压电阻尼材料的制备方法及其应用与流程

文档序号:16596515发布日期:2019-01-14 19:43阅读:379来源:国知局
压电阻尼材料的制备方法及其应用与流程

本发明属于结构功能材料的制备领域,特别涉及一种压电阻尼材料的制备方法及其应用。



背景技术:

随着高速化、轻质化航空航天飞行器的发展,结构振动和噪声环境对精密电子仪器和设备的影响越来越明显,亟需对结构进行减振降噪以改善其力学环境。实践证明:向结构中添加阻尼材料是抑制振动和噪声最有效的技术手段之一。阻尼材料是一种能吸收振动机械能,并将它转化为热能、电能、磁能或其他形式的能量而损耗掉的一种功能材料。

但传统的阻尼材料主要是模量很低的粘弹性橡胶材料,加入结构后容易造成结构刚度下降,粘弹性材料自身也容易老化失效。新兴的压电阻尼材料通过压电陶瓷将部分机械能转化为电能,电能再通过导电网络转化为热能来实现减振。压电材料一般具有较高的模量,通过将压电材料与复合材料共固化有可能实现结构阻尼一体化,从而避免结构的刚度出现明显下降。钛酸铅(pzt),钛酸钡(batio3),锆钛镧酸铅(plzt)都具有比较高的压电常数,属于常用的无机压电材料,聚片二氟乙烯pvdf属于有机压电材料。常见的导电填料可分为金属类填料和非金属类填料。金属类填料主要由银、铜、镍和铝的粉末、箔片、丝和纤维等。非金属填料常用的有碳黑、石墨、石墨烯和碳纤维及金属氧化物等。

已知的阻尼结构材料是将石墨烯和pzt纤维直接加入环氧树脂中,制成压电结构阻尼材料,但石墨烯与pzt混合过程中为一个无序的混合,形成的压电结构阻尼材料中无法形成连续的导电通路,压电陶瓷产生的电能无法及时的转换为热能。



技术实现要素:

针对现有技术的不足,本发明对压电阻尼材料的结构形式以及生产方法进行了改进,克服了现有技术中压电阻尼材料中导电线路不完整,电能转换为热能的效率低,阻尼效果差的问题。

本发明的技术方案如下:

压电阻尼材料的制备方法,其特征在于:包括以下生产步骤:

步骤1:将pzt纤维加入pvdf溶液内搅拌混合均匀,并制成压电陶瓷薄片,然后对压电陶瓷薄片进行极化处理;

步骤2:将石墨烯或者vgcf加入到改性环氧树脂中,然后加入胺类固化剂室温凝胶后压制得到粘弹性导电薄片;

步骤3:将步骤1得到的压电陶瓷薄片和步骤2得到的粘弹性导电薄片按照相同的宽度交替铺放得到压电阻尼材料。

进一步的,所述步骤1中的压电陶瓷薄片的厚度在0.1~0.5mm。

进一步的,所述的步骤1中的pzt纤维和pvdf的质量比为20~40%。

进一步的,所述的步骤2中的粘弹性导电薄片的厚度在0.1~0.5mm。

进一步的,所述的步骤2中的石墨烯或者vgcf与改性环氧树脂的质量比为1~5%。

进一步的,所述的步骤2中的胺类固化剂与环氧树脂的质量比为5~15%。

进一步的,所述的改性环氧树脂为液态缩水甘油醚型环氧树脂,所述液态缩水甘油醚型环氧树脂为双酚a二缩水甘油醚、双酚f二缩水甘油醚和双酚s二缩水甘油醚其中的一种,所述改性环氧树脂的固化条件为:75~90℃,1.5~2.5小时,升温至115~125℃,1.5~2.5小时。

进一步的,所述的压电陶瓷薄片的表面均布设有通孔,所述的通孔的孔径为2~10mm,且通孔的总面积小于压电陶瓷薄片表面积的10%。

一种共固化压电阻尼结构材料,其特征在于:将权利要求1得到的压电阻尼材料放置在碳纤维复合材料预浸料层间并固化得到共固化压电阻尼结构材料。

进一步的,所述的压电阻尼材料与碳纤维复合材料预浸层的层数比为1:8~3:8。

本发明的有益效果:本发明对压电阻尼材料的结构进行了改进,压电陶瓷薄片和粘弹性导电薄片按照相同的宽度交替铺放得到压电阻尼材料,使得压电阻尼材料具有完成的阻尼层和导电层,导电层能较好的连接阻尼层的正负极,及时的将阻尼层中产生的电能转变为热能消耗掉,提高了阻尼效果,进一步的,将压电阻尼材料与碳纤维材料复合后得到的共固化压电阻尼结构材料保证了压电阻尼结构材料本身的刚度和强度,提高了阻尼材料与碳纤维层之间的连接强度,防止了结构剥离现象的发生,同时,本发明得到的共固化压电阻尼结构材料的阻尼性能,相比与不加阻尼层的阻尼性能一阶损耗因子提高了60-120%,二阶损耗因子提高了120-135%,且对材料的固有频率影响不大。

附图说明

图1为压电阻尼材料的结构示意图;

图2为共固化压电阻尼结构材料的结构示意图;

图3为共固化压电阻尼结构材料的共振侧视图。

具体实施方式

下面结合附图对本发明做进一步的说明。

压电阻尼材料,其包括由pzt纤维加入pvdf溶液中制得的压电陶瓷薄片,其具有较好的压电性能,能够将材料的形变转换为电能,以及有石墨烯或者vgcf加入改性环氧树脂中制得的粘弹性导电薄片,导电薄片具有较好的导电性能,能够及时将压电陶瓷薄片产生的电能快速的转换为热能消耗掉,实现减震的效果。

实施方式一

压电阻尼材料的制备方法,其特征在于:包括以下生产步骤:

步骤1:取20份的pzt纤维以及100份的pvdf,将100份的pvdf溶解在dmf溶液中,然后将pzt纤维加入pvdf的dmf溶液中,并通过搅拌器搅拌,混合均匀形成悬浊液,然后利用刮膜法制备压电陶瓷薄片,所述刮膜法是将前述的悬浊液平铺在一个平面上,形成片状的压电陶瓷薄片,然后通过烘箱对压电陶瓷薄片进行烘干,所述的烘箱温度为80℃,烘干时间为1小时,本实施例中的压电陶瓷薄片的厚度为0.1mm,然后对压电陶瓷薄片进行极化处理;极化处理采用油浴极化处理,极化温度为80℃,极化电压为10kv/mm,极化的时间为20min。

步骤2:将石墨烯或者vgcf加入到改性环氧树脂中,然后加入胺类固化剂室温凝胶后压制得到粘弹性导电薄片,此实施例中,取1份石墨烯作为填料加入到100份的改性环氧树脂中,然后加入10份固化剂后室温凝胶后制成粘弹性导电薄片,所述的粘弹性导电薄片的厚度为0.1mm,所述的固化剂为三乙烯四胺。

步骤3:将步骤1得到的压电陶瓷薄片和步骤2得到的粘弹性导电薄片按照相同的宽度交替铺放得到压电阻尼材料,铺放的方式如图1所示,交替铺放的方式,不会出现两层压电陶瓷薄片叠加,使得在相邻的压电陶瓷薄片之间必然存在一个粘弹性导电薄片,使得压电陶瓷薄片产生的电能能够及时的转换为热能得到释放。

实施方式二

压电阻尼材料的制备方法,其特征在于:包括以下生产步骤:

步骤1:取40份的pzt纤维以及100份的pvdf,将100份的pvdf溶解在dmf溶液中,然后将pzt纤维加入pvdf的dmf溶液中,并通过搅拌器搅拌,混合均匀形成悬浊液,然后利用刮膜法制备压电陶瓷薄片,所述刮膜法是将前述的悬浊液平铺在一个平面上,形成片状的压电陶瓷薄片,然后通过烘箱对压电陶瓷薄片进行烘干,所述的烘箱温度为80℃,烘干时间为1小时,本实施例中的压电陶瓷薄片的厚度为0.5mm,然后对压电陶瓷薄片进行极化处理;极化处理采用油浴极化处理,极化温度为100℃,极化电压为12kv/mm,极化的时间为30min。

步骤2:将石墨烯或者vgcf加入到改性环氧树脂中,然后加入胺类固化剂室温凝胶后压制得到粘弹性导电薄片,此实施例中,取2份vgcf作为填料加入到100份的改性环氧树脂中,然后加入10份固化剂后室温凝胶后制成粘弹性导电薄片,所述的粘弹性导电薄片的厚度为0.5mm,所述的固化剂为二乙烯二胺。

步骤3:将步骤1得到的压电陶瓷薄片和步骤2得到的粘弹性导电薄片按照相同的宽度交替铺放得到压电阻尼材料,铺放的方式如图1所示,交替铺放的方式,不会出现两层压电陶瓷薄片叠加,使得在相邻的压电陶瓷薄片之间必然存在一个粘弹性导电薄片,使得压电陶瓷薄片产生的电能能够及时的转换为热能得到释放。

实施方式三

压电阻尼材料的制备方法,其特征在于:包括以下生产步骤:

步骤1:取30份的pzt纤维以及100份的pvdf,将100份的pvdf溶解在dmf溶液中,然后将pzt纤维加入pvdf的dmf溶液中,并通过搅拌器搅拌,混合均匀形成悬浊液,然后利用刮膜法制备压电陶瓷薄片,所述刮膜法是将前述的悬浊液平铺在一个平面上,形成片状的压电陶瓷薄片,然后通过烘箱对压电陶瓷薄片进行烘干,所述的烘箱温度为80℃,烘干时间为1小时,本实施例中的压电陶瓷薄片的厚度为0.25mm,然后对压电陶瓷薄片进行极化处理;极化处理采用油浴极化处理,极化温度为100℃,极化电压为10kv/mm,极化的时间为25min。

步骤2:将石墨烯或者vgcf加入到改性环氧树脂中,然后加入胺类固化剂室温凝胶后压制得到粘弹性导电薄片,此实施例中,取5份vgcf作为填料加入到100份的改性环氧树脂中,然后加入15份固化剂后室温凝胶后制成粘弹性导电薄片,所述的粘弹性导电薄片的厚度为0.25mm,所述的固化剂为多乙烯多胺。

步骤3:将步骤1得到的压电陶瓷薄片和步骤2得到的粘弹性导电薄片按照相同的宽度交替铺放得到压电阻尼材料,铺放的方式如图1所示,交替铺放的方式,不会出现两层压电陶瓷薄片叠加,使得在相邻的压电陶瓷薄片之间必然存在一个粘弹性导电薄片,使得压电陶瓷薄片产生的电能能够及时的转换为热能得到释放。

实施方式四

压电阻尼材料的制备方法,其特征在于:包括以下生产步骤:

步骤1:取35份的pzt纤维以及100份的pvdf,将100份的pvdf溶解在dmf溶液中,然后将pzt纤维加入pvdf的dmf溶液中,并通过搅拌器搅拌,混合均匀形成悬浊液,然后利用刮膜法制备压电陶瓷薄片,所述刮膜法是将前述的悬浊液平铺在一个平面上,形成片状的压电陶瓷薄片,然后通过烘箱对压电陶瓷薄片进行烘干,所述的烘箱温度为80℃,烘干时间为1小时,本实施例中的压电陶瓷薄片的厚度为0.3mm,然后对压电陶瓷薄片进行极化处理;极化处理采用油浴极化处理,极化温度为100℃,极化电压为10kv/mm,极化的时间为20min。

步骤2:将石墨烯或者vgcf加入到改性环氧树脂中,然后加入胺类固化剂室温凝胶后压制得到粘弹性导电薄片,此实施例中,取5份石墨烯作为填料加入到100份的改性环氧树脂中,然后加入12份固化剂后室温凝胶后制成粘弹性导电薄片,所述的粘弹性导电薄片的厚度为0.2mm,所述的固化剂为多乙烯多胺。

步骤3:将步骤1得到的压电陶瓷薄片和步骤2得到的粘弹性导电薄片按照相同的宽度交替铺放得到压电阻尼材料,铺放的方式如图1所示,交替铺放的方式,不会出现两层压电陶瓷薄片叠加,使得在相邻的压电陶瓷薄片之间必然存在一个粘弹性导电薄片,使得压电陶瓷薄片产生的电能能够及时的转换为热能得到释放。

优选的在上述实施方式中的改性环氧树脂为液态缩水甘油醚型环氧树脂,所述液态缩水甘油醚型环氧树脂为双酚a二缩水甘油醚、双酚f二缩水甘油醚和双酚s二缩水甘油醚其中的一种,所述改性环氧树脂的固化条件为:75~90℃,1.5~2.5小时,升温至115~125℃,1.5~2.5小时,固化条件为升温到上述的第一温度区间范围内的某一温度,并在该温度下保温一定的时间,然后再升温至第二温度区间范围内的某一温度,并在该温度下保温一定的时间。

进一步的,所述的压电陶瓷薄片的表面均布设有通孔,所述的通孔的孔径为2~10mm,且通孔的总面积小于压电陶瓷薄片表面积的10%,实施方式一中的通孔的直径为5mm,通孔的面积占压电陶瓷薄片的表面积的5%,实施方式二中的通孔的直径为4mm,通孔的面积占压电陶瓷薄片的表面积的5%,实施方式三中的通孔的直径为2mm,通孔的面积占压电陶瓷薄片的表面积的10%,实施方式四中的通孔的直径为10mm,通孔的面积占压电陶瓷薄片的表面积的3%,设置的通孔使得改性环氧树脂在压电陶瓷片薄片和粘弹性导电薄片之间流动成为可能,在后面的共固化过程中,提高压电陶瓷薄片与粘弹性导电薄片之间的连接可靠性,也提升了压电阻尼材料与碳纤维复合材料预浸层之间的连接可靠性。

一种共固化压电阻尼结构材料,其特征在于:将权利要求1得到的压电阻尼材料放置在碳纤维复合材料预浸料层间并固化得到共固化压电阻尼结构材料。

进一步的,所述的压电阻尼材料与碳纤维复合材料预浸层的层数比为1:8~3:8。

在实施方式一的基础上,将实施方式一制得的压电阻尼材料与碳纤维复合材料预浸层进行铺放,所述的压电阻尼材料与碳纤维复合材料预浸层的层数比为1:8,压电阻尼材料位于碳纤维复合材料预浸层的中央,进行共固化,共固化的条件是:80℃保温2h,升温至120℃再保温2h,制备好的结构阻尼复合材料相比与不加阻尼层的结构材料的阻尼性能一阶损耗因子提高64%,二阶损耗因子提高134%,而固有频率变化不大,将此处得到的共固化压电阻尼结构材料与没有压电阻尼的结构料进行共振测试,测试的结果对比如图3所示。

在实施方式二的基础上,将实施方式二制得的压电阻尼材料与碳纤维复合材料预浸层进行铺放,所述的压电阻尼材料与碳纤维复合材料预浸层的层数比为3:8,压电阻尼材料位于碳纤维复合材料预浸层的中央,进行共固化,共固化的条件是:90℃,保温1.6h,升温至125℃再保温1h,制备好的结构阻尼复合材料相比与不加阻尼层的结构材料的阻尼性能一阶损耗因子提高120%,二阶损耗因子提高130%,而固有频率变化不大。

本发明的有益效果:本发明对压电阻尼材料的结构进行了改进,压电陶瓷薄片和粘弹性导电薄片按照相同的宽度交替铺放得到压电阻尼材料,使得压电阻尼材料具有完成的阻尼层和导电层,导电层能较好的连接阻尼层的正负极,及时的将阻尼层中产生的电能转变为热能消耗掉,提高了阻尼效果,进一步的,将压电阻尼材料与碳纤维材料复合后得到的共固化压电阻尼结构材料保证了压电阻尼结构材料本身的刚度和强度,提高了阻尼材料与碳纤维层之间的连接强度,防止了结构剥离现象的发生,同时,本发明得到的共固化压电阻尼结构材料的阻尼性能,相比与不加阻尼层的阻尼性能一阶损耗因子提高了60~120%,二阶损耗因子提高了120~135%,且对材料的固有频率影响不大。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1