自适应介质感测门限的制作方法

文档序号:21324459发布日期:2020-06-30 20:58阅读:202来源:国知局
自适应介质感测门限的制作方法

交叉引用

本专利申请要求享受以下申请的权益:由chendamaraikannan等人于2018年11月13日提交的、名称为“adaptivemediumsensingthresholds”的美国专利申请no.16/189,795;以及由chendamaraikannan等人于2017年11月20日提交的、名称为“adaptivemediumsensingthresholds”的美国临时专利申请no.62/588,811;上述全部申请中的每一个申请被转让给本申请的受让人。

概括而言,下文涉及无线通信,并且更具体地,下文涉及自适应介质感测门限。



背景技术:

无线通信系统被广泛地部署以提供诸如语音、视频、分组数据、消息传送、广播等各种类型的通信内容。这些系统能够通过共享可用的系统资源(例如,时间、频率和功率)来支持与多个用户的通信。这样的多址系统的示例包括第四代(4g)系统(例如,长期演进(lte)系统或改进的lte(lte-a)系统)和第五代(5g)系统(其可以被称为新无线电(nr)系统)。这些系统可以采用诸如以下各项的技术:码分多址(cdma)、时分多址(tdma)、频分多址(fdma)、正交频分多址(ofdma)或者离散傅里叶变换扩频ofdm(dft-s-ofdm)。无线多址通信系统可以包括多个基站或网络接入节点,每个基站或网络接入节点同时支持针对多个通信设备(其可以另外被称为用户设备(ue))的通信。

无线通信系统可以在毫米波(mmw)频率范围(例如,28ghz、40ghz、60ghz等)中操作。这些频率处的无线通信可能与增加的信号衰减(例如,路径损耗)相关联,增加的信号衰减可能受到各种因素的影响,诸如温度、大气压力、衍射等。因此,可以使用信号处理技术(诸如波束成形)来相干地组合能量并且克服这些频率处的路径损耗。由于mmw通信系统中的增加的路径损耗量,因此可以对来自基站和/或ue的传输进行波束成形。此外,接收设备可以使用波束成形技术来将天线和/或天线阵列配置为使得以定向方式接收传输。

mmw无线通信系统虽然很有前景,但是对老问题提出了新的挑战。在开发无线通信系统时的常规考虑主要集中在避免通信设备之间的干扰,这通常以重用(reuse)为代价。因此,设备将出于干扰相邻设备的考虑而选择避免进行发送并且将浪费相关联的传输机会。然而,mmw无线通信系统中的干扰与非mmw无线通信系统(例如,诸如在基站的常规小区覆盖区域内)中的干扰不同。例如,波束成形传输可以具有变化的波束配置,使得每个波束可以具有不同的波束宽度、不同的波束形状、不同的波束方向等。通常,窄的波束宽度可以具有相对深但窄的覆盖区域,而较宽的波束宽度可以具有相对浅但宽的覆盖区域。在波束成形传输的上下文中,“覆盖区域”(或覆盖区(footprint))可能在一个传输与下一传输之间改变。对于窄波束覆盖区域的左侧或右侧的设备,检测窄波束宽度的存在(例如,用于干扰检测/避免、捕获介质等)可能是困难的。类似地,对于恰好在宽但浅的覆盖区域之外的设备,检测较宽波束的存在可能是困难的。因此,在mmw无线通信系统中,发射波束和接收波束的方向性和配置提供某个级别的干扰隔离。在这样的情况下,常规的干扰检测/介质接入技术将很可能失败。



技术实现要素:

所描述的技术涉及支持自适应介质感测门限的改进的方法、系统、设备或装置。概括而言,所描述的技术提供基于波束配置以及在一些示例中基于其它因素来选择或以其它方式调整用于介质捕获过程(例如,先听后说(lbt)过程)的检测门限。设置lbt检测门限时的这种粒度在其中发生波束成形通信的无线通信系统中提供了改进的干扰检测/介质捕获技术。例如,无线设备(诸如用户设备(ue)和/或基站)可以在毫米波(mmw)无线通信系统中操作,并且确定将使用波束成形信号来发生无线传输。无线设备可以确定用于无线传输的波束配置(例如,波束宽度、波束形状、波束方向等),并且基于波束配置来选择lbt检测门限。无线设备可以使用lbt检测门限来执行lbt过程(例如,基于能量和/或基于前导码的lbt过程),以确定信道是否可用。假设lbt过程成功,例如,不满足lbt检测门限,则无线设备可以在信道上执行无线传输。在一些方面中,当选择lbt检测门限时,无线设备还可以单独地或组合地考虑各种其它参数。这样的参数的示例可以包括但不限于:在lbt过程期间检测到的通信的类型(例如,数据与控制通信)、无线设备要执行的无线传输的类型(例如,干扰发现与数据传输、传输秩等)。因此,可以向每个参数指派加权因子,当在一起并且与波束配置结合考虑该加权因子时,该加权因子可以提供对lbt检测门限的选择的精细缩放。

描述了一种无线通信的方法。所述方法可以包括:选择用于射频谱带的信道上的无线传输的波束配置;使用lbt检测门限来在所述信道上执行lbt过程,其中,所述lbt检测门限是至少部分地基于所选择的波束配置的;以及至少部分地基于所述lbt过程的成功,来使用所选择的波束配置在所述信道上执行所述无线传输。

描述了一种用于无线通信的装置。所述装置可以包括:用于选择用于射频谱带的信道上的无线传输的波束配置的单元;用于使用lbt检测门限来在所述信道上执行lbt过程的单元,其中,所述lbt检测门限是至少部分地基于所选择的波束配置的;以及用于至少部分地基于所述lbt过程的成功,来使用所选择的波束配置在所述信道上执行所述无线传输的单元。

描述了另一种用于无线通信的装置。所述装置可以包括处理器、与所述处理器进行电子通信的存储器、以及被存储在所述存储器中的指令。所述指令可以可操作为使得所述处理器进行以下操作:选择用于射频谱带的信道上的无线传输的波束配置;使用lbt检测门限来在所述信道上执行lbt过程,其中,所述lbt检测门限是至少部分地基于所选择的波束配置的;以及至少部分地基于所述lbt过程的成功,来使用所选择的波束配置在所述信道上执行所述无线传输。

描述了一种用于无线通信的非暂时性计算机可读介质。所述非暂时性计算机可读介质可以包括可操作为使得处理器进行以下操作的指令:选择用于射频谱带的信道上的无线传输的波束配置;使用lbt检测门限来在所述信道上执行lbt过程,其中,所述lbt检测门限是至少部分地基于所选择的波束配置的;以及至少部分地基于所述lbt过程的成功,来使用所选择的波束配置在所述信道上执行所述无线传输。

上述方法、装置和非暂时性计算机可读介质的一些示例还可以包括用于进行以下操作的过程、特征、单元或指令:选择用于所述信道上的所述lbt过程的lbt波束配置,所述lbt波束配置与用于所述信道上的所述无线传输的所述波束配置相同。

上述方法、装置和非暂时性计算机可读介质的一些示例还可以包括用于进行以下操作的过程、特征、单元或指令:选择用于所述信道上的所述lbt过程的lbt波束配置,所述lbt波束配置与用于所述信道上的所述无线传输的所述波束配置不同。上述方法、装置和非暂时性计算机可读介质的一些示例还可以包括用于进行以下操作的过程、特征、单元或指令:至少部分地基于所述lbt波束配置与用于所述信道上的所述无线传输的所述波束配置不同,来向所述lbt检测门限应用偏移。

在上述方法、装置和非暂时性计算机可读介质的一些示例中,所述lbt波束配置可以具有与用于所述信道上的所述无线传输的所述波束配置相比更宽的波束宽度,并且所述偏移可以是在所述lbt波束配置与用于所述信道上的所述无线传输的所述波束配置之间的波束宽度之差的函数。

上述方法、装置和非暂时性计算机可读介质的一些示例还可以包括用于进行以下操作的过程、特征、单元或指令:确定所述无线传输包括预留请求(rrq)信号。上述方法、装置和非暂时性计算机可读介质的一些示例还可以包括用于进行以下操作的过程、特征、单元或指令:至少部分地基于所述rrq信号来选择所述lbt检测门限。

上述方法、装置和非暂时性计算机可读介质的一些示例还可以包括用于进行以下操作的过程、特征、单元或指令:确定所述无线传输包括预留响应(rrs)信号。上述方法、装置和非暂时性计算机可读介质的一些示例还可以包括用于进行以下操作的过程、特征、单元或指令:至少部分地基于所述rrs信号来选择所述lbt检测门限。

上述方法、装置和非暂时性计算机可读介质的一些示例还可以包括用于进行以下操作的过程、特征、单元或指令:确定所述无线传输包括干扰发现信号。上述方法、装置和非暂时性计算机可读介质的一些示例还可以包括用于进行以下操作的过程、特征、单元或指令:至少部分地基于所述干扰发现信号来选择所述lbt检测门限。

上述方法、装置和非暂时性计算机可读介质的一些示例还可以包括用于进行以下操作的过程、特征、单元或指令:识别用于去往所述无线设备的调度的无线通信的预期接收信号强度值。上述方法、装置和非暂时性计算机可读介质的一些示例还可以包括用于进行以下操作的过程、特征、单元或指令:至少部分地基于所述预期接收信号强度值来选择所述lbt检测门限。

上述方法、装置和非暂时性计算机可读介质的一些示例还可以包括用于进行以下操作的过程、特征、单元或指令:识别与所述信道上的所述无线传输相关联的传输秩。上述方法、装置和非暂时性计算机可读介质的一些示例还可以包括用于进行以下操作的过程、特征、单元或指令:至少部分地基于所述传输秩来选择所述lbt检测门限。

上述方法、装置和非暂时性计算机可读介质的一些示例还可以包括用于进行以下操作的过程、特征、单元或指令:识别与所述信道上的干扰传输相关联的传输秩。上述方法、装置和非暂时性计算机可读介质的一些示例还可以包括用于进行以下操作的过程、特征、单元或指令:至少部分地基于所述传输秩来选择所述lbt检测门限。

上述方法、装置和非暂时性计算机可读介质的一些示例还可以包括用于进行以下操作的过程、特征、单元或指令:确定干扰传输可能来自与运营商相关联的设备,所述运营商可以与所述无线设备相关联。上述方法、装置和非暂时性计算机可读介质的一些示例还可以包括用于进行以下操作的过程、特征、单元或指令:至少部分地基于所述运营商来选择所述lbt检测门限。

上述方法、装置和非暂时性计算机可读介质的一些示例还可以包括用于进行以下操作的过程、特征、单元或指令:确定干扰传输可能来自与不同于第二运营商的第一运营商相关联的设备,所述第二运营商可以与所述无线设备相关联。上述方法、装置和非暂时性计算机可读介质的一些示例还可以包括用于进行以下操作的过程、特征、单元或指令:至少部分地基于所述第一运营商来选择所述lbt检测门限。

上述方法、装置和非暂时性计算机可读介质的一些示例还可以包括用于进行以下操作的过程、特征、单元或指令:识别与所述信道上的所述无线传输相关联的服务质量(qos)度量。上述方法、装置和非暂时性计算机可读介质的一些示例还可以包括用于进行以下操作的过程、特征、单元或指令:至少部分地基于所述qos度量来选择所述lbt检测门限。

上述方法、装置和非暂时性计算机可读介质的一些示例还可以包括用于进行以下操作的过程、特征、单元或指令:识别与干扰传输相关联的qos度量。上述方法、装置和非暂时性计算机可读介质的一些示例还可以包括用于进行以下操作的过程、特征、单元或指令:至少部分地基于所述qos度量来选择所述lbt检测门限。

上述方法、装置和非暂时性计算机可读介质的一些示例还可以包括用于进行以下操作的过程、特征、单元或指令:识别与所述信道上的所述无线传输相关联的传输方向。上述方法、装置和非暂时性计算机可读介质的一些示例还可以包括用于进行以下操作的过程、特征、单元或指令:至少部分地基于所述传输方向来选择所述lbt检测门限。

上述方法、装置和非暂时性计算机可读介质的一些示例还可以包括用于进行以下操作的过程、特征、单元或指令:识别与所述信道上的干扰传输相关联的传输方向。上述方法、装置和非暂时性计算机可读介质的一些示例还可以包括用于进行以下操作的过程、特征、单元或指令:至少部分地基于所述传输方向来选择所述lbt检测门限。

在上述方法、装置和非暂时性计算机可读介质的一些示例中,所述波束配置包括以下各项中的至少一项:新无线电同步信号(nr-ss)波束配置、或p1波束配置、或p2波束配置、或p3波束配置。

在上述方法、装置和非暂时性计算机可读介质的一些示例中,所述lbt检测门限包括以下各项中的至少一项:能量水平检测门限、或前导码检测门限、或其组合。

附图说明

图1示出了根据本公开内容的各方面的支持自适应介质感测门限的用于无线通信的系统的示例。

图2示出了根据本公开内容的各方面的支持自适应介质感测门限的用于无线通信的系统的示例。

图3a和3b示出了根据本公开内容的各方面的支持自适应介质感测门限的用于无线通信的系统的示例。

图4示出了根据本公开内容的各方面的支持自适应介质感测门限的过程的示例。

图5至7示出了根据本公开内容的各方面的支持自适应介质感测门限的设备的框图。

图8示出了根据本公开内容的各方面的包括支持自适应介质感测门限的用户设备的系统的框图。

图9示出了根据本公开内容的各方面的包括支持自适应介质感测门限的基站的系统的框图。

图10至12示出了根据本公开内容的各方面的用于自适应介质感测门限的方法。

具体实施方式

下一代无线通信系统可能依赖毫米波(mmw)通信技术。mmw技术通常使用波束成形的发送/接收来提供定向通信。每个波束成形发送/接收可以具有相关联的波束配置,诸如波束宽度、波束方向、波束形状等。发射波束可以是指提供朝着接收设备(诸如用户设备(ue))的定向传输的数字/模拟天线配置。接收波束可以是指提供来自发送设备的波束的定向接收的数字/模拟天线配置。对于用于无线通信的波束对,发射波束可以与接收波束相同或不同(例如,由于波束反射、衍射等)。发射/接收波束可以针对每个传输而改变。

mmw无线通信系统在干扰管理、介质接入等方面提出了独特的挑战。例如,发送和/或接收的方向性证明了mmw系统中一定水平的干扰隔离。此外,异步(或部分同步)网络中的mmw通信也引入了独特的挑战。常规设计技术可能选择传输约束来避免干扰,这可能使信道重用最小化并且导致资源浪费。

首先在诸如mmw无线通信系统之类的无线通信系统的背景下描述本公开内容的各方面。在一些方面中,无线设备(例如,ue和/或基站)可以被认为是潜在的受害者无线设备,因为信道上的传输可能导致或增加干扰和/或关于针对设备的介质捕获产生困难。无线设备可以被认为是潜在的攻击者无线设备,因为信道上的传输可能导致或增加对潜在的受害者无线设备的干扰。在一些方面中,潜在的攻击者无线设备可以在信道上执行先听后说(lbt)过程,例如,以捕获用于无线传输的信道。无线设备可以被配置为基于用于无线传输的波束配置来选择lbt检测门限(例如,基于能量水平和/或前导码或其它消息的检测门限)。例如,可以选择第一lbt检测门限以在用于窄波束宽度的lbt过程期间使用(例如,p1波束配置),并且可以选择第二lbt检测门限以在用于较宽的波束宽度的lbt过程期间使用(例如,p2波束配置或新无线电同步信号(nr-ss)波束配置)。在一些方面中,当选择在lbt过程期间使用的lbt检测门限时,无线设备还可以考虑其它因素或参数。例如,要执行和/或检测的无线传输的类型、无线传输或检测到的传输的优先级(例如,服务质量(qos)、秩等)、无线设备的运营商、在lbt过程期间检测到的无线设备的运营商等。因此,无线设备可以具有用于选择将在lbt过程期间使用的lbt检测门限的精细粒度。无线设备然后可以使用lbt检测门限来在信道上执行lbt过程,并且如果成功,则在信道上执行无线传输。

本公开内容的各方面进一步通过涉及自适应介质感测门限的装置图、系统图和流程图来示出并且参照这些图来描述。

图1示出了根据本公开内容的各个方面的无线通信系统100的示例。无线通信系统100包括基站105、ue115以及核心网络130。在一些示例中,无线通信系统100可以是长期演进(lte)网络、改进的lte(lte-a)网络、或新无线电(nr)网络。在一些情况下,无线通信系统100可以支持增强型宽带通信、超可靠(例如,任务关键)通信、低时延通信或者与低成本且低复杂度设备的通信。

基站105可以经由一个或多个基站天线与ue115无线地进行通信。本文描述的基站105可以包括或可以被本领域技术人员称为基站收发机、无线基站、接入点、无线收发机、节点b、演进型节点b(enb)、下一代节点b或千兆节点b(其中的任一项可以被称为gnb)、家庭节点b、家庭演进型节点b、或某种其它适当的术语。无线通信系统100可以包括不同类型的基站105(例如,宏小区基站或小型小区基站)。本文描述的ue115能够与各种类型的基站105和网络设备(包括宏enb、小型小区enb、gnb、中继基站等)进行通信。

每个基站105可以与在其中支持与各个ue115的通信的特定地理覆盖区域110相关联。每个基站105可以经由通信链路125为相应的地理覆盖区域110提供通信覆盖,并且在基站105和ue115之间的通信链路125可以利用一个或多个载波。在无线通信系统100中示出的通信链路125可以包括:从ue115到基站105的上行链路传输、或者从基站105到ue115的下行链路传输。下行链路传输还可以被称为前向链路传输,而上行链路传输还可以被称为反向链路传输。

可以将针对基站105的地理覆盖区域110划分为扇区,所述扇区仅构成地理覆盖区域110的一部分,并且每个扇区可以与小区相关联。例如,每个基站105可以提供针对宏小区、小型小区、热点、或其它类型的小区、或其各种组合的通信覆盖。在一些示例中,基站105可以是可移动的,并且因此,提供针对移动的地理覆盖区域110的通信覆盖。在一些示例中,与不同的技术相关联的不同的地理覆盖区域110可以重叠,并且与不同的技术相关联的重叠的地理覆盖区域110可以由相同的基站105或不同的基站105来支持。无线通信系统100可以包括例如异构lte/lte-a或nr网络,其中不同类型的基站105提供针对各个地理覆盖区域110的覆盖。

术语“小区”指代用于与基站105的通信(例如,在载波上)的逻辑通信实体,并且可以与用于对经由相同或不同载波来操作的相邻小区进行区分的标识符(例如,物理小区标识符(pcid)、虚拟小区标识符(vcid))相关联。在一些示例中,载波可以支持多个小区,并且不同的小区可以是根据不同的协议类型(例如,机器类型通信(mtc)、窄带物联网(nb-iot)、增强型移动宽带(embb)或其它协议类型)来配置的,所述不同的协议类型可以为不同类型的设备提供接入。在一些情况下,术语“小区”可以指代逻辑实体在其上进行操作的地理覆盖区域110的一部分(例如,扇区)。

ue115可以散布于整个无线通信系统100中,并且每个ue115可以是静止的或移动的。ue115还可以被称为移动设备、无线设备、远程设备、手持设备、或用户设备、或某种其它适当的术语,其中,“设备”还可以被称为单元、站、终端或客户端。ue115也可以是个人电子设备,例如,蜂窝电话、个人数字助理(pda)、平板计算机、膝上型计算机或个人计算机。在一些示例中,ue115还可以指代无线本地环路(wll)站、物联网(iot)设备、万物联网(ioe)设备或mtc设备等,其可以是在诸如电器、运载工具、仪表等的各种物品中实现的。

一些ue115(例如,mtc或iot设备)可以是低成本或低复杂度设备,并且可以提供机器之间的自动化通信(例如,经由机器到机器(m2m)通信)。m2m通信或mtc可以指代允许设备在没有人为干预的情况下与彼此或基站105进行通信的数据通信技术。在一些示例中,m2m通信或mtc可以包括来自集成有传感器或计量仪以测量或捕获信息并且将该信息中继给中央服务器或应用程序的设备的通信,所述中央服务器或应用程序可以利用该信息或者将该信息呈现给与该程序或应用进行交互的人类。一些ue115可以被设计为收集信息或者实现机器的自动化行为。针对mtc设备的应用的示例包括智能计量、库存监控、水位监测、设备监测、医疗保健监测、野生生物监测、气候和地质事件监测、车队管理和跟踪、远程安全感测、物理访问控制、以及基于事务的业务计费。

一些ue115可以被配置为采用减小功耗的操作模式,例如,半双工通信(例如,一种支持经由发送或接收的单向通信而不是同时进行发送和接收的模式)。在一些示例中,半双工通信可以是以减小的峰值速率来执行的。针对ue115的其它功率节约技术包括:当不参与活动的通信或者在有限的带宽上操作(例如,根据窄带通信)时,进入功率节省的“深度睡眠”模式。在一些情况下,ue115可以被设计为支持关键功能(例如,任务关键功能),并且无线通信系统100可以被配置为提供用于这些功能的超可靠通信。

在一些情况下,ue115还能够与其它ue115直接进行通信(例如,使用对等(p2p)或设备到设备(d2d)协议)。利用d2d通信的一组ue115中的一个或多个ue115可以在基站105的地理覆盖区域110内。这样的组中的其它ue115可以在基站105的地理覆盖区域110之外,或者以其它方式无法从基站105接收传输。在一些情况下,经由d2d通信来进行通信的多组ue115可以利用一到多(1:m)系统,其中,每个ue115向组中的每个其它ue115进行发送。在一些情况下,基站105促进对用于d2d通信的资源的调度。在其它情况下,d2d通信是在ue115之间执行的,而不涉及基站105。

基站105可以与核心网络130进行通信以及彼此进行通信。例如,基站105可以通过回程链路132(例如,经由s1或其它接口)与核心网络130对接。基站105可以在回程链路134上(例如,经由x2或其它接口)上直接地(例如,直接在基站105之间)或间接地(例如,经由核心网络130)彼此进行通信。

核心网络130可以提供用户认证、接入授权、跟踪、互联网协议(ip)连接、以及其它接入、路由或移动性功能。核心网络130可以是演进分组核心(epc),其可以包括至少一个移动性管理实体(mme)、至少一个服务网关(s-gw)和至少一个分组数据网络(pdn)网关(p-gw)。mme可以管理非接入层(例如,控制平面)功能,例如,针对由与epc相关联的基站105服务的ue115的移动性、认证和承载管理。用户ip分组可以通过s-gw来传输,所述s-gw本身可以连接到p-gw。p-gw可以提供ip地址分配以及其它功能。p-gw可以连接到网络运营商ip服务。运营商ip服务可以包括对互联网、内联网、ip多媒体子系统(ims)或分组交换(ps)流服务的接入。

网络设备中的至少一些网络设备(例如,基站105)可以包括诸如接入网络实体之类的子组件,其可以是接入节点控制器(anc)的示例。每个接入网络实体可以通过多个其它接入网络传输实体(其可以被称为无线电头端、智能无线电头端或发送/接收点(trp))来与ue115进行通信。在一些配置中,每个接入网络实体或基站105的各种功能可以是跨越各个网络设备(例如,无线电头端和接入网络控制器)分布的或者合并到单个网络设备(例如,基站105)中。

无线通信系统100可以使用一个或多个频带(通常在300mhz到300ghz的范围中)来操作。通常,从300mhz到3ghz的区域被称为特高频(uhf)区域或分米频带,因为波长范围在长度上从近似一分米到一米。uhf波可能被建筑物和环境特征阻挡或重定向。然而,波可以足以穿透结构,以用于宏小区向位于室内的ue115提供服务。与使用频谱的低于300mhz的高频(hf)或甚高频(vhf)部分的较小频率和较长的波的传输相比,uhf波的传输可以与较小的天线和较短的距离(例如,小于100km)相关联。

无线通信系统100还可以在使用从3ghz到30ghz的频带(还被称为厘米频带)的超高频(shf)区域中操作。shf区域包括诸如5ghz工业、科学和医疗(ism)频带之类的频带,其可以由能够容忍来自其它用户的干扰的设备机会性地使用。

无线通信系统100还可以在频谱的极高频(ehf)区域(例如,从30ghz到300ghz)(还被称为毫米频带)中操作。在一些示例中,无线通信系统100可以支持ue115与基站105之间的毫米波(mmw)通信,并且与uhf天线相比,相应设备的ehf天线可以甚至更小并且间隔得更紧密。在一些情况下,这可以促进在ue115内使用天线阵列。然而,与shf或uhf传输相比,ehf传输的传播可能遭受到甚至更大的大气衰减和更短的距离。可以跨越使用一个或多个不同的频率区域的传输来采用本文公开的技术,并且对跨越这些频率区域的频带的指定使用可以根据国家或管理机构而不同。

在一些情况下,无线通信系统100可以利用经许可和免许可射频谱带两者。例如,无线通信系统100可以采用免许可频带(例如,5ghzism频带)中的许可辅助接入(laa)、lte免许可(lte-u)无线接入技术或nr技术。当在免许可射频谱带中操作时,无线设备(例如,基站105和ue115)可以在发送数据之前采用先听后说(lbt)过程来确保频率信道是空闲的。在一些情况下,免许可频带中的操作可以基于结合在经许可频带(例如,laa)中操作的cc的ca配置。免许可频谱中的操作可以包括下行链路传输、上行链路传输、对等传输或这些项的组合。免许可频谱中的双工可以基于频分双工(fdd)、时分双工(tdd)或这两者的组合。

在一些示例中,基站105或ue115可以被配备有多个天线,其可以用于采用诸如发射分集、接收分集、多输入多输出(mimo)通信或波束成形之类的技术。例如,无线通信系统100可以在发送设备(例如,基站105)和接收设备(例如,ue115)之间使用传输方案,其中,发送设备被配备有多个天线,以及接收设备被配备有一个或多个天线。mimo通信可以采用多径信号传播,以通过经由不同的空间层来发送或接收多个信号(这可以被称为空间复用)来提高频谱效率。例如,发送设备可以经由不同的天线或者天线的不同组合来发送多个信号。同样,接收设备可以经由不同的天线或者天线的不同组合来接收多个信号。多个信号中的每个信号可以被称为分离的空间流,并且可以携带与相同的数据流(例如,相同的码字)或不同的数据流相关联的比特。不同的空间层可以与用于信道测量和报告的不同的天线端口相关联。mimo技术包括单用户mimo(su-mimo)(其中,多个空间层被发送给相同的接收设备)和多用户mimo(mu-mimo)(其中,多个空间层被发送给多个设备)。

波束成形(其还可以被称为空间滤波、定向发送或定向接收)是一种如下的信号处理技术:可以在发送设备或接收设备(例如,基站105或ue115)处使用该技术,以沿着在发送设备和接收设备之间的空间路径来形成或引导天线波束(例如,发送波束或接收波束)。可以通过以下操作来实现波束成形:对经由天线阵列的天线元件传送的信号进行组合,使得在相对于天线阵列的特定朝向上传播的信号经历相长干涉,而其它信号经历相消干涉。对经由天线元件传送的信号的调整可以包括:发送设备或接收设备向经由与该设备相关联的天线元件中的每个天线元件携带的信号应用某些幅度和相位偏移。可以由与特定朝向(例如,相对于发送设备或接收设备的天线阵列,或者相对于某个其它朝向)相关联的波束成形权重集合来定义与天线元件中的每个天线元件相关联的调整。

在一个示例中,基站105可以使用多个天线或天线阵列,来进行用于与ue115的定向通信的波束成形操作。例如,基站105可以在不同的方向上将一些信号(例如,同步信号、参考信号、波束选择信号或其它控制信号)发送多次,所述一些信号可以包括根据与不同的传输方向相关联的不同的波束成形权重集合发送的信号。不同的波束方向上的传输可以用于(例如,由基站105或接收设备(例如,ue115))识别用于基站105进行的后续发送和/或接收的波束方向。基站105可以在单个波束方向(例如,与接收设备(例如,ue115)相关联的方向)上发送一些信号(例如,与特定的接收设备相关联的数据信号)。在一些示例中,与沿着单个波束方向的传输相关联的波束方向可以是至少部分地基于在不同的波束方向上发送的信号来确定的。例如,ue115可以接收基站105在不同方向上发送的信号中的一个或多个信号,并且ue115可以向基站105报告对其接收到的具有最高信号质量或者以其它方式可接受的信号质量的信号的指示。虽然这些技术是参照基站105在一个或多个方向上发送的信号来描述的,但是ue115可以采用类似的技术来在不同方向上多次发送信号(例如,用于识别用于ue115进行的后续发送或接收的波束方向)或者在单个方向上发送信号(例如,用于向接收设备发送数据)。

当从基站105接收各种信号(例如,同步信号、参考信号、波束选择信号或其它控制信号)时,接收设备(例如,ue115,其可以是mmw接收设备的示例)可以尝试多个接收波束。例如,接收设备可以通过经由不同的天线子阵列来进行接收,通过根据不同的天线子阵列来处理接收到的信号,通过根据向在天线阵列的多个天线元件处接收的信号应用的不同的接收波束成形权重集合来进行接收,或者通过根据向在天线阵列的多个天线元件处接收的信号应用的不同的接收波束成形权重集合来处理接收到的信号(以上各个操作中的任何操作可以被称为根据不同的接收波束或接收方向的“监听”),来尝试多个接收方向。在一些示例中,接收设备可以使用单个接收波束来沿着单个波束方向进行接收(例如,当接收数据信号时)。单个接收波束可以在至少部分地基于根据不同的接收波束方向进行监听而确定的波束方向(例如,至少部分地基于根据多个波束方向进行监听而被确定为具有最高信号强度、最高信噪比、或者以其它方式可接受的信号质量的波束方向)上对准。

在一些情况下,基站105或ue115的天线可以位于一个或多个天线阵列内,所述一个或多个天线阵列可以支持mimo操作或者发送或接收波束成形。例如,一个或多个基站天线或天线阵列可以共置于天线组件处,例如天线塔。在一些情况下,与基站105相关联的天线或天线阵列可以位于不同的地理位置上。基站105可以具有天线阵列,所述天线阵列具有基站105可以用于支持对与ue115的通信的波束成形的多行和多列的天线端口。同样,ue115可以具有可以支持各种mimo或波束成形操作的一个或多个天线阵列。

在一些情况下,无线通信系统100可以是根据分层协议栈来操作的基于分组的网络。在用户平面中,在承载或分组数据汇聚协议(pdcp)层处的通信可以是基于ip的。在一些情况下,无线链路控制(rlc)层可以执行分组分段和重组以在逻辑信道上进行通信。介质访问控制(mac)层可以执行优先级处理和逻辑信道到传输信道的复用。mac层还可以使用混合自动重传请求(harq)来提供在mac层处的重传,以改善链路效率。在控制平面中,无线资源控制(rrc)协议层可以提供在ue115与基站105或核心网络130之间的rrc连接(其支持针对用户平面数据的无线承载)的建立、配置和维护。在物理(phy)层处,传输信道可以被映射到物理信道。

在一些情况下,ue115和基站105可以支持数据的重传,以增加数据被成功接收的可能性。harq反馈是一种增加数据在通信链路125上被正确接收的可能性的技术。harq可以包括错误检测(例如,使用循环冗余校验(crc))、前向纠错(fec)和重传(例如,自动重传请求(arq))的组合。harq可以在差的无线状况(例如,信号与噪声状况)下改进mac层处的吞吐量。在一些情况下,无线设备可以支持相同时隙harq反馈,其中,该设备可以在特定时隙中提供针对在该时隙中的先前符号中接收的数据的harq反馈。在其它情况下,该设备可以在后续时隙中或者根据某个其它时间间隔来提供harq反馈。

可以以基本时间单位(其可以例如指代ts=1/30,720,000秒的采样周期)的倍数来表示lte或nr中的时间间隔。可以根据均具有10毫秒(ms)的持续时间的无线帧对通信资源的时间间隔进行组织,其中,帧周期可以表示为tf=307,200ts。无线帧可以通过范围从0到1023的系统帧编号(sfn)来标识。每个帧可以包括编号从0到9的10个子帧,并且每个子帧可以具有1ms的持续时间。可以进一步将子帧划分成2个时隙,每个时隙具有0.5ms的持续时间,并且每个时隙可以包含6或7个调制符号周期(例如,这取决于在每个符号周期前面添加的循环前缀的长度)。排除循环前缀,每个符号周期可以包含2048个采样周期。在一些情况下,子帧可以是无线通信系统100的最小调度单元,并且可以被称为传输时间间隔(tti)。在其它情况下,无线通信系统100的最小调度单元可以比子帧短或者可以是动态选择的(例如,在缩短的tti(stti)的突发中或者在选择的使用stti的分量载波中)。

在一些无线通信系统中,可以将时隙进一步划分成包含一个或多个符号的多个微时隙。在一些实例中,微时隙的符号或者微时隙可以是最小调度单元。每个符号在持续时间上可以根据例如子载波间隔或操作的频带而改变。此外,一些无线通信系统可以实现时隙聚合,其中,多个时隙或微时隙被聚合在一起并且用于在ue115和基站105之间的通信。

术语“载波”指代具有用于支持在通信链路125上的通信的定义的物理层结构的射频频谱资源集合。例如,通信链路125的载波可以包括射频谱带中的根据用于给定无线接入技术的物理层信道来操作的部分。每个物理层信道可以携带用户数据、控制信息或其它信令。载波可以与预定义的频率信道(例如,e-utra绝对射频信道号(earfcn))相关联,并且可以根据信道栅格来放置以便被ue115发现。载波可以是下行链路或上行链路(例如,在fdd模式中),或者可以被配置为携带下行链路和上行链路通信(例如,在tdd模式中)。在一些示例中,在载波上发送的信号波形可以由多个子载波构成(例如,使用诸如ofdm或dft-s-ofdm之类的多载波调制(mcm)技术)。

针对不同的无线电接入技术(例如,lte、lte-a、nr等),载波的组织结构可以是不同的。例如,可以根据tti或时隙来组织载波上的通信,所述tti或时隙中的每一者可以包括用户数据以及用于支持对用户数据进行解码的控制信息或信令。载波还可以包括专用捕获信令(例如,同步信号或系统信息等)和协调针对载波的操作的控制信令。在一些示例中(例如,在载波聚合配置中),载波还可以具有捕获信令或协调针对其它载波的操作的控制信令。

可以根据各种技术在载波上对物理信道进行复用。例如,可以使用时分复用(tdm)技术、频分复用(fdm)技术或混合tdm-fdm技术来在下行链路载波上对物理控制信道和物理数据信道进行复用。在一些示例中,在物理控制信道中发送的控制信息可以以级联的方式分布在不同的控制区域之间(例如,在公共控制区域或公共搜索空间与一个或多个特定于ue的控制区域或特定于ue的搜索空间之间)。

载波可以与射频频谱的特定带宽相关联,并且在一些示例中,载波带宽可以被称为载波或无线通信系统100的“系统带宽”。例如,载波带宽可以是针对特定无线接入技术的载波的多个预定带宽中的一个带宽(例如,1.4、3、5、10、15、20、40或80mhz)。在一些示例中,每个被服务的ue115可以被配置用于在载波带宽的部分或全部带宽上进行操作。在其它示例中,一些ue115可以被配置用于使用与载波内的预定义的部分或范围(例如,子载波或rb的集合)相关联的窄带协议类型进行的操作(例如,窄带协议类型的“带内”部署)。

在采用mcm技术的系统中,资源元素可以由一个符号周期(例如,一个调制符号的持续时间)和一个子载波组成,其中,符号周期和子载波间隔是逆相关的。每个资源元素携带的比特的数量可以取决于调制方案(例如,调制方案的阶数)。因此,ue115接收的资源元素越多并且调制方案的阶数越高,针对ue115的数据速率就可以越高。在mimo系统中,无线通信资源可以指代射频频谱资源、时间资源和空间资源(例如,空间层)的组合,并且对多个空间层的使用可以进一步增加用于与ue115的通信的数据速率。

无线通信系统100的设备(例如,基站105或ue115)可以具有支持特定载波带宽上的通信的硬件配置,或者可以可配置为支持载波带宽集合中的一个载波带宽上的通信。在一些示例中,无线通信系统100可以包括基站105和/或ue,其能够支持经由与一个以上的不同载波带宽相关联的载波进行的同时通信。

无线通信系统100可以支持在多个小区或载波上与ue115的通信(一种可以被称为载波聚合(ca)或多载波操作的特征)。根据载波聚合配置,ue115可以被配置有多个下行链路cc和一个或多个上行链路cc。可以将载波聚合与fdd分量载波和tdd分量载波两者一起使用。

在一些情况下,无线通信系统100可以利用增强型分量载波(ecc)。ecc可以由包括以下各项的一个或多个特征来表征:较宽的载波或频率信道带宽、较短的符号持续时间、较短的tti持续时间或经修改的控制信道配置。在一些情况下,ecc可以与载波聚合配置或双连接配置相关联(例如,当多个服务小区具有次优的或非理想的回程链路时)。ecc还可以被配置用于在免许可频谱或共享频谱中使用(例如,其中允许一个以上的运营商使用频谱)。由宽载波带宽表征的ecc可以包括可以被无法监测整个载波带宽或以其它方式被配置为使用有限载波带宽(例如,以节省功率)的ue115使用的一个或多个片段。

在一些情况下,ecc可以利用与其它cc不同的符号持续时间,这可以包括使用与其它cc的符号持续时间相比减小的符号持续时间。较短的符号持续时间可以与在相邻子载波之间的增加的间隔相关联。利用ecc的设备(例如,ue115或基站105)可以以减小的符号持续时间(例如,16.67微秒)来发送宽带信号(例如,根据20、40、60、80mhz等的频率信道或载波带宽)。ecc中的tti可以由一个或多个符号周期组成。在一些情况下,tti持续时间(即,tti中的符号周期的数量)可以是可变的。

除此之外,无线通信系统(诸如nr系统)可以利用经许可、共享和免许可频谱带的任意组合。ecc符号持续时间和子载波间隔的灵活性可以允许跨越多个频谱来使用ecc。在一些示例中,nr共享频谱可以提高频谱利用率和频谱效率,尤其是通过对资源的动态垂直(例如,跨越频率)和水平(例如,跨越时间)共享。

无线设备(例如,ue115和/或基站105)可以选择用于射频谱带的信道上的无线传输的波束配置。无线设备可以使用lbt检测门限来在信道上执行lbt过程,其中,lbt检测门限是至少部分地基于所选择的波束配置的。无线设备可以至少部分基于lbt过程的成功,来使用所选择的波束配置在信道上执行无线传输。

图2示出了根据本公开内容的各个方面的支持自适应介质感测门限的无线通信系统200的示例。在一些示例中,无线通信系统200可以实现无线通信系统100的各方面。无线通信系统200可以包括基站205、210、215和220以及ue225、230、235、240、245和250,它们是本文描述的对应设备的示例。无线通信系统200可以是mmw无线通信系统。

在一些方面中,基站205、210、215和/或220中的一些或全部可以属于同一运营商或一个或多个不同的运营商。通常,基站205可以与ue225、235和240相关联。例如,基站205可以使用波束配置255在下行链路中以及使用波束配置260在上行链路中与ue225进行通信,使用波束配置270在下行链路中以及使用波束配置275在上行链路中与ue235进行通信,并且使用波束配置280在下行链路中与ue240进行通信。基站210可以与ue230相关联,并且使用波束配置265在下行链路中进行通信。基站215可以与ue245相关联,并且使用波束配置285在下行链路中进行通信。基站220可以与ue250相关联,并且使用波束配置290在下行链路中以及使用波束配置295在上行链路中进行通信。然而,应当理解,每个波束配置可以是用于相应无线设备的发射波束配置和/或接收波束配置。

在一些方面中,每个波束配置可以具有不同的属性,例如,波束宽度、波束形状、波束定时、波束发射功率等。在一些方面中,波束配置255、265、270、280、285和/或290可以被认为具有窄的波束宽度,并且在一些示例中,可以是p1和/或p2波束的示例。在一些方面中,波束配置260、275和/或295可以被认为具有宽的波束宽度,并且在一些示例中,可以是p3波束的示例。

通常,发射和接收波束的方向性和配置在mmw无线通信系统中提供一定水平的干扰隔离。例如,ue230可能经历来自以下各项的一定程度的干扰:使用波束配置260的来自ue225的上行链路传输和/或使用波束配置255的来自基站205的下行链路通信。ue225可能经历来自使用波束配置265的从基站210的下行链路通信的一定程度的干扰。然而,与相邻无线设备更隔离的ue235可能不经历干扰。ue240和/或245可能经历与使用波束配置295的来自ue250的上行链路传输的一定程度的隔离,但是不经历来自使用波束配置290的从基站220的下行链路传输的干扰。ue250可能经历来自使用波束配置285的从基站215的下行链路传输的一定程度的干扰,而不经历来自从ue240和/或245的上行链路传输的一定程度的干扰。

因此,无线通信系统200的每个无线设备(例如,ue和/或基站)可以被配置为执行所描述的用于自适应介质感测门限的技术的各方面。每个无线设备可以利用波束方向、波束宽度和时间上的不对称性来选择在lbt过程期间使用的可变的能量和/或前导码检测门限。例如,无线设备可以以每波束(例如,波束索引)为基础来采用不同的基于能量和/或前导码的lbt检测门限。该门限可以从值的范围(例如,q1到q2)和/或从有限的门限集合(例如,q1、q2、q3、q4)中选择。以每波束为基础并且基于波束配置来选择lbt检测门限可以提供对确定什么是干扰传输以及什么传输可能不会导致干扰或将干扰增加到不可接受的水平的精细程度的控制。lbt检测门限可以包括能量水平检测门限和/或基于消息的(例如,前导码消息)检测门限。

作为一个示例,ue225、235和240中的每一个可以被配置为在执行去往基站205的无线传输之前执行lbt过程以捕获介质(例如,信道)。每个ue可以选择其对应的将用于无线传输的波束配置(例如,波束配置260、275和280),并且使用波束配置来选择要在lbt过程期间使用的lbt检测门限。假设lbt过程成功(例如,在lbt过程期间没有检测到满足门限的干扰传输),则ue将捕获信道并且执行去往基站205的无线传输。

通常,每个无线设备可以使用所描述的技术,其中lbt检测门限是基于波束配置来选择的。在一些方面中,每个无线设备在选择lbt检测门限时可以另外考虑其它参数。可以单独地,组合地等等来考虑每个额外参数。在一些方面中,可以向每个额外参数指派加权因子,该加权因子是固定的和/或可以基于正在考虑的额外参数进行调整。

额外参数的一个示例可以包括无线设备(例如,ue和/或基站)是将要在lbt过程期间使用的波束配置选择为与要用于无线传输的波束配置相同还是不同。例如,无线设备可以为lbt过程选择与用于无线传输的波束配置相同的波束配置,并且因此基于该相同的波束配置来选择lbt检测门限。在基站示例中,在使用p1和p2波束配置之前,基站可以将不同的lbt检测门限用于介质感测。在ue示例中,在使用p3波束配置内的不同波束宽度之前,ue可以将不同的lbt检测门限用于介质感测。然而,在一些示例中,无线设备可以选择与要用于无线传输的波束配置不同的lbt波束配置。例如,在p1波束或nr-ss波束上执行lbt过程的情况下,可以在p2波束配置上执行无线传输。因此,在lbt波束配置和无线发送和/或接收的波束配置具有不同的波束宽度的情况下,无线设备可以使用相对于lbt检测门限的相对偏移。偏移的大小可以是在lbt波束配置与用于无线传输的波束配置之间的波束宽度之差的函数。在一个非限制性示例中,可以定义nr-ss波束相对于p1/p2/p3波束的偏移。

在额外参数的另一示例中,无线设备可以基于正在执行的无线传输的类型来选择(或调整)lbt检测门限。例如,lbt检测门限可以是基于以下内容来选择的:无线传输是否是预留请求信号(rrq)传输、预留响应信号(rrs)、数据传输、非数据传输、无线传输的传输秩、针对无线传输的qos要求等。

在额外参数的另一示例中,无线设备可以基于在lbt过程期间检测到的无线传输的类型来选择(或调整)lbt检测门限,例如,在lbt过程期间动态地调整和/或在确定检测到的传输是否构成干扰时的后lbt过程期间动态地调整。例如,lbt检测门限可以是基于以下各项来选择的:传输是否是rrq传输、rrs、数据传输、非数据传输、无线传输的传输秩、针对传输的qos要求、传输的占空比等。

在额外参数的另一示例中,无线设备可以基于与在lbt过程期间检测到的设备的运营商相比于该无线设备的运营商来选择(或调整)lbt检测门限。

在额外参数的另一示例中,无线设备可以基于传输方向来选择(或调整)lbt检测门限。例如,lbt检测门限可以是基于无线传输是上行链路传输还是下行链路传输和/或基于干扰传输是上行链路传输还是下行链路传输来选择的。

在额外参数的另一示例中,无线设备可以基于预期接收信号强度来选择(或调整)lbt检测门限。例如,无线设备可以执行lbt过程以执行与调度操作相关联的无线传输,例如,以作为rrq/rrs交换的一部分确认对寻呼信号的接收,等等。无线设备可以例如基于接收到先前的无线传输而知道来自发送无线设备的预期接收信号强度是多少。因此,无线设备可以基于预期接收信号强度来选择lbt检测门限。在一些方面中,当选择lbt检测门限时,无线设备可以使用在lbt过程期间检测到的所观测能量(或前导码)与预期接收信号强度的比率。

图3a和3b示出了根据本公开内容的各个方面的支持自适应介质感测门限的无线通信系统300的示例。在一些示例中,无线通信系统300可以实现无线通信系统100/200的各方面。无线通信系统300可以包括基站305以及ue310、315和320,它们可以是本文描述的对应设备的示例。通常,图3a的无线通信系统300-a示出了示例下行链路通信场景,并且图3b的无线通信系统300-b示出了示例上行链路通信场景。无线通信系统300可以是mmw无线通信系统。

通常,基站305可以与ue310、315和320相关联。例如,基站305可以使用波束配置325在下行链路中以及使用波束配置350在上行链路中与ue310进行通信。基站305可以使用波束配置330在下行链路中以及使用波束配置355在上行链路中与ue315进行通信。基站305可以使用波束配置335在下行链路中以及使用波束配置360在上行链路中与ue320进行通信。在一些方面中,基站305可以使用波束配置345在下行链路中进行通信。通常,ue340可以被认为是潜在的受害者节点,因为在一些场景中,在基站305与相关联的ue中的某些ue之间的通信可能与ue340发生干扰。

在一些方面中,无线通信系统300的一些或全部无线设备可以被配置为支持自适应介质感测门限。例如,每个设备可以基于波束配置来选择lbt检测门限。作为一个示例,基站305可以为下行链路波束配置325、330和335选择lbt检测门限(τ)。基站305可以为下行链路波束配置345选择lbt检测门限(β)。即,波束配置325/330/335相对于波束配置345各自具有不同的波束属性(例如,波束宽度、波束形状等)。因此,基于波束配置来选择不同的lbt检测门限可以在确定是什么在lbt过程期间构成干扰时提供精细的粒度,例如,考虑到相应波束配置的不同覆盖范围。

在一些方面中,波束配置325、330和335可以是nr-ss波束配置、p1波束配置和/或p2波束配置的示例。广义上,nr-ss波束可以被认为是用于同步信道传输的宽波束,p1波束可以被认为是用于定向传输(例如,到特定ue,诸如广播信号)的窄波束,并且p2波束可以被认为用于更定向、更深的传输的甚至更窄的波束。在一些示例中,波束配置325、330和335可以被认为是p2波束配置,并且波束配置345可以被认为是p1波束配置。

在一些方面中,来自p1波束的干扰可能不同于来自p2波束的干扰。例如,p1波束可能与较多的节点发生干扰(例如,对于相同的分隔距离可能具有较低的接收功率强度),并且p2波束可能与较少的节点发生干扰(例如,对于相同的分隔距离可能具有较大的接收功率强度)。因此,为lbt过程选择不同的lbt检测门限可以考虑这样的差异并且提供更精细程度的干扰检测。

作为另一示例,ue310、315和/或320中的任何一个可以分别为波束配置350、355和360选择lbt检测门限(α)。lbt检测门限(α)可以考虑到波束配置的相应覆盖范围。在一些方面中,波束配置350、355和360可以被认为是p3波束配置。p3波束可以被认为是由ue用于进一步进行波束细化的接收波束配置。

因此,无线通信系统300的任何无线设备可以被配置为选择要用于无线传输的波束配置,并且然后基于波束配置来选择lbt检测门限。无线设备可以使用所选择的lbt检测门限来执行lbt过程,以大体上对干扰进行检测、识别和/或分类,并且更具体地确定干扰是否将中断无线设备的无线传输。当选择要在lbt过程期间使用的lbt检测门限时,无线设备还可以考虑如本文描述的各种额外参数。

图4示出了根据本公开内容的各个方面的支持自适应介质感测门限的过程400的示例。在一些示例中,过程400可以实现无线通信系统100/200/300的各方面。过程400可以包括无线设备405和无线设备410,无线设备405和无线设备410中的每一个可以是ue和/或基站,它们可以是本文描述的对应设备的示例。

在415处,无线设备405可以选择用于信道上的无线传输的波束配置。波束配置可以是p1波束配置、p2波束配置、p3波束配置、nr-ss波束配置等。波束配置可以具有某些波束属性,诸如波束宽度、波束形状、波束方向、波束发射功率等。无线设备405可以为lbt过程选择波束配置(例如,lbt波束配置),该波束配置与为无线传输选择的波束配置相同或不同。

在420处,无线设备405可以可选地确定要在为lbt过程选择lbt检测门限时使用的额外参数。在一些方面中,可以单独地或以任何组合来考虑额外参数。

在一些方面中,可以基于额外参数(诸如无线传输是否是rrq信号、rrs信号、干扰发现信号、无线传输的传输秩、与无线设备405相关联的运营商、针对无线传输的qos度量、无线传输的传输方向等)来选择lbt检测门限。在一些方面中,可以基于与在lbt过程期间检测到的干扰传输相关联的额外参数(例如,干扰传输是否是rrq信号、rrs信号、是否是干扰发现信号、干扰传输的传输秩、与发送干扰传输的无线设备相关联的运营商(例如,与无线设备405的运营商不同)、针对干扰传输的qos度量、干扰传输的传输方向等)来选择lbt检测门限。在一些方面中,可以基于针对去往无线设备405的调度的无线通信的预期接收信号强度值来选择lbt检测门限。

在一些方面中,可以基于lbt波束配置是否与为无线传输选择的波束配置相同来选择lbt检测门限。例如,当lbt波束配置与用于无线传输的波束配置不同时,无线设备405可以向lbt检测门限应用偏移。该偏移可以是在lbt波束配置与为无线传输选择的波束配置之间的波束宽度之差的函数。

在425处,无线设备405可以使用所选择的lbt检测门限来在信道上执行lbt过程。当在lbt过程期间在信道上检测到的信号(例如,基于能量和/或基于前导码)不满足或未达到lbt检测门限时,可以认为lbt过程是成功的,而当信号满足或达到lbt检测门限时,可以认为lbt过程是不成功的。成功的lbt过程可以指示该介质可用于执行无线传输,而失败的lbt过程可以指示该介质不可用。

在430处,无线设备405可以基于lbt过程的成功来在信道上执行去往无线设备410的无线传输。当lbt过程不成功时,无线设备405可以执行回退过程,并且在回退过程之后在信道上尝试第二lbt过程。

图5示出了根据本公开内容的各方面的支持自适应介质感测门限的无线设备505的框图500。无线设备505可以是如本文描述的ue115或基站105的各方面的示例。无线设备505可以包括接收机510、通信管理器515和发射机520。无线设备505还可以包括处理器。这些组件中的每个组件可以相互通信(例如,经由一个或多个总线)。

接收机510可以接收诸如与各种信息信道(例如,与自适应介质感测门限相关的控制信道、数据信道以及信息等)相关联的分组、用户数据或者控制信息之类的信息。可以将信息传递给该设备的其它组件。接收机510可以是参照图8描述的收发机835的各方面的示例。接收机510可以利用单个天线或一组天线。

通信管理器515可以是参照图8描述的ue通信管理器815的各方面的示例。

通信管理器515和/或其各个子组件中的至少一些子组件可以用硬件、由处理器执行的软件、固件或其任意组合来实现。如果用由处理器执行的软件来实现,则通信管理器515和/或其各个子组件中的至少一些子组件的功能可以由被设计为执行本公开内容中描述的功能的通用处理器、数字信号处理器(dsp)、专用集成电路(asic)、现场可编程门阵列(fpga)或其它可编程逻辑器件、分立门或者晶体管逻辑、分立硬件组件或者其任意组合来执行。通信管理器515和/或其各个子组件中的至少一些子组件可以在物理上位于各个位置处,包括被分布以使得由一个或多个物理设备在不同的物理位置处实现功能中的部分功能。在一些示例中,根据本公开内容的各个方面,通信管理器515和/或其各个子组件中的至少一些子组件可以是分离且不同的组件。在其它示例中,根据本公开内容的各个方面,ue通信管理器515和/或其各个子组件中的至少一些子组件可以与一个或多个其它硬件组件(包括但不限于i/o组件、收发机、网络服务器、另一计算设备、本公开内容中描述的一个或多个其它组件、或其组合)组合。

通信管理器515可以进行以下操作:选择用于射频谱带的信道上的无线传输的波束配置;使用lbt检测门限来在信道上执行lbt过程,其中,lbt检测门限是基于所选择的波束配置的;以及基于lbt过程的成功,来使用所选择的波束配置在信道上执行无线传输。

发射机520可以发送由该设备的其它组件所生成的信号。在一些示例中,发射机520可以与接收机510共置于收发机模块中。例如,发射机520可以是参照图8描述的收发机835的各方面的示例。发射机520可以利用单个天线或一组天线。

图6示出了根据本公开内容的各方面的支持自适应介质感测门限的无线设备605的框图600。无线设备605可以是如本文描述的无线设备505或ue115或基站105的各方面的示例。无线设备605可以包括接收机610、通信管理器615和发射机620。无线设备605还可以包括处理器。这些组件中的每个组件可以相互通信(例如,经由一个或多个总线)。

接收机610可以接收诸如与各种信息信道(例如,与自适应介质感测门限相关的控制信道、数据信道以及信息等)相关联的分组、用户数据或者控制信息之类的信息。可以将信息传递给该设备的其它组件。接收机610可以是参照图8描述的收发机835的各方面的示例。接收机610可以利用单个天线或一组天线。

通信管理器615可以是参照图8描述的ue通信管理器815的各方面的示例。

通信管理器615还可以包括波束配置管理器625、lbt管理器630和传输管理器635。

波束配置管理器625可以进行以下操作:选择用于射频谱带的信道上的无线传输的波束配置;选择用于信道上的lbt过程的lbt波束配置,lbt波束配置与用于信道上的无线传输的波束配置相同;选择用于信道上的lbt过程的lbt波束配置,lbt波束配置与用于信道上的无线传输的波束配置不同;以及基于lbt波束配置与用于信道上的无线传输的波束配置不同,来向lbt检测门限应用偏移。在一些情况下,lbt波束配置具有与用于信道上的无线传输的波束配置相比更宽的波束宽度,并且偏移是在lbt波束配置与用于信道上的无线传输的波束配置之间的波束宽度之差的函数。在一些情况下,波束配置包括以下各项中的至少一项:nr-ss波束配置、或p1波束配置、或p2波束配置、或p3波束配置。

lbt管理器630可以使用lbt检测门限来在信道上执行lbt过程,其中,lbt检测门限是基于所选择的波束配置的。在一些情况下,lbt检测阈值包括以下各项中的至少一项:能量水平检测门限、或前导码检测门限、或其组合。

传输管理器635可以基于lbt过程的成功,来使用所选择的波束配置在信道上执行无线传输。

发射机620可以发送由该设备的其它组件生成的信号。在一些示例中,发射机620可以与接收机610共置于收发机模块中。例如,发射机620可以是参照图8描述的收发机835的各方面的示例。发射机620可以利用单个天线或一组天线。

图7示出了根据本公开内容的各方面的支持自适应介质感测门限的通信管理器715的框图700。通信管理器715可以是参照图5、6和8所描述的通信管理器515、通信管理器615或ue通信管理器815的各方面的示例。通信管理器715可以包括波束配置管理器720、lbt管理器725、传输管理器730、干扰发现管理器735、接收信号强度管理器740、传输秩管理器745、运营商管理器750、qos度量管理器755和传输方向管理器760。这些模块中的每个模块可以直接地或者间接地相互通信(例如,经由一个或多个总线)。

波束配置管理器720可以进行以下操作:选择用于射频谱带的信道上的无线传输的波束配置;选择用于信道上的lbt过程的lbt波束配置,lbt波束配置与用于信道上的无线传输的波束配置相同;选择用于信道上的lbt过程的lbt波束配置,lbt波束配置与用于信道上的无线传输的波束配置不同;以及基于lbt波束配置与用于信道上的无线传输的波束配置不同,来向lbt检测门限应用偏移。在一些情况下,lbt波束配置具有与用于信道上的无线传输的波束配置相比更宽的波束宽度,并且偏移是在lbt波束配置与用于信道上的无线传输的波束配置之间的波束宽度之差的函数。在一些情况下,波束配置包括以下各项中的至少一项:nr-ss波束配置、或p1波束配置、或p2波束配置、或p3波束配置。

lbt管理器725可以使用lbt检测门限来在信道上执行lbt过程,其中,lbt检测门限是基于所选择的波束配置的。在一些情况下,lbt检测阈值包括以下各项中的至少一项:能量水平检测门限、或前导码检测门限、或其组合。

传输管理器730可以基于lbt过程的成功,来使用所选择的波束配置在信道上执行无线传输。

干扰发现管理器735可以进行以下操作:确定无线传输包括rrq信号;基于rrq信号来选择lbt检测门限;确定无线传输包括rrs信号;基于rrs信号来选择lbt检测门限;确定无线传输包括干扰发现信号;以及基于干扰发现信号来选择lbt检测门限。

接收信号强度管理器740可以识别用于去往无线设备的调度的无线通信的预期接收信号强度值,并且基于预期接收信号强度值来选择lbt检测门限。

传输秩管理器745可以进行以下操作:识别与信道上的无线传输相关联的传输秩;基于传输秩来选择lbt检测门限;以及识别与信道上的干扰传输相关联的传输秩。

运营商管理器750可以进行以下操作:确定干扰传输来自与运营商相关联的设备,该运营商与无线设备相关联;基于运营商来选择lbt检测门限;确定干扰传输来自与不同于第二运营商的第一运营商相关联的设备,第二运营商与无线设备相关联;以及基于第一运营商来选择lbt检测门限。

qos度量管理器755可以进行以下操作:识别与信道上的无线传输相关联的qos度量;基于qos度量来选择lbt检测门限;以及识别与干扰传输相关联的qos度量。

传输方向管理器760可以进行以下操作:识别与信道上的无线传输关联的传输方向;基于传输方向来选择lbt检测门限;以及识别与信道上的干扰传输相关联的传输方向。

图8示出了根据本公开内容的各方面的包括支持自适应介质感测门限的设备805的系统800的图。设备805可以是以下各项的示例或者包括以下各项的组件:如本文描述的无线设备505、无线设备605或者ue115。设备805可以包括用于双向语音和数据通信的组件,其包括用于发送和接收通信的组件,包括:ue通信管理器815、处理器820、存储器825、软件830、收发机835、天线840以及i/o控制器845。这些组件可以经由一个或多个总线(例如,总线88)进行电子通信。设备805可以与一个或多个基站105无线地通信。

处理器820可以包括智能硬件设备(例如,通用处理器、dsp、中央处理单元(cpu)、微控制器、asic、fpga、可编程逻辑器件、分立门或者晶体管逻辑组件、分立硬件组件或者其任意组合)。在一些情况下,处理器820可以被配置为使用存储器控制器来操作存储器阵列。在其它情况下,存储器控制器可以集成到处理器820中。处理器820可以被配置为执行存储在存储器中的计算机可读指令,以执行各种功能(例如,支持自适应介质感测门限的功能或者任务)。

存储器825可以包括随机存取存储器(ram)和只读存储器(rom)。存储器825可以存储包括指令的计算机可读、计算机可执行软件830,所述指令在被执行时使得处理器执行本文描述的各种功能。在一些情况下,除此之外,存储器825还可以包含基本输入/输出(i/o)系统(bios),所述bios可以控制基本硬件或软件操作(例如,与外围组件或者设备的交互)。

软件830可以包括用于实现本公开内容的各方面的代码,其包括用于支持自适应介质感测门限的代码。软件830可以被存储在非暂时性计算机可读介质(例如,系统存储器或者其它存储器)中。在一些情况下,软件830可以不是可由处理器直接执行的,而是可以使得计算机(例如,当被编译和被执行时)执行本文所描述的功能。

收发机835可以经由如上所述的一个或多个天线、有线或者无线链路双向地通信。例如,收发机835可以表示无线收发机,并且可以与另一无线收发机双向地通信。收发机835还可以包括调制解调器,所述调制解调器用于对分组进行调制并且将经调制的分组提供给天线以用于传输,以及对从天线接收到的分组进行解调。

在一些情况下,无线设备可以包括单个天线840。然而,在一些情况下,设备可以具有多于一个的天线840,其能够并发发送或者接收多个无线传输。

i/o控制器845可以管理针对设备805的输入和输出信号。i/o控制器845还可以管理未集成到设备805中的外围设备。在一些情况下,i/o控制器845可以表示到外部外围设备的物理连接或者端口。在一些情况下,i/o控制器845可以利用诸如之类的操作系统或者另一已知的操作系统。在其它情况下,i/o控制器845可以表示调制解调器、键盘、鼠标、触摸屏或类似设备或者与上述设备进行交互。在一些情况下,i/o控制器845可以被实现成处理器的一部分。在一些情况下,用户可以经由i/o控制器845或者经由i/o控制器845所控制的硬件组件来与设备805进行交互。

图9示出了根据本公开内容的各方面的包括支持自适应介质感测门限的设备905的系统900的图。设备905可以是以下各项的示例或者包括以下各项的组件:如本文描述的无线设备605、无线设备705或者基站105。设备905可以包括用于双向语音和数据通信的组件,其包括用于发送和接收通信的组件,包括:基站通信管理器915、处理器920、存储器925、软件930、收发机935、天线940、网络通信管理器945和站间通信管理器950。这些组件可以经由一个或多个总线(例如,总线910)来进行电子通信。设备905可以与一个或多个ue115无线地通信。

处理器920可以包括智能硬件设备(例如,通用处理器、dsp、cpu、微控制器、asic、fpga、可编程逻辑器件、分立门或者晶体管逻辑组件、分立硬件组件或者其任意组合)。在一些情况下,处理器920可以被配置为使用存储器控制器来操作存储器阵列。在其它情况下,存储器控制器可以集成到处理器920中。处理器920可以被配置为执行存储在存储器中的计算机可读指令,以执行各种功能(例如,支持自适应介质感测门限的功能或者任务)。

存储器925可以包括ram和rom。存储器925可以存储包括指令的计算机可读、计算机可执行软件930,所述指令在被执行时使得处理器执行本文描述的各种功能。在一些情况下,除此之外,存储器925还可以包含bios,所述bios可以控制基本硬件或软件操作(例如,与外围组件或者设备的交互)。

软件930可以包括用于实现本公开内容的各方面的代码,其包括用于支持自适应介质感测门限的代码。软件930可以被存储在非暂时性计算机可读介质(例如,系统存储器或者其它存储器)中。在一些情况下,软件930可以不是可由处理器直接执行的,而是可以使得计算机(例如,当被编译和被执行时)执行本文所描述的功能。

收发机935可以经由如上所述的一个或多个天线、有线或者无线链路双向地通信。例如,收发机935可以表示无线收发机,并且可以与另一无线收发机双向地通信。收发机935还可以包括调制解调器,所述调制解调器用于对分组进行调制并且将经调制的分组提供给天线以用于传输,以及对从天线接收到的分组进行解调。

在一些情况下,无线设备可以包括单个天线940。然而,在一些情况下,设备可以具有多于一个的天线940,其能够并发发送或者接收多个无线传输。

网络通信管理器945可以管理与核心网的通信(例如,经由一个或多个有线回程链路)。例如,网络通信管理器945可以管理针对客户端设备(例如,一个或多个ue115)的数据通信的传输。

站间通信管理器950可以管理与其它基站105的通信,并且可以包括用于与其它基站105协作地控制与ue115的通信的控制器或调度器。例如,站间通信管理器950可以协调针对去往ue115的传输的调度,以用于诸如波束成形或联合传输之类的各种干扰减轻技术。在一些示例中,站间通信管理器950可以提供在lte/lte-a无线通信网络技术内的x2接口,以提供在基站105之间的通信。

图10示出了说明根据本公开内容的各方面的用于自适应介质感测门限的方法1000的流程图。方法1000的操作可以由如本文描述的ue115或基站105或其组件来实现。例如,方法1000的操作可以由如参照图5至7描述的通信管理器来执行。在一些示例中,ue115或基站105可以执行代码集,以控制该设备的功能单元执行下文描述的功能。另外或替代地,ue115或基站105可以使用专用硬件来执行下文描述的功能的各方面。

在1005处,ue115或基站105可以选择用于射频谱带的信道上的无线传输的波束配置。1005的操作可以根据本文描述的方法来执行。在某些示例中,1005的操作的各方面可以由如参照图5至7描述的波束配置管理器来执行。

在1010处,ue115或基站105可以使用lbt检测门限来在信道上执行lbt过程,其中,lbt检测门限是至少部分地基于所选择的波束配置的。1010的操作可以根据本文描述的方法来执行。在某些示例中,1010的操作的各方面可以由如参照图5至7描述的lbt管理器来执行。

在1015处,ue115或基站105可以至少部分地基于lbt过程的成功,来使用所选择的波束配置在信道上执行无线传输。1015的操作可以根据本文描述的方法来执行。在某些示例中,1015的操作的各方面可以由如参照图5至7描述的传输管理器来执行。

图11示出了说明根据本公开内容的各方面的用于自适应介质感测门限的方法1100的流程图。方法1100的操作可以由如本文描述的ue115或基站105或其组件来实现。例如,方法1100的操作可以由如参照图5至7描述的通信管理器来执行。在一些示例中,ue115或基站105可以执行代码集,以控制该设备的功能单元执行下文描述的功能。另外或替代地,ue115或基站105可以使用专用硬件来执行下文描述的功能的各方面。

在1105处,ue115或基站105可以选择用于射频谱带的信道上的无线传输的波束配置。1105的操作可以根据本文描述的方法来执行。在某些示例中,1105的操作的各方面可以由如参照图5至7描述的波束配置管理器来执行。

在1110处,ue115或基站105可以确定无线传输包括干扰发现信号。1110的操作可以根据本文描述的方法来执行。在某些示例中,1110的操作的各方面可以由如参照图5至7描述的干扰发现管理器来执行。

在1115处,ue115或基站105可以至少部分地基于干扰发现信号来选择lbt检测门限。1115的操作可以根据本文描述的方法来执行。在某些示例中,1115的操作的各方面可以由如参照图5至7描述的干扰发现管理器来执行。

在1120处,ue115或基站105可以使用lbt检测门限来在信道上执行lbt过程,其中,lbt检测门限是至少部分地基于所选择的波束配置的。1120的操作可以根据本文描述的方法来执行。在某些示例中,1120的操作的各方面可以由如参照图5至7描述的lbt管理器来执行。

在1125处,ue115或基站105可以至少部分地基于lbt过程的成功,来使用所选择的波束配置在信道上执行无线传输。1125的操作可以根据本文描述的方法来执行。在某些示例中,1125的操作的各方面可以由如参照图5至7描述的传输管理器来执行。

图12示出了说明根据本公开内容的各方面的用于自适应介质感测门限的方法1200的流程图。方法1200的操作可以由如本文描述的ue115或基站105或其组件来实现。例如,方法1200的操作可以由如参照图5至7描述的通信管理器来执行。在一些示例中,ue115或基站105可以执行代码集,以控制该设备的功能单元执行下文描述的功能。另外或替代地,ue115或基站105可以使用专用硬件来执行下文描述的功能的各方面。

在1205处,ue115或基站105可以选择用于射频谱带的信道上的无线传输的波束配置。1205的操作可以根据本文描述的方法来执行。在某些示例中,1205的操作的各方面可以由如参照图5至7描述的波束配置管理器来执行。

在1210处,ue115或基站105可以识别与信道上的无线传输相关联的qos度量。1210的操作可以根据本文描述的方法来执行。在某些示例中,1210的操作的各方面可以由如参照图5至7描述的qos度量管理器来执行。

在1215处,ue115或基站105可以至少部分地基于qos度量来选择lbt检测门限。1215的操作可以根据本文描述的方法来执行。在某些示例中,1215的操作的各方面可以由如参照图5至7描述的qos度量管理器来执行。

在1220处,ue115或基站105可以使用lbt检测门限来在信道上执行lbt过程,其中,lbt检测门限是至少部分地基于所选择的波束配置的。1220的操作可以根据本文描述的方法来执行。在某些示例中,1220的操作的各方面可以由如参照图5至7描述的lbt管理器来执行。

在1225处,ue115或基站105可以至少部分地基于lbt过程的成功,来使用所选择的波束配置在信道上执行无线传输。1225的操作可以根据本文描述的方法来执行。在某些示例中,1225的操作的各方面可以由如参照图5至7描述的传输管理器来执行。

应当注意,上文描述的方法描述了可能的实现方式,并且操作和步骤可以被重新排列或者以其它方式修改,并且其它实现方式是可能的。此外,来自两种或更多种方法的各方面可以被组合。

本文描述的技术可以用于各种无线通信系统,诸如码分多址(cdma)、时分多址(tdma)、频分多址(fdma)、正交频分多址(ofdma)、单载波频分多址(sc-fdma)和其它系统。cdma系统可以实现诸如cdma2000、通用陆地无线接入(utra)等的无线电技术。cdma2000涵盖is-2000、is-95和is-856标准。is-2000版本通常可以被称为cdma20001x、1x等。is-856(tia-856)通常被称为cdma20001xev-do、高速分组数据(hrpd)等。utra包括宽带cdma(w-cdma)和cdma的其它变型。tdma系统可以实现诸如全球移动通信系统(gsm)之类的无线电技术。

ofdma系统可以实现诸如超移动宽带(umb)、演进型utra(e-utra)、电气与电子工程师协会(ieee)802.11(wi-fi)、ieee802.16(wimax)、ieee802.20、闪速-ofdm等的无线电技术。utra和e-utra是通用移动电信系统(umts)的一部分。lte和lte-a是umts的使用e-utra的版本。在来自名称为“第3代合作伙伴计划”(3gpp)的组织的文档中描述了utra、e-utra、umts、lte、lte-a、nr和gsm。在来自名称为“第3代合作伙伴计划2”(3gpp2)的组织的文档中描述了cdma2000和umb。本文中描述的技术可以用于上文提及的系统和无线电技术以及其它系统和无线电技术。虽然可能出于举例的目的,描述了lte或nr系统的各方面,并且可能在大部分的描述中使用了lte或nr术语,但是本文中描述的技术可以适用于lte或nr应用之外的范围。

宏小区通常覆盖相对大的地理区域(例如,半径为若干千米),并且可以允许由具有与网络提供商的服务订制的ue115进行不受限制的接入。相比于宏小区,小型小区可以与较低功率的基站105相关联,并且小型小区可以在与宏小区相同或不同(例如,经许可、免许可等)的频带中操作。根据各个示例,小型小区可以包括微微小区、毫微微小区和微小区。例如,微微小区可以覆盖小的地理区域,并且可以允许由具有与网络提供商的服务订制的ue115进行不受限制的接入。毫微微小区也可以覆盖小的地理区域(例如,住宅),并且可以提供由与该毫微微小区具有关联的ue115(例如,封闭用户组(csg)中的ue115、针对住宅中的用户的ue115等)进行的受限制的接入。针对宏小区的enb可以被称为宏enb。针对小型小区的enb可以被称为小型小区enb、微微enb、毫微微enb或家庭enb。enb可以支持一个或多个(例如,两个、三个、四个等)小区,以及还可以支持使用一个或多个分量载波的通信。

本文中描述的无线通信系统100或多个系统可以支持同步或异步操作。对于同步操作,基站105可以具有相似的帧定时,并且来自不同基站105的传输可以在时间上近似对齐。对于异步操作,基站105可以具有不同的帧定时,并且来自不同基站105的传输可以不在时间上对齐。本文中描述的技术可以用于同步或异步操作。

本文中描述的信息和信号可以使用各种不同的技术和方法中的任何一种来表示。例如,可能贯穿上文描述所提及的数据、指令、命令、信息、信号、比特、符号和码片可以由电压、电流、电磁波、磁场或粒子、光场或粒子或者其任意组合来表示。

可以利用被设计为执行本文所述功能的通用处理器、数字信号处理器(dsp)、专用集成电路(asic)、现场可编程门阵列(fpga)或其它可编程逻辑器件(pld)、分立门或者晶体管逻辑、分立硬件组件或者其任意组合来实现或执行结合本文的公开内容描述的各种说明性的框和模块。通用处理器可以是微处理器,但是在替代方式中,处理器可以是任何常规的处理器、控制器、微控制器或者状态机。处理器还可以实现为计算设备的组合(例如,dsp和微处理器的组合、多个微处理器、一个或多个微处理器与dsp核的结合、或者任何其它这种配置)。

本文中所描述的功能可以用硬件、由处理器执行的软件、固件或其任意组合来实现。如果用由处理器执行的软件来实现,所述功能可以作为一个或多个指令或代码存储在计算机可读介质上或通过其进行发送。其它示例和实现方式在本公开内容和所附权利要求的范围之内。例如,由于软件的性质,上文描述的功能可以使用由处理器执行的软件、硬件、固件、硬接线或这些项中的任意项的组合来实现。实现功能的特征还可以在物理上位于各个位置处,包括被分布为使得功能中的各部分功能在不同的物理位置处实现。

计算机可读介质包括非暂时性计算机存储介质和通信介质二者,通信介质包括促进计算机程序从一个地方到另一个地方的传送的任何介质。非暂时性存储介质可以是能够由通用计算机或专用计算机访问的任何可用介质。通过举例而非限制的方式,非暂时性计算机可读介质可以包含随机存取存储器(ram)、只读存储器(rom)、电可擦除可编程只读存储器(eeprom)、闪速存储器、压缩光盘(cd)rom或其它光盘存储、磁盘存储或其它磁存储设备、或能够用于以指令或数据结构的形式携带或存储期望的程序代码单元以及能够由通用或专用计算机、或通用或专用处理器访问的任何其它非暂时性介质。此外,任何连接适当地被称为计算机可读介质。例如,如果软件是使用同轴电缆、光纤光缆、双绞线、数字用户线(dsl)或诸如红外线、无线电和微波之类的无线技术来从网站、服务器或其它远程源发送的,则同轴电缆、光纤光缆、双绞线、dsl或诸如红外线、无线电和微波之类的无线技术被包括在介质的定义内。如本文中所使用的,磁盘和光盘包括cd、激光光盘、光盘、数字多功能光盘(dvd)、软盘和蓝光光盘,其中,磁盘通常磁性地复制数据,而光盘则利用激光来光学地复制数据。上文的组合也被包括在计算机可读介质的范围内。

如本文所使用的(包括在权利要求中),如项目列表(例如,以诸如“中的至少一个”或“中的一个或多个”之类的短语结束的项目列表)中所使用的“或”指示包含性列表,使得例如a、b或c中的至少一个的列表意指a或b或c或ab或ac或bc或abc(即a和b和c)。此外,如本文所使用的,短语“基于”不应当被解释为对封闭的条件集合的引用。例如,在不脱离本公开内容的范围的情况下,被描述为“基于条件a”的示例性步骤可以基于条件a和条件b两者。换句话说,如本文所使用的,应当以与解释短语“至少部分地基于”相同的方式来解释短语“基于”。

在附图中,相似的组件或特征可以具有相同的附图标记。此外,相同类型的各种组件可以通过在附图标记后跟随有破折号和第二标记进行区分,所述第二标记用于在相似组件之间进行区分。如果在说明书中仅使用了第一附图标记,则描述适用于具有相同的第一附图标记的相似组件中的任何一个组件,而不考虑第二附图标记或其它后续附图标记。

本文结合附图阐述的描述对示例配置进行了描述,而不表示可以实现或在权利要求的范围内的所有示例。本文所使用的术语“示例性”意味着“用作示例、实例或说明”,而不是“优选的”或者“比其它示例有优势”。出于提供对所描述的技术的理解的目的,详细描述包括具体细节。但是,可以在没有这些具体细节的情况下实施这些技术。在一些实例中,公知的结构和设备以框图的形式示出,以便避免使所描述的示例的概念模糊。

为使本领域技术人员能够实现或者使用本公开内容,提供了本文中的描述。对于本领域技术人员来说,对本公开内容的各种修改将是显而易见的,并且在不脱离本公开内容的范围的情况下,本文中定义的总体原理可以应用于其它变型。因此,本公开内容不限于本文中描述的示例和设计,而是被赋予与本文中公开的原理和新颖特征相一致的最广范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1