)。

图3根据本公开内容的各个方面说明了使用不同跳频模式的多个上行链路传输300的示例。在所示出的示例中,ue115在多个资源块305上的子帧的最后stti(即,sttin+5)期间发送上行链路控制信息。如所示出的,sttin+5包含三个符号310,以及因此被称为三符号stti。在图3的示例中,基于在三符号stti中的符号是否被分配用于srs传输,来向ue115提供不同的跳频配置。换言之,ue115可以基于stti的符号是否被分配用于srs传输来识别用于发送上行链路控制信息的跳频模式。

在上行链路传输300-a中,ue115在根据第一跳频模式横跨stti的全部三个符号310-a的spucch中,发送上行链路控制信息。在这个示例中,ue115在第一符号期间在系统带宽的第一频率区域315-a上发送控制信息。随后,ue115在第二符号以及第三符号期间在系统带宽的第二频率区域320-a上发送控制信息。由于ue115在第一符号中的一个频率区域上以及在第二符号和第三符号中的另一频率区域上进行发送,所以跳频模式是{1,2}。

在上行链路传输300-b中,ue115在根据第二跳频模式横跨stti的全部三个符号310-b的spucch中,发送上行链路控制信息。在这个示例中,ue115在第一符号和第二符号期间在系统带宽的第一频率区域315-b上发送控制信息。随后,ue115在第三符号期间在系统带宽的第二频率区域320-b上发送控制信息。由于ue115在第一符号和第二符号中的一个频率区域上以及在第三符号中的另一频率区域上进行发送,所以跳频模式是{2,1}。

在上行链路传输300-c中,因为stti的最后符号被分配用于srs传输,所以ue115在横跨stti的两个符号310-c的spucch中发送上行链路控制信息。如本文所描述的,ue115可以确定stti的最后符号被分配用于srs传输,以及ue115可以基于stti的最后符号被分配用于srs传输来识别跳频模式。因此,ue115在第一符号期间在系统带宽的第一频率区域315-c上,以及在第二符号期间在系统带宽的第二频率区域320-c上,发送控制信息。由于ue115在第一符号中的一个频率区域上以及在第二符号中的另一频率区域上进行发送,所以跳频模式是{1,1}。在一些情况下,{1,1}跳频模式可以对应于{1,2}跳频模式,其中stti的最后符号未用于上行链路传输。

图4根据本公开内容的各个方面示出了无线设备405的方块图400。无线设备405可以是如本文中所描述的ue115的方面的示例。无线设备405可以包括接收机410、通信管理器415以及发射机420。无线设备405还可以包括处理器。这些组件中的每一个组件可以彼此相通信(例如,经由一个或者多个总线)。

接收机410可以接收信息,诸如分组、用户数据或者与各种信息信道(例如,控制信道、数据信道以及与用于控制信息传输的发射功率和跳频配置有关的信息等)相关联的控制信息。信息可以被传递给设备的其它组件。接收机410可以是参照图6描述的收发机635的方面的示例。接收机410可以利用单个天线或者一组天线。

通信管理器415可以是参照图6描述的通信管理器615的方面的示例。通信管理器415和/或者其各种子组件中的至少一些子组件可以是在硬件、由处理器执行的软件、固件或者其任何组合中实现的。如果在由处理器执行的软件中实现,则通信管理器415和/或者其各种子组件中的至少一些子组件的功能可以由被设计为执行在本公开内容中所描述的功能的通用处理器、数字信号处理器(dsp)、专用集成电路(asic)、现场可以编程门阵列(fpga)或者其它可编程逻辑器件、分立门或者晶体管逻辑、分立硬件组件或者其任何组合来执行。

通信管理器415和/或者其各种子组件中的至少一些子组件可以物理地位于各种位置,包括分布式地使得功能的部分是由一个或者多个物理设备在不同的物理位置处实现的。在一些示例中,根据本公开内容的各个方面,通信管理器415和/或者其各种子组件中的至少一些子组件可以是单独的和不同的组件。在其它示例中,通信管理器415和/或者其各种子组件中的至少一些子组件可以与一个或者多个其它硬件组件相结合,包括但不限于i/o组件、收发机、网络服务器、另一计算设备、在本公开内容中描述的一个或者多个其它组件,或者根据本公开内容的各个方面的其组合。

通信管理器415可以识别被分配用于上行链路通信的tti的控制区域,确定被分配用于上行链路通信的tti的长度,以及基于tti的长度来调整用于在tti的控制区域中发送上行链路控制信息的发射功率。通信管理器415还可以识别被分配用于上行链路通信的tti的控制区域,基于tti的部分是否被分配用于srs传输来识别用于在tti的控制区域中发送上行链路控制信息的跳频模式,以及基于所识别的跳频模式来在tti的控制区域中发送上行链路控制信息。

发射机420可以发送由设备的其它组件生成的信号。在一些示例中,发射机420可以与接收机410并置在收发机模块中。例如,发射机420可以是参照图6描述的收发机635的方面的示例。发射机420可以利用单个天线或者一组天线。在一些示例中,发射机420可以使用所调整的发射功率在tti的控制区域中发送上行链路控制信息。

图5根据本公开内容的各个方面示出了无线设备505的方块图500。无线设备505可以是参照图4所描述的无线设备405或者ue115的各个方面的示例。无线设备505可以包括接收机510、通信管理器515以及发射机520。无线设备505还可以包括处理器。这些组件中的每一个组件可以彼此相通信(例如,经由一个或者多个总线)。

接收机510可以接收信息,诸如分组、用户数据或者与各种信息信道(例如,控制信道、数据信道以及与用于控制信息传输的发射功率和跳频配置有关的信息等)相关联的控制信息。信息可以被传递给设备的其它组件。接收机510可以是参照图6描述的收发机635的方面的示例。接收机510可以利用单个天线或者一组天线。

通信管理器515可以是参照图6描述的通信管理器615的方面的示例。通信管理器515可以包括控制区域识别器525、tti长度确定器530、发射功率管理器535、srs管理器540以及跳频管理器545。

控制区域识别器525可以识别被分配用于上行链路通信的tti的控制区域。在一些方面中,tti包括三个(3)符号。在一些方面中,控制区域横跨tti的一个符号。在一些方面中,基于tti的索引或者与tti相关联的服务的类型来确定被分配用于上行链路通信的tti的长度。tti长度确定器530可以确定被分配用于上行链路通信的tti的长度。

发射功率管理器535可以基于tti的长度来调整用于在tti的控制区域中发送上行链路控制信息的发射功率。在一些方面中,发射功率管理器535可以使用第一发射功率用于在tti的第一符号期间发送上行链路控制信息,以及使用第二发射功率用于在tti的第二符号期间发送上行链路控制信息,其中第一发射功率和第二发射功率是相同的。在一些方面中,发射功率管理器535可以接收对用于在tti的每一个符号期间发送上行链路控制信息的发射功率的指示,其中第一发射功率和第二发射功率是基于指示来调整的。在一些方面中,指示包括功率偏移参数。

在一些方面中,发射功率管理器535可以使用第一发射功率用于在tti的第一符号期间发送上行链路控制信息,使用第二发射功率用于在tti的第二符号期间发送上行链路控制信息,以及使用第三发射功率用于在tti的第三符号期间发送上行链路控制信息,其中第一发射功率、第二发射功率和第三发射功率中的每一个发射功率包括用于在tti期间发送上行链路控制信息的所调整的发射功率的一部分(例如,三分之一(1/3))。在一些方面中,发射功率管理器535可以接收对在tti的每一个符号期间发送上行链路控制信息的发射功率的指示,其中第一发射功率、第二发射功率以及第三发射功率是基于指示来调整的。在一些方面中,指示包括功率偏移参数。

在一些方面中,所调整的发射功率包括用于在包含两个符号的tti期间发送上行链路控制信息的相同的发射功率。在一些方面中,调整发射功率包括使用相同的发射功率用于在tti的每一个符号期间发送上行链路控制信息。在一些方面中,所调整的发射功率是用于在包括两个符号的tti的每一个符号期间发送上行链路控制信息的相同的发射功率。在一些方面中,所调整的发射功率大于用于在包括两个符号的tti的每一个符号期间发送上行链路控制信息的发射功率。在一些方面中,发射功率管理器535可以接收对用于在tti期间发送上行链路控制信息的发射功率的指示,其中发射功率是基于指示来调整的。在一些方面中,指示包括功率偏移参数。

srs管理器540可以确定tti的一个符号被分配用于srs传输,或者确定tti的符号中没有符号被分配用于srs传输。在一些方面中,srs管理器540可以确定tti的部分是否被分配用于srs传输。在一些方面中,tti的一个符号被分配用于srs传输,以及tti包括三个(3)符号。

跳频管理器545可以基于tti的部分是否被分配用于srs传输来识别用于在tti的控制区域中发送上行链路控制信息的跳频模式。在一些方面中,跳频管理器545可以基于所识别的跳频模式来在tti的控制区域中发送上行链路控制信息。在一些方面中,基于所识别的跳频模式来发送上行链路控制信息包括:在tti的第一符号期间在系统带宽的第一频率区域上发送上行链路控制信息,以及在tti的第二符号期间在系统带宽的第二频率区域上发送上行链路控制信息。

发射机520可以发送由设备的其它组件生成的信号。在一些示例中,发射机520可以与接收机510并置在收发机模块中。例如,发射机520可以是参照图6描述的收发机635的方面的示例。发射机520可以利用单个天线或者一组天线。

图6根据本公开内容的各个方面示出了包括设备605的系统600的图。设备605可以是如上文例如参照图4和图5所描述的无线设备405、无线设备505或者ue115的组件的示例,或者包括如上文例如参照图4和图5所描述的无线设备405、无线设备505或者ue115的组件。设备605可以包括用于双向语音和数据通信的组件,其包括用于发送与接收通信的组件,包括通信管理器615、处理器620、存储器625、软件630、收发机635、天线640以及i/o控制器645。这些组件可以经由一个或者多个总线(例如,总线610)进行电子通信。设备605可以与一个或者多个基站105无线地进行通信。

处理器620可以包括智能硬件设备(例如,通用处理器、dsp、中央处理单元(cpu)、微控制器、asic、fpga、可编程逻辑器件、分立门或者晶体管逻辑组件、分立硬件组件或者其任何组合)。在一些方面中,处理器620可以被配置为使用存储控制器来操作存储器阵列。在其它方面中,存储控制器可以整合到处理器620中。处理器620可以被配置为执行存储在存储器中的计算机可读指令,以执行各种功能(例如,支持用于控制信息传输的发射功率与跳频配置的功能或者任务)。

存储器625可以包括随机存取存储器(ram)以及只读存储器(rom)。存储器625可以存储计算机可读的、计算机可执行的软件630,包括当在执行时使处理器执行本文所描述的各种功能的指令。在一些方面中,除了别的之外,存储器625可以包含基本输入/输出系统(bios),所述基本输入/输出系统可以控制诸如与外围组件或者设备的交互的基本硬件操作或者基本软件操作。

软件630可以包括用于实现本公开内容的方面的代码,包括用于支持用于控制信息传输的发射功率与跳频配置的代码。软件630可以存储在诸如系统存储器或者其它存储器的非暂时性计算机可读介质中。在一些方面中,软件630可以不是能由处理器直接地来执行的,而是可以使计算机(例如,当编译和执行时)来执行本文所描述的功能。

收发机635可以经由如上文所描述的一个或者多个天线、有线或者无线链路来双向地通信。例如,收发机635可以代表无线收发机,以及可以与另一无线收发机双向地通信。收发机635还可以包括调制解调器以调制分组,以及向天线提供所调制的分组用于传输,以及解调从天线接收的分组。

在一些方面中,无线设备可以包括单个天线640。然而,在一些方面中,设备可以具有多于一个的天线640,所述设备可能能够同时地发送或者接收多个无线传输。

i/o控制器645可以管理针对设备605的输入和输出信号。i/o控制器645还可以管理未整合到设备605中的外围设备。在一些方面中,i/o控制器645可以代表到外部外围设备的物理连接或者端口。在一些方面中,i/o控制器645可以使用诸如或者另一已知操作系统的操作系统。在其它方面中,i/o控制器645可以代表调制解调器、键盘、鼠标、触摸屏或者类似的设备或者与调制解调器、键盘、鼠标、触摸屏或者类似的设备交互。在一些方面中,i/o控制器645可以被实现为处理器的部分。在一些方面中,用户可以经由i/o控制器645或者经由通过i/o控制器645控制的硬件组件与设备605交互。

图7根据本公开内容的各个方面示出了用于说明方法700的流程图。方法700的操作可以由如本文所描述的ue115或者其组件来实现。例如,方法700的操作可以由参照图4至图6所描述的通信管理器来执行。在一些示例中,ue115可以执行一组代码以控制设备的功能元件以执行下文所描述的功能。此外,ue115可以使用专用硬件来执行下文所描述的功能的方面。

在方块705处,ue115可以识别被分配用于上行链路通信的tti的控制区域。方块705的操作可以是根据本文所描述的方法来执行的。在某些示例中,方块705的操作的方面可以由参照图4至图6所描述的控制区域识别器来执行。

在方块710处,ue115可以确定被分配用于上行链路通信的tti的长度。方块710的操作可以是根据本文所描述的方法来执行的。在某些示例中,方块710的操作的方面可以由参照图4至图6所描述的tti长度确定器来执行。

在方块715处,ue115可以至少部分地基于tti的长度来调整用于在tti的控制区域中发送上行链路控制信息的发射功率。方块715的操作可以是根据本文所描述的方法来执行的。在某些示例中,方块715的操作的方面可以由参照图4至图6所描述的发射功率管理器来执行。

在方块720处,ue115可以使用所调整的发射功率在tti的控制区域中发送上行链路控制信息。方块720的操作可以是根据本文所描述的方法来执行的。在某些示例中,方块720的操作的方面可以由参照图4至图6所描述的发射机来执行。

图8根据本公开内容的各个方面示出了用于说明方法800的流程图。方法800的操作可以由如本文所描述的ue115或者其组件来实现。例如,方法800的操作可以由参照图4至图6所描述的通信管理器来执行。在一些示例中,ue115可以执行一组代码来控制设备的功能元件以执行下文所描述的功能。此外,ue115可以使用专用硬件来执行下文所描述的功能的方面。

在方块805处,ue115可以识别被分配用于上行链路通信的tti的控制区域。方块805的操作可以根据本文所描述的方法来执行。在一些示例中,方块805的操作的方面可以由参照图4至图6所描述的控制区域识别器来执行。

在方块810处,ue115可以至少部分地基于tti的部分是否被分配用于srs传输来识别用于在tti的控制区域中发送上行链路控制信息的跳频模式。方块810的操作可以是根据本文所描述的方法来执行的。在某些示例中,方块810的操作的方面可以由参照图4至图6所描述的跳频管理器来执行。

在方块815处,ue115可以至少部分地基于所识别的跳频模式来在tti的控制区域中发送上行链路控制信息。方块815的操作可以是根据本文所描述的方法来执行的。在某些示例中,方块815的操作的方面可以由参照图4至图6所描述的跳频管理器来执行。

图9根据本公开内容的各个方面示出了用于说明方法900的流程图。方法900的操作可以由如本文所描述的基站105或者其组件来实现。在一些示例中,基站105可以执行一组代码来控制设备的功能元件以执行下文所描述的功能。此外,基站105可以使用专用硬件来执行下文所描述的功能的各个方面。

在方块905处,基站105可以识别被分配用于上行链路通信的tti的控制区域。在方块910处,基站105可以确定被分配用于上行链路通信的tti的长度。在方块915处,基站105可以至少部分地基于tti长度,来识别针对在tti的控制区域中发送上行链路控制信息的ue115的发射功率调整。在方块920处,基站105可以向ue115发送对发射功率调整的指示。在方块925处,基站105可以至少部分地基于发送指示来接收在tti的控制区域中的上行链路控制信息,其中上行链路控制信息是至少部分地基于发射功率调整来发送的。方块905、910、915、920和925的操作可以是根据本文所描述的方法来执行的。

图10根据本公开内容的各个方面示出了用于说明方法1000的流程图。方法1000的操作可以由如本文所描述的基站105或者其组件来实现。在一些示例中,基站105可以执行一组代码来控制设备的功能元件以执行下文所描述的功能。此外,基站105可以使用专用硬件来执行下文所描述的功能的方面。

在方块1005处,基站105可以识别被分配用于上行链路通信的tti的控制区域。在方块1010处,基站105可以至少部分地基于tti的部分是否被分配用于srs传输来识别针对在tti的控制区域中发送上行链路控制信息的ue的跳频模式。在方块1015处,基站105可以向ue发送对跳频模式的指示。在方块1020处,基站105可以至少部分地基于发送指示来接收在tti的控制区域中的上行链路控制信息,其中上行链路控制信息是至少部分地基于跳频模式来发送的。方块1005、1010、1015、1020和1025的操作可以是根据本文所描述的方法来执行的。

应该注意的是,上文所描述的方法描述了可能的实现方式,以及操作可以被重新安排或者以其它方式修改,以使得其它实现方式是可能的。进一步地,可以组合来自于方法中的两个或者更多个方法的方面。

本文所描述的技术可以用于各种无线通信系统,诸如码分多址(cdma)、时分多址(tdma)、频分多址(fdma)、正交频分多址(ofdma)、单载波频分多址(sc-fdma)以及其它系统。术语“系统”与“网络”经常互换使用。码分多址(cdma)系统可以实现诸如cdma2000、通用陆地无线接入(utra)等的无线技术。cdma2000覆盖is-2000、is-95和is-856标准。is-2000版本可以通常被称为cdma20001x、1x等。is-856(tia-856)通常被称为cdma20001xev-do、高速率分组数据(hrpd)等。utra包括宽带cdma(wcdma)以及cdma的其它变型。tdma系统可以实现诸如全球移动通信系统(gsm)的无线技术。

ofdma系统可以实现诸如超移动宽带(umb)、演进的utra(e-utra)、电气与电子工程师协会(ieee)802.11(wi-fi)、ieee802.16(wimax)、ieee802.20、闪速ofdm等的无线技术。utra和e-utra是通用移动电信系统(umts)的部分。lte和lte-a是使用e-utra的umts的发布版本。utra、e-utra、umts、lte、lte-a、nr和gsm在来自于名为“第三代合作伙伴计划”(3gpp)的组织的文档中被描述。cdma2000和umb在来自于名为“第三代合作伙伴计划2”(3gpp2)的组织的文档中被描述。本文所描述的技术可以用于上文所提到的系统和无线技术以及其它系统和无线技术。虽然lte或者nr系统的方面可以是出于示例的目的来描述的,以及lte或者nr术语可以用于大部分描述中,当时本文所描述的技术可以适用于lte或者nr应用之外。

在lte/lte-a网络中,包括本文所描述的这样的网络,术语演进型节点b(enb)可以通常用于描述基站。本文所描述的无线通信系统或者多个系统可以包括异构lte/lte-a或者nr网络,其中不同类型的enb针对各种地理区域提供覆盖。例如,每一个enb、下一代节点b(gnb)或者基站可以针对宏小区、小型小区或者其它类型的小区提供通信覆盖。取决于上下文,术语“小区”可以用于描述基站、与基站相关联的载波或者分量载波,或者载波或者基站的覆盖区域(例如,扇区等)。

基站可以包括或者可以被本领域的技术人员称为基站收发机,无线基站、接入点、无线收发机、节点b、演进型节点b(enb)、gnb、家庭节点b,家庭演进型节点b,或者某些其它适当的术语。针对基站的地理覆盖区域可以被分为仅构成覆盖区域的部分的扇区。本文所描述的无线通信系统或者多个系统可以包括不同类型的基站(例如,宏或者小型小区基站)。本文所述的ue可能能够与各种类型的基站以及包括宏enb、小型小区enb、gnb、中继基站等的网络设备进行通信。针对不同技术可能存在重叠的地理覆盖区域。

宏小区通常可以覆盖相对大的地理区域(例如,半径为若干公里),以及可以允许由具有与网络供应商的服务订制的ue进行的不受限制的接入。与宏小区相比,小型小区是较低功率基站,其可以与宏小区在相同的或者不同的(例如,许可的、非许可的等)频带中操作。根据各种示例,小型小区可以包括微微小区、毫微微小区和微小区。例如,微微小区可以覆盖小的地理区域,以及可以允许由具有与网络供应商的服务订制的ue进行的不受限制的接入。毫微微小区也可以覆盖小的地理区域(例如,住宅),以及可以提供由具有与毫微微小区的关联的ue(例如,在封闭用户组(csg)中的ue,针对在住宅中的用户的ue等)进行的受限制的接入。用于宏小区的enb可以称为宏enb。用于小型小区的enb可以称为小型小区enb、微微enb、毫微微enb或者家庭enb。enb可以支持一个或者多个(例如,两个、三个、四个等)小区(例如,分量载波)。

本文所描述的无线通信系统或者多个系统可以支持同步操作或者异步操作。对于同步操作,基站可以具有类似的帧时序,以及来自于不同基站的传输可以在时间上近似对齐。对于异步操作,基站可以具有不同的帧时序,以及来自于不同基站的传输可能不会在时间上对齐。本文描述的技术可以用于同步操作或者异步操作。

本文所描述的下行链路传输还可以被称为前向链路传输,而上行链路传输还可以被称为反向链路传输。本文所描述的每一个通信链路—包括,例如,图1与图2的无线通信系统100与200—可以包括一个或者多个载波,其中每一个载波可以是由多个子载波构成的信号(例如,不同频率的波形信号)。

结合附图本文所提出的描述对示例配置进行了描述,并不代表可以实现或者在权利要求范围内的所有示例。本文所使用术语的“示例性”意指“用作示例、实例或者说明”,而不是“优选”或者“优于其它示例”。出于提供对所描述的技术的理解的目的,详细描述包括具体细节。然而,在没有这些具体细节的情况下也可以实践这些技术。在一些实例中,众所周知的结构和设备以方块图的形式示出,以便于避免模糊所描述的示例的概念。

在附图中,相似的组件或者特征可以具有相同的参考标记。进一步地,相同类型的各种组件可以是通过在参考标记之后跟随破折号和在相似组件之中进行区分的第二标记来区分的。如果仅在说明书中使用第一参考标记,则该描述适用于具有相同第一参考标记的类似组件中的任何一个组件,而不考虑第二参考标记。

本文所描述的信息和信号可以是使用多种不同的技术和方法中的任何技术和方法来表示的。例如,遍及上文描述可以被引用的数据、指令、命令、信息、信号、比特、符号与芯片可以通过电压、电流、电磁波、磁场或者粒子、光场或者粒子或者其任何组合来表示。

与本文公开内容有关的所描述的各种说明性的方块与模块可以利用被设计为执行本文所描述的功能的通用处理器、dsp、asic、fpga或者其它可编程逻辑器件、分立门或者晶体管逻辑、分立硬件组件或者其任何组合来实现或者执行。通用处理器可以是微处理器,但是在替代的方案中,处理器可以是任何传统的处理器、控制器、微控制器或者状态机。处理器还可以被实现为计算设备的组合(例如,dsp和微处理器的组合、多个微处理器、与dsp内核相结合的一个或者多个微处理器,或者任何其它这样的配置)。

本文描述的功能可以在硬件、由处理器执行的软件、固件或者其任何组合中实现。如果在由处理器执行的软件中实现,则功能可以作为在计算机可读介质上的一个或者多个指令或者代码来存储或者传输。其它示例和实现方式在公开内容和所附权利要求的范围内。例如,由于软件的性质,上文所描述的功能可以使用由处理器来执行的软件、硬件、固件、硬接线或者这些的任何组合来实现。用于实现功能的特征还可以物理地位于不同的位置处,包括分布式的以使得功能的部分在不同的物理位置处实现。此外,如本文所使用的,包括在权利要求中,在项目列表中使用的“或者”(例如,由诸如“中的至少一个”或者“中的一个或者多个”的短语开始的项目的列表)指示包含性的列表,例如,以使得a、b或者c中的至少一个的列表意指a或者b或者c或者ab或者ac或者bc或者abc(即,a和b和c)。此外,如本文所使用的,短语“基于”不应被解释为对封闭条件集合的引用。例如,被描述为“基于条件a”的示例性操作可以基于条件a和条件b两者,而不背离本公开内容的范围。换言之,如本文所使用的,短语“基于”应该以与短语“至少部分地基于”相同的方式来解释。

计算机可读介质包括非暂时性计算机存储介质和通信介质两者,所述通信介质包括促进将计算机程序从一个地方转移到另一地方的任何介质。非暂时性存储介质可以是可以由通用或者专用计算机来存取的任何可用介质。通过举例而非限制性的方式,非暂时性计算机可读介质可以包括ram、rom、电可擦除可编程只读存储器(eeprom)、压缩光盘(cd)rom或者其它光盘存储、磁盘存储或者其它磁存储设备,或者可以用于以指令或者数据结构的形式来携带或者存储期望的程序代码单元并且可以由通用或专用计算机或者通用或专用处理器来访问的任何其它非暂时性介质。此外,将任何连接适当地称为计算机可读介质。例如,如果使用同轴电缆、光纤光缆、双绞线、数字用户线(dsl)或者诸如红外线、无线电和微波的无线技术,从网站、服务器或者其它远程源发送软件,则同轴电缆、光纤光缆、双绞线、dsl或者诸如红外线、无线电和微波的无线技术包含在介质的定义中。如本文所使用的,磁盘和光盘包括cd、激光光盘、光盘、数字多功能光盘(dvd)、软盘和蓝光光盘,其中磁盘通常磁性地复制数据,而光盘则利用激光来光学地复制数据。上述组合也包括在计算机可读介质的范围内。

提供本文的说明书,以使本领域技术人员能够制作或者使用本公开内容。对公开内容的各种修改对于本领域技术人员而言将是显而易见的,以及本文定义的通用原则可以应用于其它变形而不背离本公开内容的范围。因此,本公开内容不限于本文所描述的示例和设计,而是符合与本文公开内容的原理和新颖性特征相一致的最广范围。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1