一种高温气冷堆试验用超压保护装置及其使用方法与流程

文档序号:19999398发布日期:2020-02-22 03:02阅读:324来源:国知局
一种高温气冷堆试验用超压保护装置及其使用方法与流程

本发明涉及金属类压力容器高气压压力试验保护技术领域,特别涉及一种高温气冷堆试验用超压保护装置及其使用方法。



背景技术:

核电站一回路压力容器作为第二道安全屏障是防止放射性流出物向外界释放的重要设备,其体积庞大,加工工艺复杂,为了检验压力容器制造质量及安装质量,在压力容器出厂和电站冷试阶段需要对反应堆一回路压力容器进行强度试验。强度试验分为水压试验和气压试验,考虑到气压试验的高风险性,压水反应堆压力容器及一般压力容器均采用水压试验的方式来进行强度试验。

与压水堆核电站不同,高温气冷堆核电站是以氦气或二氧化碳等惰性气体作为冷却剂,石墨作为慢化剂,堆芯结构为石墨基体的一种堆型,在运行过程中一回路不允许有水汽的存在。根据asmebpvc-iii-i-nb分卷nb-6000部分只能采用气压试验替代水压试验的限制条件“当部件、附件或系统不易干燥,而使用时又不允许有微量试验介质残存”,高温气冷堆尤其是球床式高温气冷堆压力容器强度试验只能采用气压试验。

国内外高温气冷堆气压试验的情况各有不同,对超压保护的设置也随之不同。通过对比德国thtr反应堆及清华htr-10实验堆的气压试验技术,德国thtr采用了预应力混凝土的结构形式且气压试验压力为4.4mpa,气压试验过程中未采用超压保护装置。htr-10实验堆采用金属式压力容器,气压试验压力为3.85mpa,在气压试验过程中也未采取超压保护装置。而htr-pm示范工程采用金属式压力容器,气压试验为9mpa。因气体的压缩性比水实体要大得多,考虑到气压试验升压过程比水压试验缓慢得多,因此htr-pm在气压试验阶段未设计超压保护装置。

但是htr-pm与thtr和htr-10不同之处在于htr-pm采用压缩空气作为气压试验介质,按照最高试验压力计算,共需近50吨压缩空气,介质装量极高,试验风险大大提高,在国内外气压试验鲜有先例。气压试验过程中温度变化对压力变化影响较大,由于试验温度的变化存在超压的风险,为了保证压力容器在试验过程中不受损,在气压试验阶段htr-pm需考虑超压保护装置。



技术实现要素:

为了克服上述现有技术的不足,本发明的目的在于提供一种高温气冷堆试验用超压保护装置及其使用方法,保证大型金属类压力容器在气压试验过程中的安全,防止意外超压造成的设备损坏。

为了实现上述目的,本发明采用的技术方案是:

一种高温气冷堆试验用超压保护装置,包括在反应堆压力容器1顶部安装的带有专用接口的试验工装2,试验工装2分别与安全阀4和压力变送器5相连,所述的安全阀4与试验工装2连接处上游安装有电动隔离阀3,压力变送器5的测量信号传送至控制器6,所述的控制器6输出端分别连接压力源7,进气隔离阀8以及电动隔离阀3,压力源7通过进气隔离阀8连接反应堆压力容器1。

所述的试验工装2上设置有排气通孔和仪表接口,排气通孔和安全阀4相连,仪表接口连接压力变送器5。

所述的试验工装2通过法兰与压力容器1人孔或其他法兰接口处连接。

所述的试验工装2与隔离阀3和压力变送器5采用焊接形式连接。

所述的隔离阀3与安全阀4之间采用法兰连接。

所述的专用接口为安全阀4与反应堆压力容器1的容器法兰盲板对接工艺接口,通过短管焊接两端对接试验工装2,法兰盲板侧采用承插焊或堆焊等焊接方式安装安全阀排气连接管,安全阀4一段焊接安全阀端座法兰,通过端座法兰焊接的连接管与安全阀法兰实现密封连接。

控制器6为控制系统,形式一般为工控机或集中控制系统(dcs),主要功能为采集数据信号,通过编译好的内部控制逻辑下发控制指令,实现自动闭环反馈控制功能,也可手动输入控制指令以应对特殊情况。

一种高温气冷堆试验用超压保护装置的使用方法:

反应堆开展气压试验时,将试验工装2与压力容器1人孔或其他法兰接口处连接,即完成装置与压力容器的对接,在控制器6内设定隔离阀3联锁关闭定值以及开启条件,设定压力源7和进气隔离阀8联锁关闭定值,系统压力通过压力变送器5传送至控制器6,在控制器6内将系统实时压力与设定保护压力进行比对,当系统压力超过压缩机7和进气隔离阀8的保护定值时,由控制器6发出信号指令联锁切断压力源7的电源,联锁关闭进气隔离阀8,使系统与压力源隔离,若隔离压力源后系统压力仍然升高,达到安全阀4预设的保护定值后,安全阀4开启,排放掉部分系统介质,保护压力容器和系统不受超压损坏风险。

本发明的有益效果:

在超压保护阶段,本发明通过逻辑控制切断导致系统升压的主要路径,在安全阀起跳前排除外部因素导致的系统超压,降低安全阀起跳的意外事件,防止容器因安全阀起跳泄压导致内部压力波动。

在保压检漏阶段,通过控制安全阀前的电动隔离阀关闭,可有效降低因超压保护设置的安全阀内漏引起的外部泄漏的可能性。

这种超压保护装置结构简单,工程中易于操作,造价低,能够有效防止容器超压,又可以保证在气密性试验过程中不增加额外的漏点。是大型金属类压力容器尤其是高温气冷堆一回路压力容器气压试验超压保护的最佳解决方案。

通过将超压保护装置直接安装在反应堆压力容器上,能有效利用压力容器现有接口,并且能有效降低安全阀与系统连接产生的管道沿程压力损失,安全阀能更加快速、准确地实现超压保护功能。

本发明中安全阀直接安装在压力容器顶部,用于防止压力容器超压;气压试验,泄压速度较慢,将安全阀直接与压力容器上部的管嘴相连,有效降低管道沿程压力损失,以满足超压保护阶段保护容器和系统的要求。

考虑到安全阀密封对系统泄漏率的影响,本发明采取了分阶段隔断安全阀的方法,通过控制系统在气密性试验阶段隔离安全阀,防止在气密性试压过程中因安全阀泄漏造成系统总体泄漏率增加的情况。

附图说明

图1为本发明结构示意图。

具体实施方式

下面结合附图对本发明作进一步详细说明。

如图1所示:系统气压试验通过压力源7与进气隔离阀8等设备提供压缩气体注入压力容器1。

根据asmebpvc-iii-i-nb分卷nb-7000的要求“系统与安全阀4之间的连接产生的管道沿程压力损失不应大于释放压力的3%”,因此安全阀4直接安装于压力容器本体上。为了实现安装压力变送器5、安全阀4而又不改变原压力容器的设计结构,连接工装2以法兰的形式安装于压力容器1人孔或其他法兰接口处。

连接工装2上设置安全阀4连接通孔与压力变送器5连接通孔。

安全阀4前设置电动隔离阀3,连接工装2与隔离阀3和压力变送器5采用焊接形式连接。

隔离阀3与安全阀4之间采用法兰连接的形式安装,方便安全阀4的定期校验。

压力变送器5信号输送至控制器6,通过临时控制逻辑对隔离阀3、压力源7、进气隔离阀8进行自动控制。

在反应堆压力容器1上安装带有专用接口的试验工装2,工装2上设置有连接安全阀4用的排气通孔和连接压力变送器5的仪表接口,安全阀4上游安装电动隔离阀3,压力变送器5的测量信号传送至控制器6(电站可采用dcs,其他类可采用工控机与数据采集器的组合配置),控制器6增加临时控制逻辑用于控制压力源7,进气隔离阀8以及临时电动隔离阀3。

本发明在传统安全阀4的基础上增加了安全阀前的电动隔离阀3,通过逻辑控制电动隔离阀3在气密性试验阶段关闭,以防止安全阀的泄漏对系统总体泄漏率的影响,在强度试验阶段电动隔离阀3保持常开状态,联通安全阀4与设备1,实现超压保护功能。在超压初期通过控制器6所编译的逻辑控制自动切断进气隔离阀8,联锁停运压力源7,阻断在超压初期至安全阀4起跳的压力范围内外源引入造成的超压,用以防止安全阀4起跳后释放部分试验介质对系统压力产生的不良影响。若系统隔离后压力仍然升高,则通过安全阀4释放试验介质来保护系统设备。

联锁停闭进气隔离阀8和切断压力源7所设置的逻辑保护压力定值与安全阀起跳定值之间的差值需充分考虑温度变化对系统压力波动的影响,防止安全阀4因系统压力变化而起跳。以htr-pm为例,压力试验最高试验压力为9.0mpa,联锁切断进气阀8和停闭压力源7的保护信号建议为9.2mpa,而安全阀4的起跳压力建议设置为9.7mpa(压力容器出厂水压试验压力为10mpa)。

本发明工作原理如下:

首先按照图示连接超压保护装置,在控制器6内设定隔离阀3联锁关闭定值以及开启条件,设定压力源7和进气隔离阀8联锁关闭定值,系统压力通过压力变送器5传送至控制器6,在控制器6内将系统实时压力与设定保护压力进行比对,当系统压力超过压缩机7和进气隔离阀8的保护定值时,由控制器6发出信号指令联锁切断压力源7的电源,联锁关闭进气隔离阀8,使系统与压力源隔离,若隔离压力源后系统压力仍然升高,达到安全阀4预设的保护定值后,安全阀4开启,排放掉部分系统介质,保护压力容器和系统避免超压损坏风险。

为了满足气密性试验的要求,系统内增加安全阀4等同于增加已知漏点,因此在气密性试验阶段为了避免安全阀4的泄漏对系统总体泄漏率的影响,需联锁关闭安全阀4阀前电动隔离阀3。

本发明同时可实现气压试验强度试验超压保护的需求,也可满足气密性试验系统密封的要求。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1