一种超薄隔热膜的制作方法

文档序号:17559281发布日期:2019-04-30 18:53阅读:230来源:国知局
一种超薄隔热膜的制作方法

本发明涉及隔热材料技术领域,具体涉及一种柔性隔热膜,可应用于车窗贴膜、保温杯、保温饭盒及户外睡袋等生活用品领域。



背景技术:

由于化石燃料的快速枯竭和温室气体排放的激增,能源消耗和环境污染已成为全球关注的问题。目前人们通过探索可再生能源资源以及提高传统供应/技术的能源效率来缓解这些挑战。因此,近年来人们越来越重视对能源的管理和能源消耗最小化的研究。其中,通过隔热/保温材料减少热量的流失的技术,在提高能量效率方面起着重要作用。材料的隔热性能由其物理结构和化学组成共同决定。

气凝胶又叫干凝胶,当凝胶脱去大部分溶剂,使凝胶中液体含量比固体含量少得多,或凝胶的空间网状结构中充满的介质是气体,外表呈固体状,则形成了气凝胶。气凝胶是一种固体物质形态,世界上密度很小的固体之一。密度一般仅为3千克每立方米。气凝胶有很低的热传导率,因而经常被用制作隔热材料。硅气凝胶纤细的纳米网络结构有效地限制了局域热激发的传播,其固态热导率比相应的玻璃态材料低2~3个数量级。而纳米微空腔抑制了气体分子对热传导的贡献。硅气凝胶的折射率接近l,而且对红外和可见光的湮灭系数之比达100以上,能有效地透过太阳光,并阻止环境温度的红外热辐射,成为一种理想的透明隔热材料,在太阳能利用和建筑物节能方面已经得到应用。

关于气凝胶在隔热膜中的应用,已有的一些专利文献报道。但这些含有气凝胶的隔热膜较厚,通常柔软性不足、在许多应用方面受到限制。而另一些现有技术中在气凝胶层外部没有保护膜,导致隔热膜的耐候性较差。还有一些现有技术制取的气凝胶的孔隙率较低、导热率仍较高,使制成的隔热膜整体的导热系数无法进一步降低。



技术实现要素:

(一)要解决的技术问题

为了解决现有技术的上述问题,本发明提供一种超薄隔热膜,其整体厚度只有50μm以下,而隔热膜整体的热导率非常低,能贴附在复杂形状物体表面或对隔热膜有严格厚度限制的场合。由于所述隔热膜很薄,隔热膜可具有较好的透光度,因而可制成车窗贴膜等产品。

(二)技术方案

为了达到上述目的,本发明采用的主要技术方案包括:

一种超薄隔热膜,包括从下至上设置的:衬底层、胶粘剂层、隔热层和保护层;

所述衬底层为柔性聚合物薄膜,厚度为15~40μm;所述胶粘剂层为耐高温胶粘剂;

所述隔热层包含气凝胶层和金属氧化物层,所述气凝胶层通过所述胶粘剂层粘接在所述衬底层表面;所述金属氧化物层为高折射率金属氧化物,所述金属氧化物层覆盖在所述气凝胶层表面;其中所述隔热层的总厚度<3μm;

所述保护层覆盖在所述金属氧化物层表面,厚度为10-30nm。

作为本发明的一个较佳实施例,其中:所述衬底层为pet薄膜、etfe薄膜、pe薄膜、pi薄膜或pa薄膜。

作为本发明的一个较佳实施例,其中:所述胶粘剂层为酚醛树脂胶、脲醛树脂胶、耐温环氧胶、聚酰亚胺胶或聚氨酯胶粘剂,胶粘剂层的厚度为1~1.5μm;优选为聚氨酯胶粘剂。

作为本发明的一个较佳实施例,其中:所述气凝胶为二氧化硅气凝胶,其内部含有相互隔离的空腔和连续的孔道,所述孔道和空腔内充co2气体;所述空腔以孔壁相互隔离,所述孔壁厚度为10~15nm、空腔直径为85-350nm、所述二氧化硅气凝胶的厚度为0.8~2μm。优选地,空腔直径为100-200nm。

优选地,所述气凝胶层为孔隙率60~80%的二氧化硅气凝胶。

作为本发明的一个较佳实施例,其中:所述金属氧化物层的厚度为20~50nm;所述金属氧化物为氧化锆、氧化钛或氧化锡。这些高折射率的金属氧化物使入射光线发生折射、以延长光路、减少入射光传递给气凝胶的热量。

作为本发明的一个较佳实施例,其中:所述二氧化硅气凝胶的二氧化硅中掺杂了强红外遮光剂炭黑或二氧化钛。通过掺杂形成的二氧化硅复合气凝胶,能进一步降低硅气凝胶的辐射热传导,降低气凝胶热导率。

作为本发明的一个较佳实施例,其中:所述保护层为nicr合金薄膜。nicr具有抗腐蚀性,且可通过喷镀、沉积、磁控溅射或高温扩散等方法,得到非常薄的薄膜,控制整个隔热膜的厚度,提高隔热膜的耐候性。

二氧化硅气凝胶的结构特征是拥有高通透性的圆筒形多分枝纳米多孔三位网络结构,拥有极高孔隙率、极低的密度、高比表面积、超高孔体积率,其体密度在0.003-0.500g/cm-3范围内可调。

优选地,二氧化硅气凝胶可以如下方式制备:采用酸/碱两步催化的溶胶—凝胶工艺配制溶胶,也就是sol-gel法。第一步:将正硅酸乙酯(teos)、去离子水(h2o)、无水乙醇(eth)和盐酸(hcl)按1∶1.5∶25∶0.0007的摩尔比混合,采用水浴加热在60℃水解/缩聚反应90min并不断搅拌,将得到的溶液称为母液(stocksolution);第二步:将18ml乙醇和1ml0.05m氨水(nh4oh)的混合液缓慢加入到36ml母液中,并在室温下不断搅拌30min、在室温下老化1天,配制好的溶胶可用于制备sio2干凝胶薄膜。优选地以单晶si片作为衬底,采用旋涂法(spin-coating)制备sio2薄膜。制备时将此衬底固定在旋涂仪上,将配制好的溶胶滴加在衬底上旋转速率为2000rpm,时间为20s。薄膜经450℃退火60min,升温和降温速率均为8℃/min,使旋涂液均匀铺展成薄膜,即可获得sio2干凝胶薄膜。

在80个大气压的高压下将co2气体溶解在薄膜中,该过程进行时的温度为240℃。去除超临界条件(降低温度、压力)引发薄膜和气体之间的固-气相分离,导致凝胶基质中气泡的成核和生长,从而制得孔道和空腔内填充co2的二氧化硅气凝胶。其中降温速率为10℃/min,降压速率为0.4mpa/min。

其中金属氧化物层和保护层可采用卷绕式磁控溅射镀膜机进行制备,借此隔热膜能够高效率地生产,使大面积的隔热膜产业化成为可能。

使用磁控溅射法制备金属氧化物层和保护层的过程,以制备二氧化钛为例。即在真空条件下,用含钛靶材作为阴极,待镀膜物作为阳极,利用具有较高能量的ar+粒子,高速轰击靶材,产生大量的靶材原子,从而在待镀膜物表面上沉积形成二氧化钛薄膜。此外,还可在阴极靶表面引入磁场,通过约束带电粒子从而提高气体的离化率,从而提高其溅射效率。在二氧化钛薄膜的制备过程中,采用溅射功率为100w,工作压强为2.5pa,工作温度为200℃。氧分压为2%。

在制备nicr保护膜时,采用射频磁控溅射方法沉积镍铬合金薄膜。靶材组分为99.99%的高纯镍铬合金,合金元素体积比为ni∶cr=60∶40。溅射工艺中。ar流量为45ml/min,本底真空2×10-4pa,待镀膜物体表面温度为常温,溅射功率为90w。

(三)有益效果

本发明的有益效果是:

本发明其整体厚度只有50μm以下,而热导率非常低,能贴附在复杂形状物体表面或对隔热膜有严格厚度限制的场合,可制成窗贴膜、保温杯、保温饭盒及户外睡袋等产品。

本发明增设了保护层,且优选所述保护层为镍铬合金薄膜,有助于获得耐候性更好的隔热膜。

本发明所使用的二氧化硅气凝胶中含有准连续的孔道和相互隔离的空腔,空腔孔壁的厚度为10~15nm、空腔直径为85-350nm,孔隙率达60~80%;其高密度气体空隙(孔道和空腔)的存在破坏了气凝胶中热传导路径的连续性,从而有效地降低了热导率。孔道和空腔内填有co2(导热系数为0.015w/m·k),进一降低隔热膜的热导率,使隔热膜的导热率低至0.08wm-1k-1~0.12wm-1k-1

隔热层还含有高折射率的金属氧化物层,增加光线的折射,减少光线直接照射传递的热量,进一步起到隔热效果。

附图说明

图1为本发明的超薄隔热膜结构是示意图。

图2为本发明的超薄隔热膜中气凝胶内部结构示意图。

具体实施方式

为了更好的解释本发明,以便于理解,下面结合附图,通过具体实施方式,对本发明作详细描述。

实施例1

如图1所示,本发明提供一种超薄隔热膜100,由下至上依次包括衬底层11、胶粘剂层12、隔热层13和保护层14。

其中衬底层11为pet薄膜,厚度为40μm,可见光透光率≥89%,雾度≤1.5。

胶粘剂层12为聚氨酯热熔胶,厚度约1.5μm。

隔热层13包含气凝胶层131和金属氧化物层132。气凝胶层131通过胶粘剂层12粘接在衬底层11的表面,金属氧化物层132以镀膜方式覆盖在气凝胶层131的表面。隔热层13总的厚度为1.05μm。其中气凝胶层131的厚度1μm,金属氧化物层132的厚度为50nm。

结合图2所示,气凝胶层131为二氧化硅气凝胶,孔隙率为80%。二氧化硅气凝胶内部含有(准)连续的孔道21和相互隔离的空腔22,这些空腔22由孔壁23界定形成。其中空腔22是co2的气泡,直径为100~200nm,孔壁厚度为10-15nm。在连续(为准连续,相对空腔22是连续的,但不绝对)的孔道21和空腔22的气体为传热系数非常低的co2气体,同时co2气体具有较大的平均自由程,其填充在空腔22和孔道21中之后,由于孔道21和空腔22的尺寸与填充气体分子的平均自由程相当,使填充气体的导热率进一步被降低,而气凝胶层131的导热率也会被进一步降低。金属氧化物层132为高折射率的二氧化钛薄膜。金属氧化物层132可增加入射光的折射现象。

保护层14可为一些透明的有机聚合物薄膜,但在本实施例中优选为nicr合金薄膜,厚度为20nm。nicr合金薄膜具有很强的抗酸碱腐蚀性,可提高隔热膜100的耐候性。本实施例中气凝胶层131内部co2的气体压力为10毫巴,气凝胶层131的导热率约为0.006wm-1k-1

金属氧化物层132和保护层14采用卷绕式磁控溅射镀膜机制备,以磁控溅射方式沉积厚度为50nm的二氧化钛薄膜和20nm的镍铬合金薄膜。

本实施例的超薄隔热膜100的厚度<43μm,整体导热率为0.08wm-1k-1,可制成窗贴膜、保温杯、保温饭盒及户外睡袋等产品。

实施例2

在本实施例中衬底层11为etfe薄膜,厚度为40μm,可见光透光率≥89%,雾度≤1.5。胶粘剂层12为耐温环氧胶,厚度约1.2μm。

隔热层13总的厚度为2.05μm。其中气凝胶层131的厚度2μm,金属氧化物层132的厚度为40nm。气凝胶层131是孔隙率达到75%的掺杂型二氧化硅气凝胶。二氧化钛可在制备二氧化硅溶胶时用络合剂共沉淀法掺杂钛离子,然后经凝胶化、溶剂置换、超临界二氧化碳干燥法、高温处理得到掺杂二氧化钛的气凝胶。本实施例中二氧化钛掺杂量为0.02%。二氧化硅气凝胶内部的孔道21和相互隔离的空腔22中填充co2气体,空腔22的直径为200~300nm,孔壁厚度为10-15nm。金属氧化物层132为高折射率的氧化锡薄膜。保护层14为nicr合金薄膜,厚度为30nm。金属氧化物层132和保护层14采用卷绕式磁控溅射镀膜机沉积得到。

本实施例中气凝胶层131内部co2的气体压力为30毫巴,气凝胶层131的导热率约为0.010wm-1k-1

本实施例的超薄隔热膜100的厚度<44μm,整体导热率为0.12wm-1k-1,可制成窗贴膜、保温杯、保温饭盒及户外睡袋等产品。

以上所述,仅是本发明的较佳实施例而已,并非是对本发明做其它形式的限制,任何本领域技术人员可以利用上述公开的技术内容加以变更或改型为等同变化的等效实施例。但是凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与改型,仍属于本发明技术方案的保护范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1