无线耳机充电电路与无线耳机盒的制作方法

文档序号:19415149发布日期:2019-12-14 00:51阅读:135来源:国知局
无线耳机充电电路与无线耳机盒的制作方法

本发明涉及无线耳机领域,尤其涉及一种无线耳机充电电路与无线耳机盒。



背景技术:

无线耳机,可理解为配置有无线耳机电池,且可通过无线通信方式传输信号的无线耳机,其可例如tws耳机(truewirelessstereoearbud)。其中,为了实现无线耳机电池充电,也为了避免无线耳机的零落丢失,通常需为此类无线耳机配置无线耳机盒,该无线耳机盒既可为无线耳机充电,又可以在无线耳机空闲时收纳无线耳机。

现有的相关技术中,为了实现检测无线耳机盒对无线耳机的插入和拔出,通常采用霍尔传感器或红外传感器对检测无线耳机盒中相关位置是否装入无线耳机进行检测。例如,若采用霍尔传感器,可在左右无线耳机内各放一块小磁性材料,无线耳机盒内相关位置放置霍尔传感器,然后无线耳机插入或拔出时霍尔传感器可输出变动的信息;再例如,若采用红外传感器,可在无线耳机盒内相关位置放置红外传感器,然后无线耳机插入或拔出时红外传感器可输出变动的信息。

然而,霍尔传感器和无线耳机中的磁性块,以及红外传感器所需采用的红外发射器件与红外接收器件的成本均较高,占用空间也较大,同时,其只能检测无线耳机是否处于相关位置,无法检测到无线耳机的电气连接触点是否跟耳机盒对应的电气连接触点可靠的连接。



技术实现要素:

本发明提供一种无线耳机充电电路与无线耳机盒,以解决采用霍尔传感器与红外传感器成本高、占用空间大,且无法检测触点是否可靠连接的问题。

根据本发明的第一方面,提供了一种无线耳机充电电路,包括:电源端、用于连接任意之一无线耳机的耳机供电端、检流模块与逻辑处理模块;所述检流模块包括连接于所述电源端与所述耳机供电端之间的n个检流支路,以及检流反馈单元;其中,n为大于或等于1的整数;

所述检流反馈单元分别连接所述n个检流支路,用于:

检测所述n个检流支路中当前所导通的一路检流支路的当前电流信息,并将所述当前电流信息反馈至所述逻辑处理模块;

所述逻辑处理模块连接所述检流反馈单元,用于:

在所述n个检流支路中的第一检流支路导通时,若所述当前电流信息大于第一阈值,则确定所述耳机供电端的对应触点发生了无线耳机插入。

可选的,n为大于或等于2的整数;所述n个检流支路是互相并联的;

所述逻辑处理模块分别连接所述n个检流支路,还用于:若所述当前电流信息大于所述第一阈值,则控制所述n个检流支路中另一第二检流支路导通,且所述第一检流支路断开;所述第一检流支路为n个检流支路中阻抗最大的检流支路。

可选的,所述逻辑处理模块还用于:

在所述n个检流支路中非所述第一检流支路的其他任一检流支路导通时,若所述当前电流信息小于第二阈值,则控制所述第一检流支路导通,且所述n个检流支路中其他检流支路均断开;

在所述第一检流支路导通后,若所述当前电流信息保持小于所述第二阈值,则确定所述耳机供电端的对应触点发生了无线耳机取出。

可选的,n为大于或等于2的整数,不同检流支路的阻抗是不同的,且能够择一被导通,并使得:

所述耳机供电端通过正常充电电流为无线耳机充电时,阻抗最小的检流支路被控制导通;

所插入的无线耳机处于低功耗模式或待机模式时,则阻抗最大的检流支路被控制导通。

可选的,所述检流支路包括互相串联的检流电阻与开关,所述检流反馈单元并联于所述n个检流支路,所述逻辑处理模块连接所述开关,用于通过对所述开关的通断控制来控制对应检流支路的通断。

可选的,所述检流反馈单元包括电流感应子单元与数字反馈子单元;

所述电流感应子单元,用于感应于当前所导通的检流支路的电流,产生对应的当前电压信号;

所述数字反馈子单元,用于根据所述当前电压信号,向所述逻辑处理模块反馈相应的数字信号,以利用所述数字信号表征所述当前电流信息。

可选的,所述数字反馈子单元包括m个比较器;其中,m为大于或等于1的整数;

所述比较器,用于比较所述当前电压信号与预先配置的参考电压信号,得到对应的当前电平信号,并向所述逻辑处理模块反馈所述当前电平信号;其中,不同比较器对应配置不同的参考电压信号;

所述当前电流信息是通过所述m个比较器对应的m个当前电平信号表征的。

可选的,所述逻辑处理模块,还用于:根据所述当前电流信息,确定所述耳机供电端的对应触点是否发生短路,以及:根据所述当前电流信息的变化情况,确定所述耳机供电端的对应触点是否发生接触不良或接触阻抗异常;或者:

所述逻辑处理模块,还用于将所述当前电流信息发送至控制器,以使得所述控制器能够:根据所述当前电流信息,确定所述耳机供电端的对应触点是否发生短路,以及:根据所述当前电流信息的变化情况,确定所述耳机供电端的对应触点是否发生接触不良或接触阻抗异常。

可选的,所述逻辑处理模块还用于:在所述当前电流信息大于第三电流阈值时,执行预设的过流保护动作;或者:

所述逻辑处理模块,还用于将所述当前电流信息发送至控制器,以使得所述控制器能够:在所述当前电流信息大于第三电流阈值时,执行预设的过流保护动作。

根据本发明的第二方面,提供了一种无线耳机盒,包括第一方面及其可选方案涉及的无线耳机充电电路。

本发明提供的无线耳机充电电路与无线耳机盒中,由于无线耳机插入与未插入时电源端与耳机供电端之间的电流通常是不同的,故而,本发明以表征该电流的当前电流信息为依据,可以较为准确地判断是否发生了无线耳机的插入。进一步可选方案中还可进一步判断是否发生了无线耳机的取出。其中,由于电流的变化可反应出触点是否连接,本发明的判断结果可准确反应触点是否连接,相较于现有技术中采用霍尔传感器与红外传感器的方式,本发明的准确率更高,成本和所需使用的空间均较小。

附图说明

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。

图1是本发明一实施例中无线耳机充电电路的构造示意图一;

图2是本发明一实施例中无线耳机充电电路的构造示意图二;

图3是本发明一实施例中无线耳机充电电路的构造示意图三;

图4是本发明一实施例中无线耳机充电电路的构造示意图四;

图5是本发明一实施例中无线耳机充电电路的构造示意图五;

图6是本发明一实施例中耳机盒与无线耳机的构造示意图。

附图标记说明:

1-电源端;

2-逻辑处理模块;

3-检流模块;

31-检流支路;

311-开关;

312-检流电阻

32-检流反馈单元;

321-电流感应子单元;

322-数字反馈子单元;

3221-比较器;

4-耳机供电端;

5-右无线耳机;

6-左无线耳机;

7-无线耳机盒;

8-充电芯片。

具体实施方式

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。

下面以具体地实施例对本发明的技术方案进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。

图1是本发明一实施例中无线耳机充电电路的构造示意图一;图2是本发明一实施例中无线耳机充电电路的构造示意图二;图3是本发明一实施例中无线耳机充电电路的构造示意图三。

请参考图1、图2与图3,无线耳机充电电路,包括:电源端1、用于连接任意之一无线耳机的耳机供电端4、检流模块3与逻辑处理模块2。

所述检流模块3包括连接于所述电源端1与所述耳机供电端4之间的n个检流支路31,以及检流反馈单元32;其中,n为大于或等于1的整数。

其中的检流支路31,可理解为具有一定阻抗,进而能够流通被检测的电流的支路。对应的,检流反馈单元32可理解为能够采集所导通的检流支路31的电流的任意电路单元。

所述检流反馈单元32分别连接所述n个检流支路31,用于:检测所述n个检流支路31中当前所导通的一路检流支路的当前电流信息,并将所述当前电流信息反馈至所述逻辑处理模块2。

所述逻辑处理模块2连接所述检流反馈单元32,用于:在所述n个检流支路31中的第一检流支路导通时,若所述当前电流信息大于第一阈值,则确定所述耳机供电端4的对应触点发生了无线耳机插入,所述第一检流支路被配置为缺省导通的。

其中,当无线耳机未插入时,检流支路31可无电流或流通极小的电流;当无线耳机插入时,检流支路31可流通较大的电流,具体的,无线耳机插入,并且无线耳机充电的触点与无线耳机盒对应的触点接触后,所产生的较大电流可被检测到,从而确定所述耳机供电端4的对应触点发生了无线耳机插入。

故而,由于无线耳机插入与未插入时电源端与耳机供电端之间的电流通常是不同的,故而,以上实施方式以表征该电流的当前电流信息为依据,可以较为准确地判断是否发生了无线耳机的插入。以上实施方式的判断结果可准确反应触点是否连接,相较于现有技术中采用霍尔传感器与红外传感器的方式,以上实施方式的准确率更高,成本和所需使用的空间均较小。

其中一种实施方式中,在确定所述耳机供电端4的对应触点发生了无线耳机插入之后,逻辑处理模块2可将该判断结果反馈至耳机盒的控制器。

其中的逻辑处理模块2,可通过i2c模块与耳机盒的控制器通讯,进而,逻辑处理模块2具体可以为logicandi2c模块。其中的i2c,i2c,还可表征为iic或i2c,其可理解为国际通用的集成电路通信数字接口。i2c,具体可理解为两线式串行总线,其中,可通过对时钟脚和数据脚高低电平时序的控制,产生i2c总线协议所需要的信号传输。

以图1为例,n可以为1,再以图2和图3为例,n可以为大于或等于2的整数,若n大于或等于2,则:各检流支路31之间是互相并联的。此外,本实施例所涉及的电路可以为一个耳机充电,也可以为两个耳机充电,进而:耳机供电端4与检流模块3的数量可以为一个,也可以为两个,同时也不排除为多个的情形。

若应用于为两个耳机充电,在部分相关技术中,可将两个耳机供电端连接在一起,并检测电压信息来判断是否插入耳机,然而,针对于放入第二个耳机或任何一个耳机取出的事件,该方式难以有效追踪到,因而,在该方式中需要通过逻辑处理模块不断轮询来确定,进而,该方式无法及时快速检测到该类事件的发生,也会增加功耗与资源的占用,同时,该方式中,耳机没电时,则无法对耳机盒的轮询信号进行回应,这就导致检测所需花的时间更长。

相较而言,本实施例所涉及的实施方式可分别针对于不同耳机供电端配置检流模块,避免了轮询而带来的时间、功耗、资源的浪费,提高了检测效率。

其中一种实施方式中,n为大于或等于2的整数,所述n个检流支路31是互相并联的的情况下,所述逻辑处理模块2分别连接所述n个检流支路31,具体的,可连接用于控制检流支路通断的位置。

所述逻辑处理模块2,还用于:若所述当前电流信息大于所述第一阈值,则控制所述n个检流支路31中另一第二检流支路导通,且所述第一检流支路断开。

所述第一检流支路为n个检流支路中阻抗最大的检流支路,进而,第二检流支路,以及其他非第一检流支路的检流支路的阻抗均小于第一检流支路。

进而,由于第一检流支路的阻抗最大,其可便于对较小甚至极小的电流进行检测,其中,通过配置合适的阻抗,还可对未插入无线耳机时的极小电流进行检测。同时,在实际充电时,检流支路的阻抗则相对第一检流支路较小,从而能够便于以较小的阻抗与功耗实现对无线耳机的充电。可见,以上实施方式可以兼顾充电时与非充电时的不同阻抗需求。

具体实施过程中,不同检流支路的阻抗是不同的,且能够择一被导通,并使得:所述耳机供电端通过正常充电电流为无线耳机充电时,阻抗最小的检流支路被控制导通;所插入的无线耳机处于低功耗模式或待机模式时,则阻抗最大的检流支路(例如第一检流支路)被控制导通。

通过以上实施方式,通过采用几个在电源通道上可以被控制关断或导通的检流电阻进行并联组合的方式来检测耳机盒到耳机的电流情况,进而,既可以兼顾耳机盒以正常大电流对耳机充电时需要电源通道阻抗足够小的需求(例如可导通阻抗最小的检流支路),也可以兼顾耳机被充满电后处于待机或低功耗模式下耳机盒输出到耳机的超小电流的检测(例如可导通阻抗最大的检流支路),同时,在导通导通阻抗最大的检流支路时,耳机拔掉之后,小电流小到几乎无电流的这个电流变化也能被准确判断。

其中一种实施方式中,所述逻辑处理模块2还用于:

在所述n个检流支路31中非所述第一检流支路的其他任一检流支路导通时,若所述当前电流信息小于第二阈值,则控制所述第一检流支路导通,且所述n个检流支路中其他检流支路均断开;

在所述第一检流支路导通后,若所述当前电流信息保持小于所述第二阈值,则确定所述耳机供电端的对应触点发生了无线耳机取出。

其中的第二阈值,可理解为:若小于第二阈值,则表示电流接近于0。进而,以上实施方式可保障:在检流支路阻抗最大时,以及阻抗较小时电流均接近于0,避免了因阻抗过小而对判断结果的影响。

其中一种实施方式中,确定所述耳机供电端的对应触点发生了无线耳机取出之后,逻辑处理模块2也可将该判断结果反馈至耳机盒的控制器。

以上实施方式中,可进一步判断是否发生了无线耳机的取出。其中,由于电流的变化可反应出触点是否连接,以上实施方式的判断结果可准确反应触点是否连接,相较于现有技术中采用霍尔传感器与红外传感器的方式,以上实施方式的准确率更高,成本和所需使用的空间均较小。

图4是本发明一实施例中无线耳机充电电路的构造示意图四。

请参考图4,所述检流反馈单元32包括电流感应子单元321与数字反馈子单元322。

所述电流感应子单元321,用于感应于当前所导通的检流支路的电流,产生对应的当前电压信号。

可见,电流感应子单元321,可理解为能够感应于电流而产生与电流大小相关联的电压信号的器件,其中还可对所产生的电压信号进行放大,以便于其可进一步被识别与使用。

具体实施过程中,电流感应子单元可以采用电流检测放大器csa,其中的csa具体可以为current-senseamplifier。其他实施过程中,电流感应子单元也可采用运算放大器结合差分输入电阻来实现。

所述数字反馈子单元322,用于根据所述当前电压信号,向所述逻辑处理模块反馈相应的数字信号,以利用所述数字信号表征所述当前电流信息。可见,数字反馈子单元322所接收到的信号为模拟信号,所反馈的信号为数字信号,同时,模拟信号与数字信号相关联,进而,数字反馈子单元322为任意可根据所接收到的模拟信号发出相应数字信号的电路子单元。

一种具体实施过程中,数字反馈子单元322可以采用模数转换器,即a/d转换器,或简称adc,具体可理解为是一个将模拟信号转变为数字信号的电子元件。

图5是本发明一实施例中无线耳机充电电路的构造示意图五。

另一种具体实施过程中,请参考图5,所述数字反馈子单元322包括m个比较器3221;其中,m为大于或等于1的整数。

所述比较器3221,用于比较所述当前电压信号与预先配置的参考电压信号,得到对应的当前电平信号,并向所述逻辑处理模块2反馈所述当前电平信号;其中,不同比较器对应配置不同的参考电压信号。

其中的比较器3221,具体可以为comparator,其也可缩写为cmp,其可理解为用于将输入的当前电压信号与参考电压信号进行比较,进而,根据比较结果输出电平信号的器件。通过每个比较器的比较结果,可获悉当前电流信息与相应一个电流值的比较结果,进而,可对应确定当前电流信息的数值或其所处数值范围。

可见,所述当前电流信息是通过所述m个比较器对应的m个当前电平信号表征的。

一种举例中,比较器可利用其反相输入端连接电流感应子单元321,相应的,参考电压信号可接其同相输入端,另一举例中,比较器也可利用其通相输入端连接电流感应子单元321,相应的,参考电压信号可接其反相输入端。对应的,逻辑处理模块2等的系统逻辑可做相应的配置。

具体实施过程中,请参考图5,所述检流支路31包括互相串联的检流电阻312与开关311,所述检流反馈单元并联于所述n个检流支路,所述逻辑处理模块2连接所述开关311,用于通过对所述开关311的通断控制来控制对应检流支路31的通断。

其中的检流电阻312,可以为单个电阻,也可以是多个电阻串/并联而形成的电路组合。

其中的开关311,可以是双向关断的电源开关,也可以是用从耳机盒到耳机的电流方向支持单向关断的电源开关。

其中一种实施方式中,所述逻辑处理模块2还可用于:根据所述当前电流信息,确定所述耳机供电端4的对应触点是否发生短路。

另一实施方式中,所述逻辑处理模块2还可用于将所述当前电流信息发送至控制器,以使得所述控制器能够:根据所述当前电流信息,确定所述耳机供电端4的对应触点是否发生短路。

同时,逻辑处理模块2与控制器之间的还可通过交互发送各检流支路的通断情况。

不论确定以上短路的主体为控制器还是逻辑处理模块2,只要实现了以上处理,均不脱离本实施例的描述。

具体的,可通过比较当前电流信息与预先确定的触点短路时的短路电流信息进行比较,进而通过比较结果判断是否发生短路。

可见,以上实施方式可以利用电源通道上的电流检测来事先判断耳机盒触点的腐蚀及其他情况导致的短路情况。

其中一种实施方式中,所述逻辑处理模块2还用于:根据所述当前电流信息的变化情况,确定所述耳机供电端4的对应触点是否发生接触不良或接触阻抗异常。

另一种实施方式中,所述逻辑处理模块2还用于将所述当前电流信息发送至控制器,以使得所述控制器能够:根据所述当前电流信息的变化情况,确定所述耳机供电端的对应触点是否发生接触不良或接触阻抗异常。

不论确定以上阻抗异常与接触不良的主体为控制器还是逻辑处理模块2,只要实现了以上处理,均不脱离本实施例的描述。同时,逻辑处理模块2发送至控制器的信息还可例如包括逻辑处理模块当前的处理状态,该处理状态可例如包括对各检流支路的通断控制状态。

针对于其中的接触不良,可基于逻辑处理模块2的状态机,根据检流反馈单元32(例如各比较器)所反馈的数字信号的变化规律来判断。例如:可预先确定接触阻抗正常时数字信号的变化规律,若实际检测到的变化情况与该变化规律不符合,则确定发生了接触不良。

针对于其中的接触阻抗异常,可预先确定接触阻抗的正常数值或其正常变化规律,若根据所检测到的电流所确定的接触阻抗的实际数值和/或实际变化情况与预先确定的正常数值和/或正常变化规律不符合,则确定发生了接触阻抗异常。

可见,以上实施方式可利用电源通道上的电流异常变化情况的检测来判断耳机触点和耳机盒触点的接触不良或因为腐蚀或其他情况导致的接触阻抗异常等情况。

具体实施过程中,逻辑处理模块可通过i2c和控制器进行交互,结合检流模块反馈的信号(例如比较器输出的逻辑电平)并进一步通过软件交互、轮询以及算法来判断触点是否短路或腐蚀导致接触阻抗不正常等等异常情况。

其中一种实施方式中,所述逻辑处理模块2还用于:若所述当前电流信息大于第三电流阈值,则执行预设的过流保护动作。

另一实施方式中,所述逻辑处理模块2,还用于将所述当前电流信息发送至控制器,以使得所述控制器能够:在所述当前电流信息大于第三电流阈值时,执行预设的过流保护动作。

其中的第三电流阈值,可理解为预先配置的电流阈值,其进一步为:若电流超出该阈值,则可理解为发生了过流。其可以是单一的一个值,也可以是针对于不同检流支路而配置的多个值。

可见,以上实施方式可以利用电源通道上的电流检测为耳机盒输出到耳机充电通道的智能过流保护提供依据。

其中的过流保护动作,可以为任意对耳机进行过流保护的动作,例如可以是关断所有检流支路。

图6是本发明一实施例中耳机盒与无线耳机的构造示意图。

请参考图6,其中可采用两个检流模块3与两个耳机供电端4,一个耳机供电端4对应连接左无线耳机6,另一个耳机供电端4对应连接右无线耳机6。

在左无线耳机6中,可利用rload1来表征输入阻抗,并利用vinl来表征其电源输入端;在右无线耳机5中,可利用rload2来表征输入阻抗,并利用vinr来表征其电源输入端。

在耳机盒7中,以上所涉及的无线耳机充电电路可设置于充电芯片8,在其他可选实施方式中,该电路也可未设于同一芯片。

在图6所示实施方式中,可利用voutl来表征一个耳机供电端,耳机供电端voutl对应的检流模块3中:

检流支路31的数量可以为三个,其中检流电阻r1与开关s1可形成第一个检流支路31,检流电阻r2与开关s2可形成第二个检流支路31,检流电阻r3与开关s3可形成第三个检流支路31;其中的电流感应子单元321可以采用电流检测放大器csa1;其中的比较器3221的数量可以为三个,分别为比较器cmp1、比较器cmp2与比较器cmp3,对应输入的参考电压信号分别为参考电压信号ref1、参考电压信号ref2与参考电压信号ref3。

在图6所示实施方式中,可利用voutr来表征另一个耳机供电端,耳机供电端voutr对应的检流模块3中:

检流支路31的数量可以为三个,其中检流电阻r4与开关s4可形成第一个检流支路31,检流电阻r5与开关s5可形成第二个检流支路31,检流电阻r6与开关s6可形成第三个检流支路31;其中的电流感应子单元321可以采用电流检测放大器csa2;其中的比较器3221的数量可以为三个,分别为比较器cmp4、比较器cmp5与比较器cmp6,对应输入的参考电压信号分别为参考电压信号ref1、参考电压信号ref2与参考电压信号ref3。

具体举例中,电源输入端vinl到耳机供电端voutl在无无线耳机插入耳机盒时可缺省开关s1导通,电源输入端vinr到耳机供电端voutr在无无线耳机插入耳机盒时可缺省开关s4导通。

当无线耳机插入时,考虑到左无线耳机6的输入阻抗rload1和右无线耳机7的输入阻抗rload2的存在(者在耳机设计时特意在其充电输入脚vinl和vinr配置1mω或其它电阻值的对地阻抗),当有耳机放入并且耳机的充电触点和充电盒对应的触点接触后,电源输入端vinl到耳机供电端voutl会有电流流过,并被电流检测放大器csa1检测到并且转换成电压再放大后输出到比较器cmp1、比较器cmp2、比较器cmp3系列,同时,电源输入端vinr到耳机供电端voutr会有电流流过,并被电流检测放大器csa2检测到并且转换成电压再放大后输出到比较器cmp4、比较器cmp5、比较器cmp6系列。

进而,逻辑处理模块2可根据比较器cmp1、比较器cmp2、比较器cmp3输出的逻辑电平来判断流过检流电阻r1的电流大小,如果电流足够大(例如大于第一阈值),就会导通开关s2,然后断开开关s1,或者导通s3,然后断开s1。其中,检流电阻r1可理解为前文所涉及的第一检流电阻,检流电阻r1的阻值可大于检流电阻r2的阻值,检流电阻r2的阻值可大于检流电阻r3的阻值。

逻辑处理模块2也可根据比较器cmp4、比较器cmp5、c比较器mp6的输出的逻辑电平来判断流过检流电阻r4的电流大小,如果电流足够大(例如大于第一阈值),就会导通开关s5,然后断开开关s4,或者导通开关s6,然后断开s5。其中,检流电阻r4可理解为前文所涉及的第一检流电阻,检流电阻r4的阻值可大于检流电阻r5的阻值,检流电阻r5的阻值可大于检流电阻r6的阻值。

具体举例中:检流电阻r1与开关s1所形成的阻抗与检流电阻r4与开关s4所形成的阻抗可以为500欧姆;检流电阻r2与开关s2所形成的阻抗与检流电阻r5与开关s5所形成的阻抗可以为10欧姆;检流电阻r3与开关s3所形成的阻抗与检流电阻r6与开关s6所形成的阻抗可以为0.2欧姆;参考电压信号ref1的电压可以为50毫伏,参考电压信号ref2的电压可以为350毫伏,参考电压信号ref3的电压可以是2.5伏。

当任何一个无线耳机从充电盒拿出时,例如,左无线耳机6被拿出,对应的电源输入端vinl到耳机供电端voutl通道上的电流就会变到0(大大小于1ua),此时逻辑处理模块会根据比较器cmp1、比较器cmp2、比较器cmp3输出的逻辑电平情况,快速切换到缺省开关s1导通的状态,从而提高检流电阻的阻值,以便电流检测放大器csa1能够确保检测到此通道此时的电流的确小于1ua,从而判断左无线耳机6被取出。在判断左无线耳机6取出后可以给出耳机被拿出的判断通知系统(例如通知控制器)基于同样的原理,也可判断右无线耳机5被取出,并通知系统(例如通知控制器)。

逻辑处理模块2的状态机还可以根据每组比较器输出逻辑电平的变化规律来判断耳机放入时是否触点接触不良,逻辑处理模块2也可以通过i2c和充电盒系统的控制器单元进行交互,结合比较器组输出的逻辑电平并进一步通过软件交互、轮询以及算法来判断触点是否短路或腐蚀导致接触阻抗不正常等等异常情况。

具体实施过程中,逻辑处理模块2输出的开关s1、开关s2、开关s3、开关s4、开关s5、开关s6各自的内部信号脚是用于控制对应的开关的导通和关断的。

其中可利用vdd脚用于为本实施例所涉及的电路供电,例如为逻辑处理模块2供电,具体可用vin脚经内部降压给vdd脚,以实现供电。其中的vin脚也可理解为连接至以上所述涉及的电源端的管脚。

同时,其中的en脚、sdal脚、scl脚和intb脚可用于耳机盒7的控制器对逻辑处理模块2进行启用或禁止以及i2c命令操作,其中的gnd即为系统地。

在其他可选实施方式中,也可不配置en脚,而只是用i2c输入兼做使能和禁能作用。

在其他可选实施方式中,en脚、sda脚、scl脚、intb脚也可被两个gpio替代,两个gpio即可输出高低电平给充电盒的控制器以便汇报对应两个耳机的插拔状况,进而可将充电芯片8的管脚减少至6个,以进一步降低成本。

本实施例还提供了一种无线耳机盒,包括以上可选方案涉及的无线耳机充电电路。

其中一种实施方式中,还可包括以上所涉及的控制器,控制器可与逻辑处理模块通讯连接。

综上,本实施例提供的无线耳机充电电路与无线耳机盒中,由于无线耳机插入与未插入时电源端与耳机供电端之间的电流通常是不同的,故而,本实施例以表征该电流的当前电流信息为依据,可以较为准确地判断是否发生了无线耳机的插入。进一步可选方案中还可进一步判断是否发生了无线耳机的取出。其中,由于电流的变化可反应出触点是否连接,本实施例的判断结果可准确反应触点是否连接,相较于现有技术中采用霍尔传感器与红外传感器的方式,本实施例的准确率更高,成本和所需使用的空间均较小。

最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1